Perspectives for neutrino oscillations.

Walter Winter

DESY, 10./11.06.2014

Contents

- Introduction to neutrino oscillations
- Current knowledge of neutrino oscillations
- > The future:
 - Measurement of δ_{CP}
 - Determination of the neutrino mass ordering
- Summary and conclusions

Introduction to neutrino oscillations

Neutrinos from the atmosphere

- The rate of neutrinos should be the same from below and above
- > But: About 50% missing from below
- Neutrino change their flavor on the path from production to detection: Neutrino oscillations
- > Neutrinos are massive!

(Super-Kamiokande: "Evidence for oscillations of atmospheric neutrinos", 1998)

Neutrino production/detection

> Neutrinos are only produced and detected by the weak interaction:

> The dilemma: One cannot assign a mass to the flavor states $v_e, v_\mu, v_\tau!$

Which mass do the neutrinos have?

- There is a set of neutrinos v₁, v₂, v₃, for which a mass can be assigned.
- > Mixture of flavor states:

- Not unusual, know from the Standard Model for quarks
- > However, the mixings of the neutrinos are much larger!

 $|\nu_i\rangle$

Neutrino oscillation probability

Standard derivation N active, S sterile (not weakly interacting) flavors

Mixing of flavor states

$$|\nu_{\alpha}\rangle = \sum_{k=1}^{N+S} U_{\alpha k}^* |\nu_k\rangle$$

Time evolution of mass state

$$|\nu_k(t)\rangle = \exp(-iE_kt)|\nu_k\rangle$$

Transition amplitude

$$A_{\nu_{\alpha}\to\nu_{\beta}} \equiv A_{\alpha\beta} = \langle \nu_{\beta} | \nu_{\alpha}(t) \rangle = \sum_{k=1}^{N+S} U_{\alpha k}^{*} U_{\beta k} \exp(-iE_{k}t)$$

> Transition probability

$$P_{\alpha\beta} = A_{\alpha\beta}^* A_{\alpha\beta} = \sum_{k,j=1}^{N+S} \underbrace{U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^*}_{\equiv J_{kj}^{\alpha\beta}} \exp\left(-i(E_k - E_j)t\right)$$

$$\equiv J_{kj}^{\alpha\beta}$$
"quartic re-phasing invariant"

Further simplifications

> Ultrarelativistic approximations:

$$E_k = \sqrt{\vec{p}^2 + m_k^2} \simeq E + \frac{m_k^2}{2E}, \quad t \simeq L$$

L: baseline (distance source-detector)

> Plus some manipulations: "Master formula"

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{k>j} \operatorname{Re} J_{kj}^{\alpha\beta} \sin^2 \left(\frac{\Delta m_{kj}^2 L}{4 E}\right) + 2 \sum_{k>j} \operatorname{Im} J_{kj}^{\alpha\beta} \sin \left(\frac{\Delta m_{kj}^2 L}{2 E}\right)$$

$$\underbrace{\operatorname{CP \ conserving}}_{\text{CP \ violating}} + 2 \underbrace{\operatorname{CP \ violating}}_{\text{CP \ violating}} + 2 \underbrace{\operatorname{CP \ violating}_{\text{CP \ violating$$

$$\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$$
 "mass squared difference"

F(L,E)=L/E "spectral dependence"

> For antineutrinos: $U \Rightarrow U^*$

DESY

Two flavor limit: N=2, S=0

> Only two parameters:

$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

> From the master formula: **Disappearance** or survival probability

Lower limit for neutrino mass!

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Three flavors: Mixings

> Use same parameterization as for CKM matrix

Pontecorvo-Maki-Nakagawa-Sakata matrix

- Neutrinos ⇒ Anti-neutrinos: U ⇒ U* (neutrino oscillations)
- > If neutrinos are their own anti-particles (Majorana neutrinos): U \Rightarrow U diag(1,e^{i α},e^{i β}) - do enter 0_V $\beta\beta$, but not neutrino oscillations

Three active flavors: Masses

> Two independent mass squared splittings, typically Δm^2_{21} (solar) Δm^2_{31} (atmospheric)

Will be relevant for neutrino oscillations!

