Handling Handles: Non-Planar AdS/CFT Integrability

Till Bargheer

| 11 | |
| ---: | ---: | ---: |
| 10 | 2 |
| 1004 | |

Leibniz Universität Hannover
1711.05326: TB, J. Caetano, T. Fleury, S. Komatsu, P. Vieira 18xx.xxxxx: TB, J. Caetano, T. Fleury, S. Komatsu, P. Vieira 18xx. xxxxx: TB, F. Coronado, P. Vieira

+ further work in progress
DESY String Theory Seminar
Hamburg, June 2018

General Idea

String amplitudes in AdS_{5} can be cut into basic patches (rectangles, pentagons, or hexagons), which can be bootstrapped using integrability at any value of the 't Hooft coupling.

- Amplitudes are given as infinite sums and integrals over intermediate states from gluing together these integrable patches.
- This holds at the planar level as well as for non-planar processes suppressed by $1 / N_{\mathrm{c}}$.

$\mathcal{N}=4$ SYM \& The Planar Limit

$\mathcal{N}=4$ super Yang-Mills: Gauge field A_{μ}, scalars Φ_{I}, fermions $\psi_{\alpha A}$.
Gauge group: $\mathrm{U}\left(N_{\mathrm{c}}\right) / \mathrm{SU}\left(N_{\mathrm{c}}\right)$.
Adjoint representation: All fields are $N_{\mathrm{c}} \times N_{\mathrm{c}}$ matrices.
Double-line notation:
Propagators:

$$
\left.\left\langle\Phi_{I j}^{i} \Phi_{J}^{k}\right\rangle\right\rangle g_{\mathrm{YM}}^{2} \delta^{i}{ }_{l} \delta^{k}{ }_{j}={ }_{j}^{i} \rightleftharpoons{ }_{k}^{l} \quad \operatorname{Tr}(\Phi \Phi \Phi \Phi) \sim \frac{1}{g_{\mathrm{YM}}^{2}} \nsim
$$

- Diagrams consist of color index loops \simeq oriented disks $\sim \delta^{i}{ }_{i}=N_{\mathrm{c}}$
- Disks are glued along propagators \rightarrow oriented compact surfaces

Local operators:
$\mathcal{O}_{i}=\operatorname{Tr}(\Phi \ldots) \sim$

- One fewer color loop \rightarrow factor $1 / N_{\text {c }}$
- Surface: Hole \sim boundary component

Planar Limit \& Genus Expansion

Every diagram is associated to an oriented compact surface.

Genus Expansion:

Absorb one factor of N_{c} in the 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{\mathrm{c}}$
Use Euler formula $V-E+F=2-2 g$
\Rightarrow Correlators of single trace operators $\mathcal{O}_{i}=\operatorname{Tr}\left(\Phi_{1} \Phi_{2} \ldots\right)$:
't Hoof genus expansion
$\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=\frac{1}{N_{\mathrm{c}}^{n-2}} \sum_{g=0}^{\infty} \frac{1}{N_{\mathrm{c}}^{2 g}} G_{g}(\lambda)$

Planar Spectrum: Features of Integrability

Simplest observables: Planar two-point functions \simeq scaling dimensions

$$
\begin{gathered}
\mathcal{O}_{i}=\operatorname{Tr}(\Phi \ldots) \\
\text { single-trace }
\end{gathered}
$$

Perturbatively: Degeneracies in the spectrum \rightarrow Higher charges
Spin chain picture: Organize operators around vacuum operators

$$
\operatorname{Tr} Z^{L}, \quad Z=\alpha^{I} \Phi_{I}, \quad \alpha^{I} \alpha_{I}=0 \quad \text { (half-BPS, protected) }
$$

Other operators: Insert impurities $\left\{\Phi_{I}, \psi_{\alpha A}, D_{\mu}\right\}$ into $\operatorname{Tr} Z^{L}$.
Dilatation operator acts locally in color space (neighboring fields)
\rightarrow Impurities are magnons, with rapidity (momentum) u and $\mathfrak{s u}(2 \mid 2)^{2} \subset \mathfrak{p s u}(2,2 \mid 4)$ flavor index.

Planar Spectrum: Features of Integrability

Perturbatively: Degeneracies in the spectrum \rightarrow Higher charges
Spin chain picture: Organize operators around vacuum operators

$$
\operatorname{Tr} Z^{L}, \quad Z=\alpha^{I} \Phi_{I}, \quad \alpha^{I} \alpha_{I}=0 \quad \text { (half-BPS, protected) }
$$

Other operators: Insert impurities $\left\{\Phi_{I}, \psi_{\alpha A}, D_{\mu}\right\}$ into $\operatorname{Tr} Z^{L}$.
Dilatation operator acts locally in color space (neighboring fields)
\rightarrow Impurities are magnons, with rapidity (momentum) u and $\mathfrak{s u}(2 \mid 2)^{2} \subset \mathfrak{p s u}(2,2 \mid 4)$ flavor index.
Dynamics of magnons: Integrability:
\rightarrow No particle production
\rightarrow Individual momenta preserved
\rightarrow Factorized scattering

Two-body S-matrix completely fixed to all loops
Planar spectrum (asymptotic) solved exactly by Bethe ansatz.

