HGF VI Meeting | SLAC | July 11, 2014

FLASHForward status update

Future-oriented wakefield-accelerator research and development at FLASH

Jens Osterhoff

Project coordinator FLASHForward Deutsches Elektronen-Synchrotron DESY Team: A. Aschikhin, C. Behrens, J. Dale, E. Elsen, C. Entrena, B. Foster, L. Goldberg, O. Kononenko, V. Libov, K. Ludwig, A. Martinez de la Ossa, T. Mehrling, H. T. Olgun, C. A. J. Palmer, J. Schaffran, L. Schaper, B. Schmidt, J.-P. Schwinkendorf, M. J. V. Streeter, V. Wacker, S. Wunderlich, J. Zemella.

for the LAOLA. collaboration

Mission and goals of the **FLASH**Forward project

- FLASHForward is > an extension to the FLASH 1.2 GeV water-window FEL facility
 - > a new beamline for beam-driven plasma wakefield accelerator research

Scientific goals

- > the characterization of **externally injected** electron beams and their controlled release from a wakefield accelerator with energies > 1.6 GeV (\rightarrow phase I)
- > the exploration of novel in-plasma beam-generation¹ and acceleration techniques to provide > 1.6 GeV energy, < 100 nm transverse normalized emittance, ~1 fs duration, and > 1 kA current electron bunches (\rightarrow phase I)
- > to drive a free-electron laser with these beams at wavelengths on the few-nanometer scale (\rightarrow phase II)

¹ A. Martinez de la Ossa *et al.*, "High-Quality Electron Beams from Beam-Driven Plasma Accelerators by Wakefield-Induced Ionization Injection", Physical Review Letters **111**, 245003 (2013) A. Martinez de la Ossa et al., "High-Quality Electron Beams from Field-Induced Ionization Injection in the Strong Blow-Out Regime of Beam-Driven Plasma Accelerators", NIM A 740, 231 (2014) J. Grebenyuk et al., "Beam-Driven Plasma-Based Acceleration of Electrons with Density Down-Ramp Injection at FLASHForward", NIM A 740, 246 (2014) B. Hidding et al., "Ultracold Electron Bunch Generation via Plasma Photocathode Emission and Acceleration in a Beam-Driven Plasma Blowout", Physical Review Letters 108, 035001 (2012)

Beamline location and layout in the FLASH facility

Conceptual and technical design in progress Operation to start in ~2016, run for 4 years+

Jens Osterhoff | plasma.desy.de | HGF VI Meeting | July 11, 2014 | Page 3

Beamline location and layout in the FLASH facility

Conceptual and technical design in progress Operation to start in ~2016, run for 4 years+

FLASHForward feature: tunable R₅₆ in extraction dogleg for optimized peak current

- FLASH beams are
 - close to maximum compression
 - strongly affected by longitudinal space charge
 - chirp of the core has different sign

Simulation

FLASHForward feature: tunable R₅₆ in extraction dogleg for optimized peak current

- > FLASH beams are
 - close to maximum compression
 - strongly affected by longitudinal space charge
 - chirp of the core has different sign
- > Our strategy:
 - decompress the whole beam, but compress the core for high peak current
 - keep R56 \ge 0 along the extraction beamline
 - tunability in the RF settings
- > Status:

- optimization of emittance growth for high current mode ongoing
- emittance growth for $R_{56} = 0$ small

FLASHForward feature: tunable R₅₆ in extraction dogleg for optimized peak current

- > FLASH beams are
 - close to maximum compression
 - strongly affected by longitudinal space charge
 - chirp of the core has different sign
- > Our strategy:
 - decompress the whole beam, but compress the core for high peak current
 - keep R56 \ge 0 along the extraction beamline
 - tunability in the RF settings
- > Status:

- optimization of emittance growth for high current mode ongoing
- emittance growth for $R_{56} = 0$ small

FLASHForward feature: tunable R₅₆ in extraction dogleg for optimized peak current

Project organization

- - - - - -

Topical Principal Investigators 🔳 🗲				
PWFA J. Osterhoff (FLA)				
External injection J. Dale (FLA)				
Tailored-plasma mediated injection <i>L. Schaper (FLA)</i>				
Laser-assisted ionization injection <i>B. Hidding (*UHH)</i>				
Transformer ratio optimization <i>M.J.V. Streeter (FLA)</i>				
Multi-bunch wake excitation <i>S.M. Hooker (*JAI)</i>				
Plasma simulations <i>A. Martinez de la Ossa (FLA)</i>				
FLASH optimization for FLASHForward <i>J. Zemella (MPY)</i>				
Preexperimental LWFA tests <i>C.A.J. Palmer (FLA)</i>				
Post-plasma beam capturing <i>V. Libov (FLA)</i>				
Diagnostics <i>C. Behrens (MPY)</i>				
High-resolution emittance diagnostic V. Libov (FLA)				
Few-cycle laser probe <i>M.J.V. Streeter (FLA)</i>				
Inverse Compton scattering M.J.V. Streeter (FLA)				
Betatron radiation diagnostic S.P.D. Mangles (*JAI)				
Transition-radiation spectroscopy B. Schmidt (FLA)				
Undulator-based beam diagnostic <i>R. Bartolini (*JAI)</i>				
FEL application				

C. Behrens (MPY)

"The interest in PWFA experiments worldwide and DESY's strength in accelerator and FEL expertise make this proposal [i.e. FLASHForward] very competitive and timely. The MAC strongly endorses this project to move forward in the ARD framework."