- > The third is given by $\Delta m^2_{32} = \Delta m^2_{31} \Delta m^2_{21}$
- The (atmospheric) mass ordering (hierarchy) is unknown (normal or inverted)
- The absolute neutrino mass scale is unknown (< eV)</p>

Current knowledge of neutrino oscillations

Three flavors: Simplified

> What we know (qualitatively):

- Hierarchy of mass splittings
$$\Delta m^2_{21} \ll |\Delta m^2_{31}| \simeq |\Delta m^2_{32}|$$

 Two mixing angles large, one (θ₁₃) small ~ 0?

$$U_{\mathsf{PMNS}}^{\theta_{13}\to0} = \begin{pmatrix} c_{12} & s_{12} & 0\\ -s_{12}c_{23} & c_{12}c_{23} & s_{23}\\ s_{12}s_{23} & -c_{12}s_{23} & c_{23} \end{pmatrix}$$

From the "master formula", we have

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 J_{21}^{\alpha\beta} \sin^2 \Delta_{21}$$
$$J_{kj}^{\alpha\beta} = U_{\alpha k}^* U_{\beta k} U_{\alpha j} U_{\beta j}^* \qquad \Delta_{ij} \equiv \Delta m_{ij}^2 L/(4E)$$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 J_{21}^{\alpha\beta} \sin^2 \Delta_{21}$$
$$\Delta_{ij} \equiv \Delta m_{ij}^2 L/(4E)$$

Two flavor limits by selection of frequency:

• Atmospheric frequency: $\Delta_{31} \sim \pi/2 \Rightarrow \Delta_{21} << 1$ $P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{21}^{\alpha\beta} + J_{22}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \int_{21}^{\alpha\beta} d\beta$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31} - 4 \left($$

• Solar frequency: $\Delta_{21} \sim \pi/2 \quad \Rightarrow \quad \Delta_{31} >> 1$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \underbrace{\sin^2 \Delta_{31}}_{\text{averages}} - 4 J_{21}^{\alpha\beta} \sin^2 \Delta_{21}$$

Select sensitive term by choice of L/E! 0.5

Atmospheric neutrinos

From $P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \left(J_{31}^{\alpha\beta} + J_{32}^{\alpha\beta} \right) \sin^2 \Delta_{31}$ and θ_{13} small we have: $P_{ee} \sim 1$, $P_{e\mu} \sim P_{\mu e} \sim 0$ and

$$P_{\mu\mu} \simeq 1 - \sin^2(2\theta_{23}) \sin^2 \Delta_{31}$$

 \Rightarrow Two flavor limit with particular parameters θ_{23} , Δm^2_{31}

Reactor neutrinos

> In the presence of θ_{13} :

Three flavors: Summary

> Three flavors: 6 params (3 angles, one phase; $2 \times \Delta m^2$)

Describes solar and atmospheric neutrino anomalies, as well as reactor antineutrino disappearance!

Precision of parameters?

	bfp $\pm 1\sigma$	3σ range		N	uFIT 1.2 (2013)	
$\sin^2 \theta_{12}$	$0.306^{+0.012}_{-0.012}$	$0.271 \rightarrow 0.346$				
$\theta_{12}/^{\circ}$	$33.57_{-0.75}^{+0.77}$	$31.38 \rightarrow 36.01$		± 2%		
$\sin^2 \theta_{23}$	$0.446^{+0.007}_{-0.007} \oplus 0.587^{+0.032}_{-0.037}$	$0.366 \rightarrow 0.663$	X			
$\theta_{23}/^{\circ}$	$41.9^{+0.4}_{-0.4} \oplus 50.0^{+1.9}_{-2.2}$	$37.2 \rightarrow 54.5$		± 4%	(or better)	
$\sin^2 \theta_{13}$	$0.0229^{+0.0020}_{-0.0019}$	$0.0170 \rightarrow 0.0288$	N		-	
$\theta_{13}/^{\circ}$	$8.71^{+0.37}_{-0.38}$	$7.50 \rightarrow 9.78$		± 4%		
$\delta_{ m CP}/^{\circ}$	265^{+56}_{-61}	$0 \rightarrow 360$,			
$\frac{\Delta m_{21}^2}{10^{-5} \mathrm{eV}^2}$	$7.45_{-0.16}^{+0.19}$	$6.98 \rightarrow 8.05$		± 3%		
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$+2.417^{+0.013}_{-0.013}$	$+2.247 \rightarrow +2.623$		+ 3%		
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.410^{+0.062}_{-0.062}$	$-2.602 \rightarrow -2.226$	/ 			
Open issu - Degener - CP phas	ues: acies (mass orderiu e	Age of the precision flavor physics of the lepton sector				
Walter Winter DESY Seminar ² 10./11.06.2014 Page 19 (DESY)						