Non-Planar Corrections: (Past) Status

Degeneracies are lifted at subleading orders in $1 / N_{\mathrm{c}}$. Interactions are long-ranged, non-local from the start:

\rightarrow Hilbert space much bigger
\rightarrow Spin chain picture?
\rightarrow Fate of local S-matrix? Definition?
\rightarrow No integrable spin chain!
No dual superconformal symmetry
Classical integrability of σ model (strong coupling) not clear
\Rightarrow "Integrability is lost".

Three-Point Functions: Hexagons

Differences: Topology: Pair of pants instead of cylinder Non-vanishing for three generic operators (two-point: diagonal)
\Rightarrow Previous techniques not directly applicable

Observation:

The green parts are similar to two-point functions:
Two segments of physical operators joined by parallel propagators ("bridges", $\ell_{i j}=\left(L_{i}+L_{j}-L_{k}\right) / 2$).
The red part is new: "Worldsheet splitting",
"three-point vertex" (open strings)
Take this serious \rightarrow cut worldsheet along "bridges":

Hexagons \& Gluing

Glue hexagons along three mirror channels:

- Sum over complete state basis (magnons) in the mirror theory
- Mirror magnons: Boltzmann weight $\exp \left(-\tilde{E}_{i j} \ell_{i j}\right), \tilde{E}_{i j}=\mathcal{O}\left(g^{2}\right)$ \rightarrow mirror excitations are strongly suppressed.
Hexagonal worldsheet patches (form factors):
- Function of rapidities u and $\mathfrak{s u}(2 \mid 2)^{2}$ labels (A, \dot{A}) of all magnons.
- Conjectured exact expression, based on diagonal $\mathfrak{s u}(2 \mid 2)$ symmetry, form factor axioms, and integrability assumptions. $\left[\begin{array}{c}\text { Basso, Komatsu] } \\ \text { Vieira } 15\end{array}\right]$
Hexagon proposal supported by very non-trivial matches.

The Hexagon Form Factor

All excitations on the same physical edge (canonical frame):
$\mathcal{H}\left(\chi^{A_{1}} \chi^{\dot{A}_{1}} \chi^{A_{2}} \chi^{\dot{A}_{2}} \ldots \chi^{A_{n}} \chi^{\dot{A}_{n}}\right)$

$$
=(-1)^{\mathfrak{F}}\left(\prod_{i<j} h_{i j}\right)\left\langle\chi^{A_{1}} \chi^{A_{2}} \ldots \chi^{A_{n}}\right| S\left|\chi^{\dot{A}_{n}} \ldots \chi^{\dot{A}_{2}} \chi^{\dot{A}_{1}}\right\rangle
$$

- $\chi^{A}=\phi^{a} \mid \psi^{\alpha}$: Left $\mathfrak{s u}(2 \mid 2)$ fundamental magnon
- $\chi^{\dot{A}}=\phi^{\dot{a}} \mid \psi^{\dot{\alpha}}$: Right $\mathfrak{s u}(2 \mid 2)$ fundamental magnon
- \mathfrak{F} : Fermion number operator
- S: Beisert S-matrix
- $h_{i j}=\frac{x_{i}^{-}-x_{j}^{-}}{x_{i}^{-}-x_{j}^{+}} \frac{x_{j}^{+}-1 / x_{i}^{-}}{x_{2}^{+}-1 / x_{1}^{+}} \frac{1}{\sigma_{i j}}$,
$x^{ \pm}(u)=x\left(u \pm \frac{i}{2}\right), \quad \frac{u}{g}=x+\frac{1}{x}$
$\sigma_{i j}$: BES dressing phase

Example:

Two magnons
(○ロ, ・ロ)

Mirror Map

Double Wick rotation: $(\sigma, \tau) \rightarrow(i \widetilde{\tau}, i \tilde{\sigma})$ - exchanges space and time

Magnon states: Energy and momentum interchange:

$$
p \sigma \rightarrow p^{\gamma} i \tilde{\tau} \equiv \tilde{E} \tilde{\tau}, \quad E \tau \rightarrow E^{\gamma} i \tilde{\sigma} \equiv \tilde{p} \tilde{\sigma} \quad \Rightarrow \quad(\tilde{E}, \tilde{p})=\left(i p^{\gamma}, i E^{\gamma}\right)
$$

Continuations: $u \rightarrow u^{\gamma}$. All quantities given in terms of $x^{ \pm}(u)$.

