Neutrinos & gamma rays

Complementary views on the high-energy universe.

The origin and the propagation of cosmic rays.

- What is the connection of the observed non-thermal emission to the cosmic rays at Earth ?
- What are the sites that can accelerate particles to > 10²⁰ eV?
- > Which cosmic accelerators dominate the CR flux in which energy range ?

Energy densities in the Milky Way

	Energy density	Milky Way-like spiral galaxy
Cosmic rays	0.8 eV / cm ³	
CMB	0.3 eV / cm ³	
Starlight	0.5 eV / cm ³	
Magnetic fields	~ 0.3 eV / cm ³	
Gas pressure	~ 0.5 eV / cm ³	

> Cosmic rays

- heat the interstellar gas
- interact with the magnetic fields
- influence star formation

→ They are important for Galaxy dynamics

Astrophysical mechanisms / environments for particle acceleration

- > What are **the mechanisms** driving such extreme particle acceleration ?
 - Diffusive shock acceleration
 - Acceleration in plasma turbulence
 - Magnetic reconnection
 - Electrostatic gaps

- gas & photon densities
- magnetic fields
- bulk motion

Signatures of new physics in the universe.

- Some high-energy particles might not have been accelerated...
- > ...but have been produced in the annihilation or decay of massive particles.
- Many particle physics motivated models for dark matter predict observable signatures in the nonthermal sky.

large scale dark matter distribution

simulated γ-ray emission from dark matter annihilation

> Every messenger is unique.

> Every messenger is unique.

> Every messenger is unique.

> Every messenger is unique.

p-p interactions

Markus Ackermann | 13.01.2015 | Page 6

Topics addressed in this talk

- > A measurement of the total extragalactic high-energy gamma-ray emission in the universe
 - ...and what we know about the sources that produce it.

> The connection to CR production/propagation, dark matter annihilation & new physics.

> The **very special value** of astrophysical neutrinos.

Gamma-ray astronomy.

Space based

Fermi LAT

30 MeV - 1 TeV

20% of the sky

~1 m²

85% of the year

Instruments

Energy range

Field-of-view

Effective area

Duty cycle

HESS, MAGIC, Veritas

50 GeV - 100 TeV

 $\sim 0.02\%$ of the sky

~10000 m²

10% of the year

The extragalactic GeV gamma-ray sky.

The extragalactic GeV gamma-ray sky.

> 3FGL: 3rd Fermi LAT gamma-ray source catalog based on 4 years of data

- Systematic scan of the sky for sources, source identification or association
- Replaces 2FGL based on 2 years of data

	2FGL	3FGL	
Total	1873	3033	
Unassociated	649 (35%)	992 (33%)	
AGNs	991 + 28 (ID) (57%)	1691 + 66 (ID) (58%)	
PSRs	25 + 83 (ID)	29 + 137 (ID)	
PWN	3 (ID)	2+9 (ID)	
SNR	4 +6 (ID)	11+12 (ID)	
GLC	11	15	
SBG	4	4	
НМВ	4 (ID)	3 (ID)	
spp	58	51	
Others	7 (gal+Nova+)	11 (gal+Nova+BIN)	
Extended	12	25	
High/Low b	1319/554	2193/841	

Elisabetta Cavazzuti 5th Fermi Symp. Nagoya, 2014

> 3FGL: 3rd Fermi LAT gamma-ray source catalog based on 4 years of data

- Systematic scan of the sky for sources, source identification or association
- Replaces 2FGL based on 2 years of data

> The overwhelming majority of extragalactic LAT sources are Active Galactic Nuclei (AGN)

> Blazars:

- Observer line-of-sight into the relativistic jet
- Relativistic doppler boost of intensities

> Misaligned AGN:

- Large viewing angle to jet
- Characterization by radio emission properties

The 3rd LAT AGN catalog

- > 1591 high-latitude LAT sources associated with AGN
 - 1559 associated with Blazars
 - 32 associated with misaligned radio Galaxies
- > Blazars are the dominant extragalactic gamma-ray sources
- Large fraction of unidentified sources are likely Blazars.

Benoit Lott 5th Fermi Symp. Nagoya, 2014

Prelimina
mary

AGN type	Entire 3LAC	3LAC Clean Sample ^a	Low-latitude sample
A11	1591	1444 +64	% 182
FSRQ	467	(414)+ 3 4	% 24
LSP	412	366	16
ISP	47	42	3
HSP	3	2	4
no classification	5	4	1
BL Lac	632	(604)+ 5 2	% 30
LSP	162	150	15
ISP	178	173	4
HSP	272	265	10
no classification	20	16	1
Blazar of Unknown type	460	⁽⁴⁰²)+16	4% 125
LSP	198	164	54
ISP	89	79	26
HSP	120	118	39
no classification	53	41	6
Other AGN	32	24	3

3LAC

Star-forming / Starburst Galaxies.

