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Five-Minute Version

Singularities of scattering amplitudes in field theory are encoded in
the Landau equations.

In massless theories, the set of solutions of the Landau equations for
a graph G is invariant under the graph operations familiar from the
theory of electrical circuits, in particular the Y -∆ transformation.
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The mathematical problem of classifying planar graphs modulo
Y -∆ has a known simple solution.

Therefore we have a handle on all possible (first-type) Landau
singularities in any massless, planar field theory.

Interesting implications for planar super-Yang-Mills (SYM) theory...



Introduction and Motivation

A goal of the analytic S-matrix program is to be able to determine
scattering amplitudes in quantum field theory based on a few
physical principles and a thorough knowledge of their analytic
structure.

Inspired by a comment by Maldacena, Simmons-Duffin, Zhiboedov
[1509.03612], we have written a series of papers exploring how
much can be said, in general, about the locations of singularities of
perturbative amplitudes in planar super-Yang-Mills (SYM) theory.



Introduction and Motivation

This talk (mostly) excludes the “trivial” (that means, understood)
singularities:

Ï infrared and collinear singularities, which are completely
understood (in any massless gauge theory), to all loop order,
based on exponential resummation; and

Ï poles, which in any massless planar theory can only occur
when a sum of cyclically adjacent momenta goes on shell:

si+1,j ≡ (pi+1+·· ·+pj)
2 = 0

or, in momentum twistor language:

〈i i+1 j j+1〉 = 0

For us the interesting singularities are branch points (really, branch
surfaces of codimension one).



Setting the Stage: Branch Surfaces

Branch points can manifest themselves in various different ways.
For example, the simplest and best-understood class of amplitudes
can be written as linear combinations

A=∑
i

RiPi

where the Ri and Pi are respectively algebraic and polylogarithmic
functions of the external momenta describing the scattering.

Ï The Pi have symbols which encode information about their
analytic structure; specifically, the presence of a symbol letter
a indicates the presence of a possible logarithmic branch cut
between a= 0 and a=∞.

Ï The presence of a symbol letter of the form a= b+p
c (for

example), indicates the presence of a possible algebraic branch
point at c = 0, even if a ∉ {0,∞} there.

Ï The Ri can have poles and/or algebraic branch points.



Setting the Stage: Branch Surfaces

Branch points can manifest themselves in various different ways.
For example, the simplest and best-understood class of amplitudes
can be written as linear combinations

A=∑
i

RiPi

where the Ri and Pi are respectively algebraic and polylogarithmic
functions of the momenta of the scattering particles.

I wrote the above formula for motivational purposes only; do not
let it prejudice you!

Our results are completely general, and not restricted to the very
special class of amplitudes that can be represented as above.

General amplitudes involve more exotic classes of functions that
may exhibit their branch surfaces in different ways.



Why Care? One Reason is the Bootstrap

The current state-of-the art for computing multi-loop amplitudes in
SYM theory is a bootstrap program that relies on the hypothesis —
supported by all available evidence currently available — that all
six- (seven-) particle amplitudes can be written in a particular
hexagon (heptagon) symbol alphabet containing just nine
(forty-two) letters.
[Dixon, Drummond, Duhr, Henn, McLeod, Papathanasiou, von Hippel, MS]



Why Care? One Reason is the Bootstrap

Baked into this ansatz is an even more fundamental hypothesis that
six- (and seven-point) amplitudes, to all orders in perturbation
theory, can only have branch surfaces on certain particular loci in
the space of massless six- (and seven-) particle kinematics.

branch surfaces:

(in coordinates u, v , w
defined later)

singularity locus:
S6 = {s12 = 0}∪ {s23 = 0}∪ {s34 = 0}

∪ {s45 = 0}∪ {s56 = 0}∪ {s61 = 0}

∪ {s123 = 0}∪ {s234 = 0}∪ {s345 = 0}

∪ {s12s45 = s123s345}

∪ {s23s56 = s234s123}

∪ {s34s61 = s345s234}

where sij ··· ≡ (pi +pj +·· ·)2



Introduction and Motivation

The key questions that have motivated us since the beginning of
our work in this subject include

Can we prove that the hexagon and heptagon symbol alpha-
bets are correct?

Can we determine the symbol alphabets of higher-point am-
plitudes, with the hope of being able to bootstrap them as
well?



Feynman Diagrams

At L-loop order in perturbation theory, the integrand for any
n-particle amplitude in any local quantum field theory can be
written as a rational function of the n external momenta pi and L
internal momenta `r .

This rational function can be represented as a sum over Feynman
diagrams.