Four sheets:

\leftrightarrow

Planar Four-Point Functions: Hexagonalization

Move on to planar four-point functions:
One way to cut (now that three-point is understood): OPE cut

Problem: Sum over physical states!

- No loop suppression, all states contrib.
- Double-trace operators.

Instead: Cut along propagator bridges

Benefits: - Mirror states highly suppressed in g.

- No double traces.

Hexagonalization: Formula

$$
\begin{aligned}
& \left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3}\right\rangle=\left[\prod_{\substack{\text { channels } \\
c \in\{1,2,3\}}} d_{c}^{\ell_{c}} \sum_{\psi_{c}} \mu\left(\psi_{c}\right)\right] \mathcal{H}_{1}\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \mathcal{H}_{2}\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \\
& \left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle=\sum_{\substack{\text { planar }}}\left[\prod_{\substack{\text { channels } \\
l_{c} \\
\ell_{c}}} \mu\left(\psi_{c}\right)\right] \mathcal{H}_{1} \mathcal{H}_{2} \mathcal{H}_{3} \mathcal{H}_{4}
\end{aligned}
$$

New Features:

- Bridge lengths vary, may go to zero \Rightarrow Mirror corrections at one loop
- Hexagons are in different "frames" \Rightarrow Weight factors

Hexagonalization: Frames

Hexagon depends on positions x_{i} and polarizations α_{i} of the three half-BPS "vacuum" operators $\mathcal{O}_{i}=\operatorname{Tr}\left[\left(\alpha_{i} \cdot \Phi\left(x_{i}\right)\right)^{k}\right]$.

Any three x_{i} and α_{i} preserve a diagonal $\mathfrak{s u}(2 \mid 2)$ that defines the state basis and S -matrix of excitations on the hexagon.

Three-point function: Both hexagons connect to the same three operators, so their frames $(\mathfrak{s u}(2 \mid 2)$ and state basis) are identical.

Higher-point function: Two neighboring hexagons always share two operators, but the third/fourth operator may not be identical.
\Rightarrow The two hexagon frames are misaligned.

In order to consistently sum over mirror states, need to align the two frames by a $\operatorname{PSU}(2,2 \mid 4)$ transformation that maps \mathcal{O}_{3} onto \mathcal{O}_{2}.

Hexagonalization: Weight Factors

By conformal and R-symmetry transformation, bring $\mathcal{O}_{1}, \mathcal{O}_{2}$, and \mathcal{O}_{4} to canonical configuration:

Transformation that maps \mathcal{O}_{3} to $\mathcal{O}_{2}: g=e^{-D \log |z|} e^{i \phi L} e^{J \log |\alpha|} e^{i \theta R}$, where $e^{2 i \phi}=z / \bar{z}, e^{2 i \theta}=\alpha / \bar{\alpha}$, and $(\alpha, \bar{\alpha})$ is the R-coordinate of \mathcal{O}_{3}. Hexagon $\mathcal{H}_{1}=\hat{\mathcal{H}}$ is canonical, and $\mathcal{H}_{2}=g^{-1} \hat{\mathcal{H}} g$.

Sum over states in mirror channel:

$$
\sum_{\psi} \mu(\psi)\left\langle\mathcal{H}_{2} \mid \psi\right\rangle\left\langle\psi \mid \mathcal{H}_{1}\right\rangle=\sum_{\psi} \mu(\psi)\left\langle g^{-1} \hat{\mathcal{H}} \mid \psi\right\rangle\langle\psi| g|\psi\rangle\langle\psi \mid \hat{\mathcal{H}}\rangle
$$

Weight factor: $\langle\psi| g|\psi\rangle=e^{-2 i \tilde{p}_{\psi} \log |z|} e^{J_{\psi} \varphi} e^{i \phi L_{\psi}} e^{i \theta R_{\psi}}, \quad i \tilde{p}=(D-J) / 2$.
\rightarrow Contains all non-trivial dependence on cross ratios z, \bar{z} and $\alpha, \bar{\alpha}$.