"normal" star-formation rate

Abdo et al., 2010

extreme star-formation rate "starburst"

> 4 starburst galaxies detected with the LAT

- > 4 local "normal" galaxies detected.
 - Andromeda, LMC, SMC & Milky Way

Weak gamma-ray > sources, but very abundant in the universe

Markus Ackermann | 13.01.2015 | Page 14

40

30

20

10

	Number of sources visible	Luminosity	Density in the universe
Blazars	~ 1500	bright	low
Misaligned active Galaxies	32	medium	medium
Starforming Galaxies	8	dim	high
Unknown	~ 1000	?	?

The extragalactic GeV gamma-ray sky

> Strong sources: All sources can be detected individually.

Source detection: Intermediate sources

- > Intermediate sources: Some sources can be detected individually.
- > Source detection efficiency is < 100%</p>

Source detection: Weak sources

- > Weak sources: Cannot be detected individually
- > Isotropic distribution of events (if source distribution is isotropic)

The real case: A mixture of weak & strong sources

- > Part of the intensity of a source population can be resolved into individual sources
- > The remaining part **contributes to a diffuse background.**
- > Dependent on instrument sensitivity, PSF and population properties.

The origin of the l

Undetected

Blazars

D

g

minant class of L/

ctic sources.

extra-

Only small contributions expected.

Je.

 produced in galaxy cluster mergers

Dark matter annihilation

 Potential signal dependent on nature of DM.

Interactions of UHE cosmic rays with the EBL

 Strongly dependent on evolution of UHECR sources..

Derivation of the isotropic gamma-ray background.

Results from the IGRB fit.

The IGRB spectrum

- > IGRB spectrum can be parametrized by single power-law + exponential cutoff.
- > Spectral index ~ 2.3 , cutoff energy ~ 250 GeV.
- > It is not compatible with a simple power-law ($\chi^2 > 85$).

The isotropic and the total extragalactic background.

Intensity that can be resolved into sources depends on:

- the sensitivity of the instrument.
- the exposure of the observation.

- The isotropic γ-ray background depends on the sensitivity to identify sources.
- → Important as an **upper limit on** diffuse processes.
- The total extragalactic γ-ray background is instrument and observation independent.
- → Useful for comparisons with source population models.

Comparison of LAT IGRB and EGB measurements

- > Total extragalactic gamma-ray background (EGB) = IGRB + resolved sources.
- Integrated intensity of IGRB about 30% below measurement in Abdo et al. 2010.
- > **Compatible** within systematic uncertainties.
- > Main differences: Improved diffuse foreground and CR background models.

Cosmic x-ray and gamma-ray background now measured over 9 orders of magnitude in energy.

> The universe is transparent to gamma-rays (E < 10 GeV) to z > 10.

Contributions of known extragalactic sources.

And we already know where most of the emission comes from!

Ajello et al., 2014, submitted to ApJL

> At low energies:

- 10% 20% contribution from starforming galaxies
- 10% 50% from misaligned AGN
- > Blazars seem to dominate at GeV energies.

Constraints on gamma-ray emission from DM annihilation.

> Tight limits on contributions from diffuse processes, e.g. dark matter annihilation.

Constraints on the density of primordial black holes

- > Primordial black holes evaporate into gamma rays (and other particles).
- > Т_{ВН} ~ 1/М_{ВН}

And the next step is....

No, NOT CTA !!*

Disclaimer: This statement ist true ONLY for the measurement of the diffuse gamma-ray background.

CTA will do a lot of great science!!!!

Cherenkov telescopes, the EGB, and cosmic-ray electrons.

photons and electrons at high confidence!

The high-energy EGB cut-off.

Markus Ackermann | 13.01.2015 | Page 33

- > Astrophysical neutrinos are the only way to probe the non-thermal processes in the distant universe above tens of TeV.
- > Good that IceCube has proven sensitive enough to see them.

The astrophysical neutrino flux.

> The astrophysical neutrino flux must arise from multiple sources.

No sources seen in (more sensitive) Point Source analysis

> Part of it is from high Galactic latitudes.

- Points to an extragalactic origin.
- > Event distribution is **compatible with an isotropic** neutrino flux.