۱ *۲*

HGF VI Working Groups to develop and advance FLASHForward science program and tools

> Working groups:

- > WG 1 "Plasma simulations", coordinators: Jorge Vieira (IST), Alberto Martinez de la Ossa (DESY)
- > WG 2 "Plasma-cell technologies", coordinators: Patric Muggli (MPP), Lucas Schaper (DESY)
- > WG 3 "Beam instrumentation and transport", coordinators: Ivan Konoplev (JAI), Slava Libov (DESY)
- > WG 4 "Photon generation", coordinators: Carl Schroeder (LBNL), Christopher Behrens (DESY)
- > Goals of these working group: a) to **develop** and **advance** the FLASHForward science case by simulations and theory b) to propose and conduct experiments at FLASHForward
- The WGs are essential for the development of FLASHForward and are foreseen to play a major role in defining its experimental programme
- > FLASHForward is no user facility (e.g. such as FACET). Experimental proposals will be discussed and implemented through the collaboration, i.e. this VI and its WGs.
- > FLASHForward will be a unique facility with is capabilities, VI a great opportunity to gain access
- > WGs are open, please contact coordinators, if interested in participation

Challenges for 20 cm-scale down-ramp injection simulations

Computational challenge

- > 20 cm-scale acceleration with ~100 nm spatial resolution
- > capture physics of trapping \rightarrow full PIC required
- > cost: ~M core hours with full PIC

> T. Mehrling *et al.*, accepted for publication in PPCF (2014)

> allows orders-of-magnitude speedup for FLASHForward-type simulations vs. full PIC

Density down-ramp injection produces low-transverse-emittance witness beams

Witness-beam parameters after 140 mm of propagation

- standard FLASH driver beam at 2.5 kA
- witness beam at 1.5 GeV with 1.0 GeV driver
- further acceleration to ~2.5 GeV possible
- projected normalized transverse emittance < 0.5 µm
- strong longitudinal correlation
- → WG 1 talk by A. Martinez de la Ossa

Can such beams drive an FEL?

→ WG 4 talk by C. Behrens

→ J. Grebenyuk et al., NIM A 740, 246 (2014)

New plasma-cells support novel PWFA-injection schemes

by L. Schaper (DESY), N. Delbos, A. Maier (U Hamburg)

→ WG 2 talk by L. Schaper

Diagnostics and beam transport must fit PWFA requirements

Example: longitudinal phase-space after plasma interaction at FLASHForward (from a PIC simulation)

 \rightarrow WG 3 talk by V. Libov

plasma.desy.de | HGF VI Meeting | July 11, 2014 | Page 11 Jens Osterhoff

Experiments to start in 2016, run for 4 years

	Q1	2017 Q2 Q3 Q4	2018 Q1 Q2 Q3 Q4	2019 Q1 Q2 Q3 Q4	2020 Q1 Q2 Q3
		Scientific milest	one		Date
		Demonstration of	of density-profile injec	ction	Dec. 2016
		Demonstration of	of ionisation-based in	jection	Jul. 2017
ase l		Demonstration of	Sep. 2017		
		External injectio	Dec. 2017		
		Demonstration of	of laser-triggered ioni	zation-based injectio	n May 2018
3S	e II FEL-gain at ~nm wavelength				Jul. 2019
	may =LAS	be delayed by a t SH shutdown sch PWFA studies	few months dependin edule and availability o	g on of technical groups	
□	1,5 y	r <mark>ears</mark> Beamline in Beamlir	stallation PII 3m e commissioning PII 2m Start of Experiments PII 2 yea	PWFA & FEL s	tudies

. .

Summary

- > FLASHForward is a beamline for novel accelerator research and development, going into operation in 2016
- > Great chance to use a unique accelerator, FLASH, for significant scientific contributions towards the field of PWFA
 - > external injection and in-plasma beam-generation and acceleration techniques to provide high-energy (1.5 to 4+ GeV), low transverse emittance (~100 nm), ultrashort (~ fs), and high current (> 1 kA) electron bunches
 - > the application of such beams to assess their potential for *free-electron laser gain* at photon energies inside and beyond the water window
- > Opportunities within this VI exist to do a lot of interesting accelerator R&D and physics over the next years