Non-Planar Processes: Idea

Hexagonalization: Works for planar (4,5)-point functions $[$ Fleury '16] $[$ Fleury '17 $]$
 Hexagolization: Works for planar $(4,5)$-pont functions

Extend to non-planar processes? \downarrow Fix worldsheet topology

- Dissect into planar hexagons
- Glue hexagons (mirror states)

Simple Proposal:

$\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle^{\text {full }}=\frac{1}{N_{\mathrm{c}}^{n-2}} \sum_{g} \frac{1}{N_{\mathrm{c}}^{2 g}} \sum_{\substack{\text { graphs } \\ \text { (genus } g \text {) }}} \prod_{c} d_{c}^{\ell_{c}} \sum_{\substack{\text { mirror } \\ \text { states }}} \mathcal{H}_{1} \mathcal{H}_{2} \mathcal{H}_{3} \ldots \mathcal{H}_{F}$

The Data: Kinematics

Half-BPS operators:

$$
\mathcal{Q}_{i}^{k} \equiv \operatorname{Tr}\left[\left(\alpha_{i} \cdot \Phi\left(x_{i}\right)\right)^{k}\right], \quad \Phi=\left(\phi_{1}, \ldots, \phi_{6}\right), \quad \alpha_{i}^{2}=0 .
$$

For equal weights (k, k, k, k) : Expand in X, Y, Z :

$$
X \equiv \frac{\alpha_{1} \cdot \alpha_{2} \alpha_{3} \cdot \alpha_{4}}{x_{12}^{2} x_{34}^{2}}={ }_{(3)-(4)}^{(1)-(2)},\left.\quad Y \equiv\right|_{(3)} ^{(1)} \overbrace{\text { (4) }}^{(2)}, \quad Z \equiv \overbrace{\text { (3) }}^{(4)} .
$$

Focus on $Z=0$ (polarizations):

$$
G_{k} \equiv\left\langle\mathcal{Q}_{1}^{k} \mathcal{Q}_{2}^{k} \mathcal{Q}_{3}^{k} \mathcal{Q}_{4}^{k}\right\rangle^{\text {loops }}=R \sum_{m=0}^{k-2} \mathcal{F}_{k, m} X^{m} Y^{k-2-m}
$$

Supersymmetry factor: $R=z \bar{z} X^{2}-(z+\bar{z}) X Y+Y^{2}$
Main data: Coefficients $\mathcal{F}_{k, m}=\mathcal{F}_{k, m}(g ; z, \bar{z})$
Cross ratios: $z \bar{z}=s=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad(1-z)(1-\bar{z})=t=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}$.

The Data: Quantum Coefficients

Data Functions: Correlator coefficients:

$$
\mathcal{F}_{k, m}=\sum_{\ell=1}^{\infty} g^{2 \ell} \mathcal{F}_{k, m}^{(\ell)}(z, \bar{z}), \quad \text { 't Hooft coupling: } g^{2}=\frac{g_{\mathrm{YM}}^{2} N_{\mathrm{c}}}{16 \pi^{2}} .
$$

One and two loops: Two ingredients: Box integrals

$$
\begin{aligned}
& F^{(1)}(z, \bar{z})=\frac{x_{13}^{2} x_{24}^{2}}{\pi^{2}} \int \frac{\mathrm{~d}^{4} x_{5}}{x_{15}^{2} x_{25}^{2} x_{35}^{2} x_{45}^{2}}=\square \\
& \frac{F^{(2)}(z, \bar{z})}{x_{14}^{2}}=\frac{x_{13}^{2} x_{24}^{2}}{\left(\pi^{2}\right)^{2}} \int \frac{\mathrm{~d}^{4} x_{5} \mathrm{~d}^{4} x_{6}}{x_{15}^{2} x_{25}^{2} x_{45}^{2} x_{56}^{2} x_{16}^{2} x_{36}^{2} x_{46}^{2}}=
\end{aligned}
$$

\& Color factors:

$$
C_{k, m}^{i} \in\{(3)
$$

(1) $=\operatorname{Tr}\left(T^{\left(a_{1}\right.} \ldots T^{\left.a_{k}\right)}\right), \quad \mathbf{b -}=f_{a b}{ }^{c}$

The Data: Color Factors

To obtain non-planar corrections: Need to expand color factors.

$$
C_{k, m}^{i}=N_{\mathrm{c}}^{2 k} k^{4}\left({ }^{\bullet} C_{k, m}^{i}+{ }^{\circ} C_{k, m}^{i} N_{\mathrm{c}}^{-2}+\mathcal{O}\left(N_{\mathrm{c}}^{-4}\right)\right), \quad i \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\},
$$