Signatures of neutrinos in IceCube

Signatures of neutrinos in IceCube

Signatures of neutrinos in IceCube

Combination of searches in a global fit.

Lars Mohrmann, DESY

Extragalactic gamma rays and neutrinos.

Lars Mohrmann, DESY

Extragalactic gamma rays and neutrinos.

- Cosmic rays interact with a target medium close to the source.
- Neutrino/Gamma production via p-p collisions
- Reprocessing of gamma rays to GeV energies

TeV-PeV Neutrinos

- Cosmic rays interact with a target medium close to the source.
- Neutrino/Gamma production via p-p collisions
- Reprocessing of gamma rays to GeV energies

A proper calculation.

- If extragalactic p-p collisions produce the observed v
 - → hard ν -spectrum below 10 TeV needed.
- ...but difficult to explain spectra considerably harder than Γ~2 in p-p scenario.
- First hint at p-γ interactions being the dominant neutrino production mechanism?
- Or maybe that part of the signal is Galactic ?

[Murase, MA & Lacki'13; updated with Fermi 1410.3696]

A proper calculation.

- If extragalactic p-p collisions produce the observed v
 - → hard ν -spectrum below 10 TeV needed.
- ...but difficult to explain spectra considerably harder than Γ~2 in p-p scenario.
- First hint at p-γ interactions being the dominant neutrino production mechanism?
- Or maybe that part of the signal is Galactic ?

[Murase, MA & Lacki'13; updated with Fermi 1410.3696]

Search for correlation of v to the sample of Fermi Blazars.

- > Most of the extragalactic GeV gamma-ray emission is from Blazars
- > Most of the emission is resolved in individual Fermi LAT sources.
- > Search for neutrino emission spatially coincident with 2LAC Blazar sample.
- > Neutrino dataset for point source analysis used (several 10⁵ events).

All blazars from 2-LAC – 862 objects

Thorsten Glüsenkamp, DESY

Extragalactic gamma rays and neutrinos.

> Ultra-high energy protons produce gamma-rays and neutrinos during propagation.

> Ultra-high energy protons produce gamma-rays and neutrinos during propagation.

- > High-energy cosmic rays interact with the EBL during propagation.
- Neutrino/Gamma production via pγinteractions
- > Reprocessing of gamma rays to GeV energies

PeV-EeV Neutrinos

EBL=extragalactic background light

Markus Ackermann | 13.01.2015 | Page 46

- > High-energy cosmic rays interact with the EBL during propagation.
- Neutrino/Gamma production via pγinteractions
- > Reprocessing of gamma rays to GeV energies

EBL=extragalactic background light

Multi-messenger constraints on UHECR properties.

- > CR, neutrino and gamma-ray spectrum from propagation code.
- > Cosmological evolution of sources corresponds to **FR-II galaxy evolution**.
- > CR sources produce protons.

Multi-messenger constraints on UHECR properties.

- > CR, neutrino and gamma-ray spectrum from propagation code.
- > Cosmological evolution of sources corresponds to **GRB evolution**.
- > CR sources produce protons.

What we learned so far.

> The origin of more than half of the EGB can be attributed to known source populations.

Allows strong constrains on exotic processes in the universe.

> We see the **signatures of CR** acceleration / interaction up to **tens of PeV** in energy.

• The origin seems to be at least partly extragalactic.

> The astrophysical neutrino spectrum between 20 TeV and 3 PeV can be described by a single power-law with index $\alpha = 2.5$.

> The EGB constrains the **low-energy neutrino spectrum**.

required hard spectrum might create tensions to an origin from p-p collisions.

> LAT Blazars are not responsible for the bulk of astrophysical neutrinos.

There is likely no connection between the observed neutrinos and the ultra-high-energy cosmic rays

Need to observe a signal at higher energies.

What we will learn soon

- > Improved accuracy of EGB measurement above 100 GeV.
- > Better constraints on spectral parameters of ν -flux, extended energy range.
- > Find out if there is a Galactic contribution or anisotropy to the ν -flux.
- More stringent constraints on extragalactic multi-PeV CR accelerators from the combination of EGB and astrophysical v's.
- Discovery of sub-dominant v-flux contributions from Blazars, Radio Galaxies, or UHECR ?

From discovery to high-statistics neutrino astronomy.

- $> \sim 100$ more strings, 6 10 km³ instrumented volume.
- > Optimized for 10 TeV 10 PeV astrophysical neutrinos.
- > ~100 M€ Investment.

1000

2000

-1000

-2000

-3000

-2000

Backup.