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, JHEP 1212 (2012) 123

Current status and perspectives for existing equipment

> Indication for δ_{CP} , no evidence for mass hierarchy

> Potential of existing equipment

- Largest, bi-annual conference of the neutrino community, 550 participants
- > Highlights:
 - Discovery of cosmic neutrinos, by IceCube
 - = First direct high-CL evidence for ν_{μ} to ν_{e} flavor transitions, by T2K
 - First atmospheric measurement of leading atmospheric parameters comparable with long-baseline experiments, by IceCube-DeepCore (analysis done by DESY-Zeuthen group)

Juan-Pablo Yanez @ Neutrino 2014

- θ₁₃ central value shifts down (Daya Bay), tension
 with T2K increased; may strengthen hint for maximal leptonic CP violation δ_{CP}~-π/2
- P5 prioritisation of Long Baseline Neutrino Oscillation Experiment at Fermilab
- DESY with three plenary talks one of the strongest represented institutions in the program (after INFN, before Fermilab)
 Walter Winter | DESY Seminar² | 10./11.06.2014 | Page 21

DESY

The future: measurement of δ_{CP}

Why is δ_{CP} interesting?

> CP violation sinδ

Necessary condition for successful baryogenesis

(dynamical mechanism to create matter-antimatter asymmetry of the universe)

⇒ thermal leptogenesis by decay of heavy see-saw

partner?

e.g. TBM sum rule: $\theta_{12} = 35^\circ + \theta_{13} \cos \delta$ (Antusch, King; Masina ...)

> Need performance which is equally good for all δ_{CP}

Necessary conditions for the observation of CP violation

> Since

$$\left\langle \sin\left(\frac{\Delta m_{kj}^2 L}{2E}\right) \right\rangle_{L/E} = 0$$

⇒ need spectral info!

> Since for $\alpha = \beta$

$$J_{kj}^{\alpha\alpha} = |U_{\alpha k}|^2 |U_{\alpha j}|^2$$

⇒ need to observe flavor transitions

Need (at least) three flavors

 (actually conclusion in quark sector by
 Kobayashi, Maskawa, Nobel Prize 2008)
 No CP violation in two flavor subspaces!

⇒ Need to be sensitive to (at least) two mass squared splittings at the same time!

Electron-muon neutrino flavor transitions

$$\begin{split} P_{e\mu} &\simeq \sin^2 2\theta_{13} \frac{\sin^2 \theta_{23}}{\sin^2 \theta_{23}} \frac{\sin^2 [(1 \pm \hat{A})\Delta]}{(1 \pm \hat{A})^2} \qquad \alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}, \Delta \equiv \frac{\Delta m_{31}^2 L}{4E}, \hat{A} \equiv \frac{2\sqrt{2}G_{\mu}n_e E}{\Delta m_{31}^2} \\ &\mp \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin \delta_{CP}}{\log 2} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin[(1 \pm \hat{A})\Delta]}{\hat{A}} \frac{(1 \pm \hat{A})\Delta]}{(1 \pm \hat{A})} \\ &\mp \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin[(1 \pm \hat{A})\Delta]}{\hat{A}} \frac{(1 \pm \hat{A})\Delta]}{(1 \pm \hat{A})} \\ &+ \alpha^2 \frac{\sin^2 \theta_{23}}{\cos^2 \theta_{23}} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \\ &+ \alpha^2 \frac{\sin^2 \theta_{23}}{\cos^2 \theta_{23}} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \\ &> \text{Antineutrinos:} \quad P_{e\mu} = P_{e\mu} (\delta_{CP}, \rightarrow -\delta_{CP}, \hat{A} \rightarrow -\hat{A}) \\ &> \text{Silver:} \quad P_{e\tau} = P_{e\mu} (s_{23}^2 \leftrightarrow c_{23}^2, \sin 2) \\ &\Rightarrow \text{Platinum, T-inv.:} \quad P_{\mu e} = P_{e\mu} (\delta_{CP}, \rightarrow -\delta_{CP}, A) \end{aligned}$$