Compute by brute force:

k		$\frac{1}{2}{ }^{\circ} C_{k, m}^{1, \mathrm{U}}$	$\frac{1}{2}{ }^{\circ} C_{k, m}^{1, \mathrm{SU}}$	${ }^{\circ} C_{k, m}^{\mathrm{a}, \mathrm{U}}$	$2^{\circ} C_{k, m}^{\mathrm{b}, \mathrm{U}}$	$\frac{1}{2}{ }^{\circ} C_{k, m}^{\mathrm{c}, \mathrm{U}}$	${ }^{\circ} C_{k, m}^{\mathrm{d}, \mathrm{U}}$	${ }^{\circ} C_{k, m}^{\mathrm{a}, \mathrm{SU}}$	$2^{\circ} C_{k, m}^{\mathrm{b}, \mathrm{SU}}$	$\frac{1}{2}{ }^{\circ} C_{k, m}^{\mathrm{c}, \mathrm{SU}}$	${ }^{\circ} C_{k, m}^{\mathrm{d}, \mathrm{SU}}$
2	0	1	1	0	-2	-1	-1	0	-2	-1	-1
3	0	1	9	-5	-2	-1	-1	-9	-18	-9	-9
3	1	1	9	0	3	-1	-1	0	-5	-9	-9
4	0	-5	13	-7	10	5	5	-25	-26	-13	-13
4	1	-12	24	4	15	13	14	-23	-21	-23	-22
4	2	-5	13	0	21	5	5	0	3	-13	-13
5	0	-23	9	-1	46	23	23	-33	-18	-9	-9
5	1	-51	13	31	47	55	59	-33	-17	-9	-5
5	2	-51	13	39	76	55	59	-9	12	-9	-5
5	3	-23	9	0	63	23	23	0	31	-9	-9
6	0	-61	-11	20	122	61	61	-30	22	11	11
6	1	-126	-26	92	107	135	144	-8	7	35	44
6	2	-159	-59	139	187	175	191	39	87	75	91
6	3	-126	-26	110	201	135	144	35	101	35	44
6	4	-61	-11	0	139	61	61	0	89	11	11

also: $k=7,8,9$. All color factors are quartic polynomials in m and k.

The Data: Result

$$
\begin{aligned}
& \mathcal{F}_{k, m}^{(1), \mathrm{U}}(z, \bar{z})= \\
& \quad-\frac{2 k^{2}}{N_{\mathrm{C}}^{2}}\left\{1+\frac{1}{N_{\mathrm{C}}^{2}}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] k^{4}+\left[\frac{9}{2} r^{2}-\frac{13}{8}\right] k^{3}+\left[\frac{1}{6} r^{2}+\frac{15}{8}\right] k^{2}-\frac{1}{2} k\right]\right\} F^{(1)}, \\
& \mathcal{F}_{k, m}^{(2), \mathrm{U}}(z, \bar{z})= \\
& \frac{4 k^{2}}{N_{\mathrm{C}}^{2}}\left[\left\{1+\frac{1}{N_{\mathrm{C}}^{2}}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] k^{4}+\left[\frac{9}{2} r^{2}-\frac{13}{8}\right] k^{3}+\left[\frac{1}{6} r^{2}+\frac{15}{8}\right] k^{2}-\frac{1}{2} k\right]\right\} F^{(2)}\right. \\
& \quad+\left\{\frac{t}{4}+\frac{1}{N_{\mathrm{C}}^{2}}\left[\left(\left[\frac{7}{2} r^{2}-\frac{1}{8}\right] k^{2}+\frac{5}{8} k-\frac{1}{4}\right) s_{+}-r\left(\left[\frac{17}{6} r^{2}-\frac{7}{8}\right] k^{3}+3 k^{2}-\frac{13}{12} k\right) s-\right.\right. \\
& \\
& \left.\left.\quad+\left(\left[\frac{29}{24} r^{4}-\frac{11}{16} r^{2}+\frac{15}{128}\right] k^{4}+\left[\frac{17}{8} r^{2}-\frac{21}{32}\right] k^{3}-\left[\frac{23}{24} r^{2}-\frac{39}{32}\right] k^{2}-\frac{9}{8} k+\frac{1}{2}\right) t\right]\right\}\left(F^{(1)}\right)^{2} \\
& \\
& \quad-\frac{1}{N_{\mathrm{C}}^{2}}\left[r\left\{\left[\frac{7}{6} r^{2}-\frac{1}{8}\right] k^{3}+\frac{3}{2} k^{2}+\frac{10}{3} k\right\} F_{\mathrm{C},-}^{(2)}\right. \\
& \\
& \left.\quad+\left\{\left[\frac{5}{4} r^{2}-\frac{19}{48}\right] k^{3}+\left[\frac{3}{2} r^{2}+\frac{7}{8}\right] k^{2}+\frac{1}{3} k\right\} F_{\mathrm{C},+}^{(2)}\right] \\
& \quad+\frac{1}{4}\left\{1+\frac{(k-1)\left(k^{3}+3 k^{2}-46 k+36\right)}{12 N_{\mathrm{C}}^{2}}\right\}\left(s \delta_{m, 0}+\delta_{m, k-2}\right)\left(F^{(1)}\right)^{2} \\
& \left.\quad+\left\{1+\frac{(k-2) 4}{12 N_{\mathrm{C}}^{2}}\right\}\left(\delta_{m, 0} F_{z-1}^{(2)}+\delta_{m, k-2} F_{1-z}^{(2)}\right)\right],
\end{aligned}
$$

where $r=(m+1) / k-1 / 2 . \quad \mathcal{F}_{k, m}$: Coefficient of $X^{m} Y^{k-2-m}$.