Numerators and Denominators

Consider a term corresponding to any single Feynman diagram.

The denominator is the boring part; the propagator structure is
entirely determined by the topology of the diagram, and is common
to any field theory.

All of the cool stuff, like remarkable cancellations that happen in
our favorite quantum field theories, arises due to the delicate
structure of interplay between the numerator factors assigned to
different Feynman diagrams.

This talk will be about the boring part.



Landau Graphs

We denote a set of (scalar) propagators of a given topology by a
Landau graph.

Ï To each edge j we assign a four-momentum qj ...
Ï and a Feynman parameter αj .
Ï We impose momentum conservation at each vertex...
Ï except at certain privileged vertices called terminals.



Landau Graphs

We denote a set of (scalar) propagators of a given topology by a
Landau graph.

The terminals are where external edges will be attached to indicate
the momentum carried by incoming/outgoing particles.

These are not (yet!) on-shell diagrams; I’m not summing anything
and have no specific theory in mind.

Landau graph = depiction of a set of propagators



The Landau Equations

Landau (1959) showed that in quantum field theory, a loop integral
with the topology of some given graph G can have singularities
when the external momenta pi are such that the Landau equations

αjq
2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

admit solutions {αj ,qj }. Such singularities are called Landau
singularities of the first type.
B Other singularities (second type) also exist in certain theories.
B The Landau equations only know about the scalar propagator
skeleton of diagram, so they expose all potential singularities of any
generic, local field theory. However, in special theories, some of
those potential singularities may be absent due to specially crafted
numerators and/or nontrivial cancellation between different graphs.



B Aside: Landau versus Leading Singularities

In our field, the term leading singularity has come to mean a
location, in the space of loop integration variables, where an L-loop
integrand has a pole of order 4L; or, more commonly, to a residue
of an integrand at such a pole.

By Landau singularity we mean a locus in the space of external
kinematics on which an integrated amplitude has a singularity.

external kinematic space:

Landau singularities =
codimension-one branch

surfaces

∫
d4Lp

←−−−−−

loop momentum space:

leading singularities =
maximal poles



B Aside: Landau versus Leading Singularities

For example, MHV amplitudes in SYM theory:

are well-known to have no new types of leading singularities beyond
tree-level,

but we expect that they have new types of Landau singularities at
each loop order
1. tree-level: poles at 〈i i+1 j j+1〉 = 0
2. one-loop: branch surfaces at 〈i j−1 j j+1〉 = 0
3. two-loop: branch surfaces at 〈i(i−1 i+1)(j j+1)(k k+1)〉 = 0

(known from [Caron-Huot 1105.5605])
4. three-loop and higher: not yet explicitly known (beyond the

special, degenerate cases n= 6,7)!



The Landau Equations

αjq
2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

The Landau equations typically admit many branches of solutions.

Ï We ignore the trivial solution where all αj = 0.
Ï We also ignore solutions {αj ,qj } arising from soft/collinear
regions of loop integration space; these exist for generic Pi .

Ï Unlike the above cases, we are interested in solutions {αj ,qj }
that exist only on codimension-one surfaces in the space Pi ;
these are potential locations of branch surfaces of amplitudes.



The Landau Equations

B Note that we don’t care about the values of the α’s.

Solutions that exist for non-negative real values of α (when the
external kinematics are real-valued in Minkowski spacetime) are
associated with branch singularities on the physical sheet
[Coleman-Norton theorem].

We are interested in all possible solutions, even if the corresponding
α’s are complex; these indicate the presence of singularities that
can only be accessed after suitable analytic continuation to some
higher sheet.



The Landau Equations and Electrical Circuits
αjq

2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

The analogy between Feynman diagrams and electrical circuits has
long been appreciated; see for example chapter 18 of Bjorken &
Drell (1965).

In this analogy the qj are currents, the αj are resistances, and the
second line above expresses the Kirchhoff rule.

The analogue of the on-shell condition shown in the first line is
rather mysterious.

However, a remarkable feature of massless theories is that:

The graph moves familiar from circuit theory preserve the set of
first-type Landau singularities in any massless field theory.



The Landau Equations: Series Reduction

αjq
2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

Replace two edges q1,α1 and q2,α2 in series (hence, q1 = q2) by a
single edge with

q ≡ q1 = q2 , α≡α1+α2



The Landau Equations: Bubble Reduction

αjq
2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

The “loop momentum” in the bubble is determined by its Kirchhoff
rule.

Consistency of the on-shell conditions follows from momentum
conservation at each vertex and the assignment

α≡ α1α2

α1+α2

familiar from electrical circuits.