(Cervera et al. 2000; Freund, Huber, Lindner, 2000; Akhmedov et al, 2004)

Possible experimental setups (future)

		Setup	E_{ν}^{peak}	L	OA	Detector	kt	MW	Decays/yr	$(t_{\nu}, t_{\bar{\nu}})$
L L Benchmark	k	BB350	1.2	650	_	WC	500	_	$1.1(2.8) \times 10^{18}$	(5,5)
	ımar	NF10	5.0	2000	_	MIND	100	_	7×10^{20}	(10, 10)
	enck	WBB	4.5	2300	_	LAr	100	0.8	_	(5,5)
	В	T2HK	0.6	295	2.5°	WC	560	1.66	_	(1.5, 3.5)
↓ Alternative		BB100	0.2	130	_	WC	500	_	$1.1(2.8) \times 10^{18}$	(5,5)
	tive	+ SPL	0.5		_			4	_	(2,8)
	erna	NF5	2.5	1290	_	MIND	100	_	7×10^{20}	(10, 10)
	Alt	$LBNE_{mini}$	4.0	1290		LAr	10	0.7	_	(5,5)
		$NO\nu A^+$	2.0	810	0.8°	LAr	30	0.7	_	(5,5)
	20	T2K	0.6	295	2.5°	WC	22.5	0.75	_	$^{(5,5)}$ + Day
	20	ΝΟνΑ	2.0	810	0.8°	TASD	15	0.7	_	(4,4) Bay

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

Performance

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

THE INTERNATIONAL DESIGN STUDY FOR THE NEUTRIND FACTORY

(Geer, 1997; de Rujula, Gavela, Hernandez, 1998; Cervera et al, 2000) \longrightarrow Signal prop. sin²2 θ_{13}

Contamination ⇒ magnetized detector!

Muons decay in straight sections of a storage ring

> IDS-NF:

Initiative from ~ 2007-2014 to present a design report, schedule, cost estimate, risk assessment for a neutrino factory

Muon Accelerator Staging Programme

Synergies between NuMAX and Muon Collider components Muon Accelerator Staging Study (MASS)

Systematics: Main challenges for δ_{CP}

(Coloma, Huber, Kopp, Winter, arXiv:1209.5973)

Mass hierarchy determination

Why would one like to measure the mass ordering?

- Specific models typically come together with specific MH prediction (e.g. textures are very different)
- Good model discriminator

(Albright, Chen, hep-ph/0608137)

TABLE I: Mixing Angles for Models with Lepton Flavor Symmetry.

Reference		Hierarchy	$\sin^2 2\theta_{23}$	$\tan^2 \theta_{12}$	$\sin^2 heta_{13}$
Anarch	y Mo	odel:			
dGM	[18]	Either			≥ 0.011 @ 2σ
$\mathbf{L}_{\mathbf{e}} - \mathbf{L}_{\mu} - \mathbf{L}_{\tau}$ Models:					
BM	[35]	Inverted			0.00029
BCM	[36]	Inverted			0.00063
GMN1	[37]	Inverted		≥ 0.52	≤ 0.01
GL	[38]	Inverted			0
\mathbf{PR}	[39]	Inverted		≤ 0.58	≥ 0.007
S ₃ and	$S_4 N$	fodels:			
CFM	[40]	Normal			0.00006 - 0.001
HLM	[41]	Normal	1.0	0.43	0.0044
		Normal	1.0	0.44	0.0034
KMM	[42]	Inverted	1.0		0.000012
MN	[43]	Normal			0.0024
MNY	[44]	Normal			0.000004 - 0.000036
MPR	[45]	Normal			0.006 - 0.01
RS	[46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02
		Normal	$\theta_{23} \le 45^{\circ}$		0
TY	[47]	Inverted	0.93	0.43	0.0025
Т	[48]	Normal			0.0016 - 0.0036
A ₄ Teta	A ₄ Tetrahedral Models:				
ABGMF	P [49]	Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037
AKKL	[50]	Normal			0.006 - 0.04
Ma	[51]	Normal	1.0	0.45	0
SO(3) Models:					
М	[52]	Normal	0.87 - 1.0	0.46	0.00005
Texture Zero Models:					
CPP	[53]	Normal			0.007 - 0.008
	-	Inverted			≥ 0.00005
		Inverted			≥ 0.032
WY	[54]	Either			0.0006 - 0.003
		Either			0.002 - 0.02
		Either			0.02 - 0.15