Sum over Graphs: Cutting the Torus

Sum over propagator graphs: Split into

- Sum over "skeleton graphs" with non-parallel edges (\equiv "bridges")
- Sum over distributions of parallel propagators on bridges

Torus with four punctures: How many hexagons/bridges?
Euler: $F+V-E=2-2 g$.
Our case: $g=1, V=4, E=\frac{3}{2} F \quad \Rightarrow \quad F=8, E=12$.
\rightarrow Construct all genus-one graphs with 4 punctures and up to 12 edges.

Propagators may populate <12 bridges and still form a genus-one graph.
Such graphs will contain higher polygons besides hexagons.
\rightarrow Subdivide into hexagons by inserting zero-length bridges (ZLBs)

Maximal Graphs

Focus on Maximal Graphs: Graphs with a maximal number of edges.

- Adding any further edge would increase the genus
- Maximal graphs \Leftrightarrow triangulations of the torus.

Construction:

- Manually: Add one operator at a time, in all possible ways.
- Computer algorithm: Start with the empty graph, add one bridge in all possible ways, iterate. \rightarrow Systematic.

Complete list of maximal graphs:

Submaximal Graphs

Submaximal graphs: Graphs with a non-maximal number of edges.

- Obtained from maximal graphs by deleting bridges.
- Number of genus-one graphs by number of bridges:

\#bridges:	12	11	10	9	8	7	6	5	≤ 4
\#graphs:	7	28	117	254	323	222	79	11	0

Hexagonalization:

Submaximal graphs contain higher polygons (octagons, decagons, ...).

- Must be subdivided into hexagons by zero-length bridges.
- Subdivision is not physical: Can pick any (flip invariance): $\left[\begin{array}{l}\text { Fleury '16 } \\ \text { Komatsu }\end{array}\right]$

First Test: Large k : Data and Graphs

Focus on leading order in large $k \rightarrow$ several simplifications:
Data: $\quad \mathcal{F}_{k, m}^{(1), \mathrm{U}}(z, \bar{z})=-\frac{2 k^{2}}{N_{c}^{2}}\left\{1+\frac{1}{N_{c}^{2}}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] k^{4}+\mathcal{O}\left(k^{3}\right)\right]\right\} F^{(1)}$,

$$
\begin{aligned}
& \mathcal{F}_{k, m}^{(2), \mathrm{U}}(z, \bar{z})=\frac{4 k^{2}}{N_{c}^{2}}\left[\left\{1+\frac{1}{N_{\mathrm{c}}^{2}}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] k^{4}+\mathcal{O}\left(k^{3}\right)\right]\right\} F^{(2)}\right. \\
&\left.+\left\{1+\frac{1}{N_{c}^{2}}\left[\left[\frac{29}{6} r^{4}-\frac{11}{4} r^{2}+\frac{15}{32}\right] k^{4}+\mathcal{O}\left(k^{3}\right)\right]\right\} \frac{t}{4}\left(F^{(1)}\right)^{2}\right] .
\end{aligned}
$$

Combinatorics of distributing propagators on bridges:
Sum over distributions of m propagators on $j+1$ bridges $\rightarrow m^{j} / j$!
$\triangleright \Rightarrow$ Only graphs with maximum bridge number contribute.
$\triangleright \Rightarrow$ All bridges carry a large number of propagators.

Graphs:
 ($Z=0$)

First Test: Large k : Graphs and Labelings

Graphs:

Sum over labelings:

Case	Inequivalent Labelings (clockwise)	Combinatorial Factor
B	$(1,2,4,3),(2,1,3,4),(3,4,2,1),(4,3,1,2)$	$m^{3}(k-m) / 6$
B	$(1,3,4,2),(3,1,2,4),(2,4,3,1),(4,2,1,3)$	$m(k-m)^{3} / 6$
G	$(1,2,4,3),(3,4,2,1)$	$m^{4} / 24$
G	$(1,3,4,2),(2,4,3,1)$	$(k-m)^{4} / 24$
L	$(1,2,4,3),(3,4,2,1),(2,1,3,4),(4,3,1,2)$	$m^{2} / 2 \cdot(k-m)^{2} / 2$
M	$(1,2,4,3),(2,1,3,4),(1,3,4,2),(3,1,2,4)$	$m^{2}(k-m)^{2} / 2$
P	$(1,2,4,3)$	$m^{2}(k-m)^{2} / 2$
Q	$(1,2,4,3)$	$m^{2}(k-m)^{2}$