The Landau Equations: Y -∆ Reduction
αjq

2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L
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The “loop momentum” in the triangle is determined by its Kirchhoff
rule.

Consistency of the on-shell conditions follows from momentum
conservation at each vertex and the assignments

α′
1 =

α1α2+α2α3+α3α1

α1
etc.

familiar from electrical circuits.



Planar Graph Reduction

The problem of studying the reducibility of m-terminal graphs
under the basic circuit operations is well studied in the
mathematical literature.

The key result, for our purposes, comes from Isidoro Gitler, who
proved in 1991 that any 2-connected m-terminal plane graph, with
all terminals lying on a common face (which we take to be the
“outer” face), can be Y -∆ reduced to what we call the m-terminal
ziggurat graph, (or a minor thereof).



Planar Graph Reduction

The first-type Landau singularities of any n-particle ampli-
tude, in any massless planar field theory, at any finite order
in perturbation theory, are a subset of those of the n-particle
ziggurat graph (which, we note, has b(n−2)2/4c loops).



Planar Graph Reduction

In fact, the loop order b(n−2)2/4c is unnecessarily high, since
ziggurat graphs can in general be further reduced. For example:

It is easy to check, on a case by case basis, that the n-particle
ziggurat graph can be reduced to various graphs of lower loop
order, but we have not been able to prove a lower bound on the
loop order that can be obtained for general n.



Landau Analysis of the Wheel Graph

Let’s find the singularities of this graph. First, to find the leading
Landau singularities, we put all 12 propagators on shell

l3

l1 l2

p2 p3

p1 p4

p5p6

(`1−p1)
2 = `2

1 = (`1+p2)
2 = 0

(`2−p3)
2 = `2

2 = (`2+p4)
2 = 0

(`3−p5)
2 = `2

3 = (`3+p6)
2 = 0

(`1+p2−`2+p3)
2 = 0

(`2+p4−`3+p5)
2 = 0

(`3+p6−`1+p1)
2 = 0

For generic pi there are 16 discrete solutions, which are easy to
enumerate using the technology of on-shell diagrams.



Landau Analysis of the Wheel Graph

With these solutions in hand, we next turn our attention to the
Kirchhoff conditions

0=α1(`1−p1)+α2`1+α3(`1+p2)+
α10(`3+p6−`1+p1)+α11(`1+p2−`2+p3) ,

0=α4(`2−p3)+α5`2+α6(`2+p4)+
α11(`1+p2−`2+p3)+α12(`2+p4−`3+p5) ,

0=α7(`3−p5)+α8`3+α9(`3+p6)+
α12(`2+p4−`3+p5)+α10(`3+p6−`1+p1) .

Nontrivial solutions to this 12×12 linear system exist only if the
associated Kirchhoff determinant K vanishes.



Landau Analysis of the Wheel Graph

By evaluating K on the 16 on-shell solutions, the condition for the
existence of a non-trivial solution to the Landau equations can be
expressed entirely in terms of the pi .

Using the familiar variables

u = s12s45

s123s345
v = s23s56

s234s123
w = s34s61

s345s234
, sij ··· = (pi +pj +·· ·)2

we find that K = 0 can only be satisfied on the locus

S6 =
⋃
s∈S6

{s = 0}, S6 = {u ,v ,w ,1−u ,1−v ,1−w ,
1
u

,
1
v

,
1
w

}

It is straightforward, if tedious, to check all possible sub-leading
Landau singularities; remarkably, they give nothing new.



Landau Analysis of the Wheel Graph

By evaluating K on the 16 on-shell solutions, the condition for the
existence of a non-trivial solution to the Landau equations can be
expressed entirely in terms of the pi .

Using the familiar variables

u = s12s45

s123s345
v = s23s56

s234s123
w = s34s61

s345s234
, sij ··· = (pi +pj +·· ·)2

we find that K = 0 can only be satisfied on the locus

S6 =
⋃
s∈S6

{s = 0}, S6 = {u ,v ,w ,1−u ,1−v ,1−w ,
1
u

,
1
v

,
1
w

}

Conclusion: any 6-particle amplitude, at any finite loop order,
in any massless planar field theory, can have first-type Landau
singularities only on the locus S6.