Method 1: Matter effects in neutrino oscillations

- Ordinary matter:
 electrons, but no μ, τ
- Coherent forward scattering in matter: Net effect on electron flavor
- Hamiltonian in matter (matrix form, flavor space):

$$\mathcal{H}(n_e) = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{pmatrix} U^{\dagger} + \begin{pmatrix} V(n_e) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(ele per nucle V_{\nu} = $+\sqrt{2}G_F n_e, \ V_{\overline{\nu}} = -\sqrt{2}G_F n_e, \ n_e = Y \rho_j / m_N$

Y: electron fraction ~ 0.5 (electrons per nucleon)

Parameter mapping ... for two flavors, constant matter density

Long baseline experiments (up to first vacuum osc. maximum)

Long-Baseline Neutrino Oscillation Experiment (LBNE)

Bob Wilson @ Neutrino 2014

> Particle Physics Project Prioritization Panel (P5) in the US; Report May '14

- The Science Drivers:
 - Use the Higgs boson as a new tool for discovery
 - Pursue the physics associated with neutrino mass
 - Identify the new physics of dark matter
 - Understand cosmic acceleration: dark energy and inflation
 - Explore the unknown: new particles, interactions, and physical principles

Recommendation 13: Form a new international collaboration to design and execute a highly capable Long-Baseline Neutrino Facility (LBNF) hosted by the U.S. To proceed, a project plan and identified resources must exist to meet the minimum requirements in the text. LBNF is the highest-priority large project in its timeframe.

Matter profile of the Earth ... as seen by a neutrino

Resonance energy (from $\hat{A} \to \cos 2\theta$): $E_{\text{res}} [\text{GeV}] \sim 13200 \cos 2\theta \frac{\Delta m^2 [\text{eV}^2]}{\rho [\text{g/cm}^3]}$

Mantle-core-mantle profile

(Parametric enhancement: Akhmedov, 1998; Akhmedov, Lipari, Smirnov, 1998; Petcov, 1998)

Probability for L=11810 km

Emerging technologies: Atmospheric vs

- Example: PINGU ("Precision IceCube Next Generation Upgrade")
- > 40 additional strings, 60 optical modules each
- Lower threshold, few Mtons at a few GeV
- > ORCA, INO: similar methods

Method 2: Disappearance probabilities

- > Works in vacuum, and even for $\theta_{13}=0$
- > Just flipping the sign of Δm^2 is not sufficient
- Example: Reactor experiment, L=53 km

Method 2: Disappearance probabilities

> The disappearance Δm^2 depends on the channel. Consequence e.g. $|\delta m_{\text{eff}}^2|_e - |\delta m_{\text{eff}}^2|_\mu = \pm \delta m_{21}^2 (\cos 2\theta_{12} - \cos \delta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$

de Gouvea, Jenkins, Kayser, hep-ph/0503079; Nunokawa, Parke, Zukanovich, hep-ph/0503283

Emerging technologies: Reactor experiments

- Jiangmen Underground Neutrino Observatory (JUNO)
 [formerly Daya Bay-II]
- > L=53 km
- Excellent energy resoluton (3% (E/MeV)^{0.5}) requires O(100%) PMT coverage

(version from PINGU LOI, arXiv:1401.2046, based on Blennow, Coloma, Huber, Schwetz, arXiv:1311.1822)

Summary and conclusions

Mass hierarchy: may be tested in beginning of 2020s by "emerging technologies", such as PINGU or JUNO

PINGU has a good chance to be the first experiment to measure the mass hierarchy if timely; DESY involved

- CP violation: requires a new long-baseline experiment, such as LBNE, T2HK, NuFact; P5 recognition milestone towards such a program at Fermilab
- Other issues: θ₂₃ maximal? Octant? Sun and Earth tomography? New physics?
- Light sterile neutrinos best candidate for physics BvSM? Test shortbaseline anomalies, measure neutrino X-secs, …
- > Perspectives for neutrino oscillations? Fantastic!