First Test: Large k : Octagons

Graphs:

Q
All graphs consist of only octagons!
Split each octagon into two hexagons with a zero-length bridge.
Example:

First Test: Large k : Mirror Particles

Loop Counting:

Expand mirror propagation $\mu(u) e^{-\ell \tilde{E}(u)}$ and hexagons \mathcal{H} in coupling g. $\rightarrow n$ particles on bridge of size $\ell: \mathcal{O}\left(g^{2\left(n \ell+n^{2}\right)}\right)$
All graphs consist of octagons framed by parametrically large bridges.
\rightarrow Only excitations on zero-length bridges inside octagons survive.

Excited Octagons:

n particles on a zero-length bridge $\rightarrow \mathcal{O}\left(g^{2 n^{2}}\right)$
\rightarrow Octagons with $1 / 2 / 3 / 4$ particles start at $1 / 4 / 9 / 16$ loops.
Octagon 1-2-4-3 with 1 particle:

$$
\begin{aligned}
& \mathcal{M}(z, \alpha)=\left[z+\bar{z}-(\alpha+\bar{\alpha}) \frac{\alpha \bar{\alpha}+z \bar{z}}{2 \alpha \bar{\alpha}}\right] \\
& \cdot\left(g^{2} F^{(1)}(z)-2 g^{4} F^{(2)}(z)+3 g^{6} F^{(3)}(z)+\ldots\right)
\end{aligned}
$$

For $Z=0$: R-charge cross ratios

$$
\alpha=z \bar{z} X / Y \text { and } \bar{\alpha}=1
$$

First Test: Large k : Match and Prediction

We are Done:

Sum over graph topologies and labelings (with bridge sum factors),
Sum over one-particle excitations of all octagons.
\Rightarrow Result matches data and produces prediction for higher loops!
Summing all octagons gives:

$$
\begin{aligned}
& \left.\mathcal{F}_{k, m}^{\mathrm{U}}(z, \bar{z})\right|_{\text {torus }}=-\frac{2 k^{6}}{N_{c}^{4}}\{ \\
& \quad g^{2}\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] F^{(1)} \quad \checkmark \text { match } \\
& \quad-2 g^{4}\left[\left[\frac{17}{6} r^{4}-\frac{7}{4} r^{2}+\frac{11}{32}\right] F^{(2)}+\left[\frac{29}{6} r^{4}-\frac{11}{4} r^{2}+\frac{15}{32}\right] \frac{t}{4}\left(F^{(1)}\right)^{2}\right] \quad \checkmark \text { match } \\
& \quad+g^{6}\left[[\ldots] F^{(3)}+[\ldots]\left(F^{(2)}\right)\left(F^{(1)}\right)+[\ldots]\left(F^{(1)}\right)^{3}\right] \quad \text { prediction! } \\
& \left.\quad+\mathcal{O}\left(g^{8}\right)+\mathcal{O}(1 / k)\right\} .
\end{aligned}
$$

More Tests: $k=2,3,4,5, \ldots$

Small and finite k :

Few propagators \rightarrow Fewer bridges \rightarrow Graphs with fewer edges
\Rightarrow Graphs composed of not only octagons, but bigger polygons
Example: Graphs for $k=3$:

Hexagonalization:

Each $2 n$-gon: Split into $n-2$ hexagons by $n-3$ zero-length briges.
Loop Expansion: Much more complicated!
All kinds of excitation patterns already at low loop orders

- Single particles on several adjacent zero-length (or $\ell=1$) bridges
- Strings of excitations wrapping around operators

Finite k : One Loop: Sum over ZLB-Strings

Restrict to one loop: Only single particles on one or more adjacent zero-length bridges contribute.
\Rightarrow Excitations confined to single polygons bounded by propagators.
For each polygon: Sum over all possible one-loop strings:

One-strings: understood \checkmark Longer strings: need to compute!

Two-String: Result

One-String: Can be written as

$$
\mathcal{M}^{(1)}(z, \alpha)=m(z)+m\left(z^{-1}\right)
$$

with building block

$$
m(z)=m(z, \alpha)=g^{2} \frac{(z+\bar{z})-(\alpha+\bar{\alpha})}{2} F^{(1)}(z, \bar{z})
$$

Two-string: Despite complicated computation, simplifies to

$$
\begin{aligned}
& \mathcal{M}^{(2)}\left(z_{1}, z_{2}, \alpha_{1}, \alpha_{2}\right) \\
& =m\left(\frac{z_{1}-1}{z_{1} z_{2}}\right)+m\left(\frac{1-z_{1}+z_{1} z_{2}}{z_{2}}\right) \\
& \quad+m\left(z_{1}\left(1-z_{2}\right)\right)-m\left(z_{1}\right)-m\left(z_{2}^{-1}\right),
\end{aligned}
$$

with the same building block $m(z)$!