S6 and the Hexagon Symbol Alphabet

This claim is consistent with the hexagon symbol alphabet, which
contains nine letters

A6 = {u,v ,w ,1−u,1−v ,1−w ,yu ,yv ,yw }

indicating the presence of branch surfaces on the locus

A6 =
⋃
a∈A6

{a= 0}∪ {
1
a
= 0}

Here yu and 1/yu are the two roots of the quadratic equation

u(1−v)(1−w)(z2+1)= [
u2−2uvw + (1−v −w)2

]
z

with yv and yw defined by cyclically exchanging u→ v →w → u.
This relation makes it clear that yu ∈ {0,∞} only on the locus
{u = 0}∪ {v = 1}∪ {w = 1}, etc. Therefore we conclude that A6 =S6.



S6 and the Hexagon Symbol Alphabet

Six-particle amplitudes in SYM theory exhibit singularities on all
branches of the locus S6 already starting at one loop,
even though the nine-letter symbol alphabet is not fully utilized
until two loops.

Why, then, did we need to carry out the Landau computation for
the wheel graph at three loops— and even that already represented
some savings over the original four-loop six-point ziggurat graph?!

It’s because there is no single one- or two-loop six-point graph that
simultaneously exhibits all branches of the singularity locus S6.

It’s very remarkable that the wheel graph does; and even more that
it does so already in its leading singularities.



Second-type Singularities

In addition to the first-type Landau singularities we have classified,
there exist second-type singularities that arise in loop integrals as
pinch singularities at infinite loop momentum.

We expect that second-type singularities should be absent in dual
conformally invariant (DCI) theories, since these have no invariant
notion of “infinity” in momentum space.

On the other hand (except for the soft/collinear singularities that
we have ignored throughout), all first-type singularities of the
ziggurat graphs are manifestly DCI.

Therefore, we can say that the ziggurat graphs capture the “dual
conformally invariant part” of the singularity structure of all
massless planar theories; this means the singularity loci that do not
involve the infinity twistor.



Implications for SYM Theory

In SYM theory, for fixed particle number n, there can be accidental
cancellations at low loop order L in certain helicity sectors k .

For example, one-loop MHV amplitudes do not have singularities of
three-mass box type, but it is known that two-loop (and higher)
MHV amplitudes certainly do [Caron-Huot 1105.5605].

Similarly, one-loop NMHV amplitudes do not have singularities of
four-mass box type, but we expect that two-loop (and higher)
NMHV and three-loop (and higher) MHV amplitudes do (for n≥ 8).



Implications for SYM Theory

In SYM theory, for fixed particle number n, there can be accidental
cancellations at low loop order L in certain helicity sectors k .

However, we claim that for any fixed n and k , all such cancellations
eventually fail at sufficiently high (but finite!) loop order.

Claim: Perturbative n-point amplitudes in SYM theory exhibit
first-type Landau singularities on such all loci that are possible in
any massless planar field theory, i.e., on all branches of Sn.

Specifically, we claim that for any fixed n and any 0≤ k ≤ n−4,
there is a finite value of Ln,k such that the singularity locus of the
L-loop n-particle NkMHV amplitude is all of Sn for all L≥ Ln,k .



Implications for SYM Theory

This can be seen by blowing up each edge of the ziggurat graph
into a bubble; the result is a graph that has the same Landau
singularities as the ziggurat but has MHV support, when
interpreted as an on-shell diagram.

Equivalently, one can write down an explicit configuration of
positive (and mutually positive) lines satisfying the indicated set of
cut conditions, indicating that there is support on the (boundary of
the) MHV amplituhedron.



Deriving Symbol Alphabets for General Amplitudes?

Can we determine symbol alphabets?

Unfortunately, as the hexagon letters yu ,yv ,yw indicate, the
connection between Landau singularities and symbol alphabets is
rather indirect; knowledge of the former tells us about the locus
where symbol letters vanish (logarithmic branch surfaces) or have
algebraic branch surfaces.

(There are infinitely many algebraic functions of u, v , w that
vanish only on S6.)

In order to determine what the symbol letters of an amplitude
actually are, away from this locus, still requires invoking some
additional structure.

(Perhaps cluster algebras play a role here [Golden, Goncharov, MS,
Vergu, Volovich 1305.1617].)



Conclusion

For each n, the 3(n−5)-dimensional
kinematic configuration space
Gr(4,Cn)/(C∗)n−1 of n cyclically ordered
massless particles modulo dual
conformal symmetry has an interesting
codimension-one subvariety Sn.

It is a general consequence of locality, in the guise of the Landau
equations, that n-particle scattering amplitudes in any massless,
planar theory can have first-type Landau singularities only on Sn.

In a random field theory the actual singularity locus might be a
proper subset of Sn, but in SYM theory the n-particle has
singularities on all of Sn (at sufficiently high, but finite, loop order).

Ï Understand the mathematical structure of Sn!
Ï Harness this knowledge to learn more about amplitudes!