Finite k : Larger Strings

Larger strings: Computation will be even more complicated!
But: Can in fact bootstrap all of them by using flip invariance!

\Rightarrow All n-strings can be written as linear combinations of one-string building blocks $m(z)$.

Finite k : Results

Done! Sum over all graphs, expand all polygons to their one-loop values.
Numbers of labeled graphs with assigned bridge sizes:

$k:$	2	3	4	5
$g=0:$	3	8	15	24
$g=1:$	0	32	441	2760

Result: For $k=2,3,4,5, \ldots$:
Matches the $\mathrm{U}\left(N_{\mathrm{c}}\right)$ data $\mathcal{F}_{k, m}$, up to a copy of the planar term!

$$
\mathcal{F}_{k, m}: \quad \text { Result }=\left(\begin{array}{c}
\text { torus data }) \\
\checkmark \checkmark \checkmark
\end{array}+\frac{1}{N_{\mathrm{c}}^{2}}\left(\begin{array}{c}
\text { planar data }) \\
? ? ?
\end{array}\right.\right.
$$

What does this mean?? \Rightarrow Puzzle.
Difference between $\mathrm{U}\left(N_{\mathrm{c}}\right)$ and $\mathrm{SU}\left(N_{\mathrm{c}}\right)$? \rightarrow No
Operator normalizations? \rightarrow No
Need to include planar graphs on the torus? If yes, how?

Finite k : Stratification

We are computing a worldsheet process.
The string amplitude involves integration over moduli space $\mathcal{M}_{g, n}$.
Sum over graphs: Reminiscent of moduli space integration.
This can be made more precise:
Moduli space \Leftrightarrow space of metric ribbon graphs $\mathrm{RGB}_{g, n}^{\mathrm{met}}$.

Metric Ribbon Graphs with labeled Boundary:

Regular graphs, but edges at each vertex have definite ordering.
Double-line notation defines n oriented boundary components (faces).
Faces define compact oriented surface of definite genus g.
Assign length $\ell_{j} \in \mathbb{R}_{+}$to each edge.
Bijection: Via Strebel theory:

$$
\mathcal{M}_{g, n} \times \mathbb{R}_{+}^{n} \longleftrightarrow \mathrm{RGB}_{g, n}^{\mathrm{met}}=\coprod_{\Gamma \in \mathrm{RG}_{g, n}} \frac{\mathbb{R}_{+}^{e(\Gamma)}}{\operatorname{Aut}_{\partial}(\Gamma)}
$$

Finite k : Stratification

Discretization: Need to be careful at the boundaries of the space. Do not overcount/undercount. Boundary of torus moduli space: All bridges traversing a handle reduce to zero size \longrightarrow handle gets pinched.
This problem has been considered before in the context of matrix models.

Resolution: In the sum over graphs, include planar graphs drawn on the torus. This leads to some overcounting. Compensate by subtracting planar graphs with two extra fictitious zero-size operators. Stratification.

Including these contributions indeed accounts for the (planar) $/ N_{\mathrm{c}}^{2}$ term!
\Rightarrow Now have a complete match for $k=2,3,4,5$.

Summary \& Outlook

Summary: Method to compute higher-genus terms in $1 / N_{\mathrm{c}}$ expansion.

- Sum over free graphs, decompose into planar hexagons, integrate over mirror states.
- Large k : Only octagons, match at two loops, three-loop prediction
- Match for various finite $k \rightarrow$ stratification

Outlook: There are many things to do that we currently explore:

- Study more examples: Higher loops / genus, more general operators
- Understand details/implications of stratification beyond one loop
- Evaluation of mirror particles at higher loops
- Connect to recent supergravity loop computations at strong coupling? $\quad\left[\begin{array}{c}\text { Aharon, Alday } 16 \\ \text { Bissi, Perlmutter }\end{array}\right]\left[\begin{array}{c}\text { Alday, Bissi } \\ \text { Perlmutter } 17\end{array}\right]\left[\begin{array}{c}\text { Alday } \\ \text { Bissi } 17\end{array}\right]\left[\begin{array}{c}\text { Aprile, Drummond. Heslop } \\ \text { Paul' } 17,17,17,18\end{array}\right]$
- Promising: Large k at higher genus: Only octagons.

