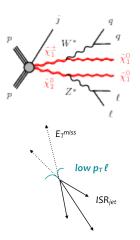
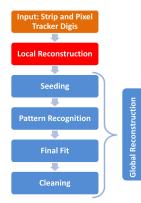
Working Progresss


Alexandra Tews

University of Hamburg

February 4, 2019

Search for electroweak production of supersymmetirc states in scenarios with compressed mass spectra


- Naturalness: $\mu \ll |M_1|, |M_2|,$
- ightarrow three lightest electroweakino separated $\mathcal{O}(100 \text{ MeV} 10 \text{ GeV})$
- ightarrow Compressed mass spectra Small $\Delta m(\chi_2^0, \chi_1^0), \Delta m(\chi_1^\pm, \chi_1^0)$
- \rightarrow Final states with displaced low- p_t lepton pairs (e, μ) and p_t^{miss}
- → Final states with disappearing tracks

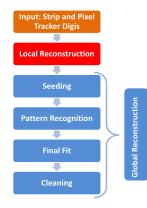
イロト イポト イヨト イヨト

Track Reconstruction Review

- Iterative tracking:
 Combinatorial Track Finder
- Proceeds 4 steps in 9 (7) iterations (Phase-0)

Up to 2016:

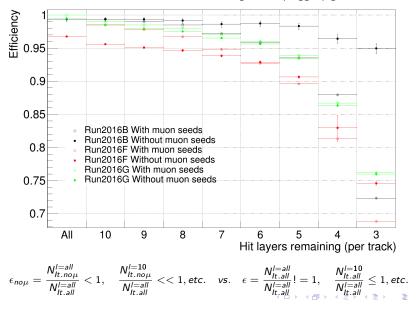
- 0 InitialStep (pixel triplets)
- 1 LowPtTripletStep (pixel triplets)
- 2 PixelPairStep (pixel pairs)
- 3 DetachedTripletStep (pixel triplets)
- 4 MixedTripletStep (Triplets)
- 5 PixelLessStep (Pairs: TIB1,2 TID/TEC ring)
- 6 TobTecStep (Pairs: TOB1,2 TEC ring 5, wheels 1-7)


After 2017:

9 main iterations

step name	seeding	target track
	5	
Initial	pixel quadruplets	prompt, high p _T
LowPtQuad	pixel quadruplets	prompt, low p_T
HighPtTriplet	pixel triplets	prompt, high p_{T} recovery
LowPtTriplet	pixel triplets	prompt, low p_{T} recovery
DetachedQuad	pixel quadruplets	displaced——
DetachedTriplet	pixel triplets	displaced—— recovery
MixedTriplet	pixel+strip triplets	displaced—
PixelLess	inner strip triplets	displaced+
TobTec	outer strip triplets	displaced++
JetCore	pixel pairs in jets	high <i>p</i> T jet
Muon inside-out	muon-tagged tracks	muon

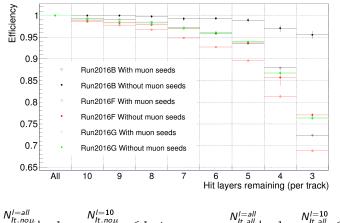
NEW: Dropping the muon seeded iterations


- Iterative tracking:
 Combinatorial Track Finder
- Proceeds 4 steps in 9 (7) iterations (Phase-0)

- Default includes muon seeded iterations
- Dropped
- MuonSeededSeeds-, TrackCandidates-, TracksInOut
- MuonSeededSeeds-, TrackCandidates-, TracksOutIn
- TrackCandidates-, TracksOutInDisplaced
- PreDuplicateMerging with muon seeded tracks

NEW: Tracking Efficiencies with and without muon seeds

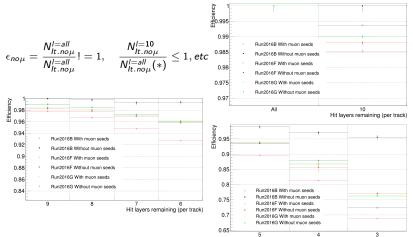
Do we overestimate the efficiency by selecting muon (flagged) general tracks?


NEW: Dropping the muon seeded iterations

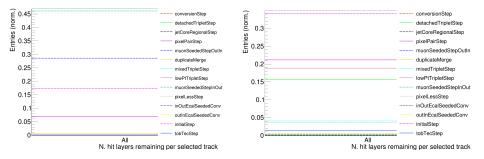
Hit layers remaining (per track)

・ロト・日本・ キャー キー うくの

NEW: Tracking Efficiencies with and without muon seeds

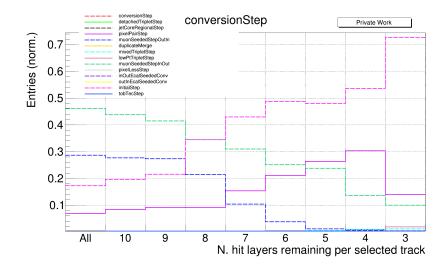


What is the true efficiency for general (no muon) tracks?

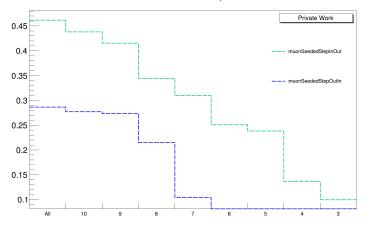

$$\epsilon_{no\mu} = \frac{N_{l=all}^{l=all}}{N_{lt.no\mu}^{l=all}}! = 1, \quad \frac{N_{lt.no\mu}^{l=10}}{N_{lt.no\mu}^{l=all}} \le 1, etc. \quad vs. \quad \epsilon = \frac{N_{lt.all}^{l=all}}{N_{lt.all}^{l=all}}! = 1, \quad \frac{N_{l=all}^{l=all}}{N_{lt.all}^{l=all}} \le 1, etc.$$

$$(*)N_{lt.no\mu}^{l=all}|e.g.reRECOstep(l=10) = N_{lt.all}^{l=all} \times \frac{N_{lt.all}^{sel}}{N_{sel}^{l=all}},$$

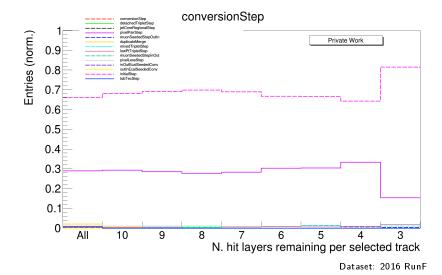
NEW: Dropping the muon seeded iterations



NEW: Reconstruction algorithm: Default reco 2016, sel tracks vs. all tracks

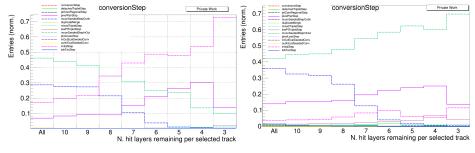


NEW: Default reco 2016, shortened tracks

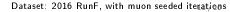


NEW: Muon Seeds in 2016 default reco, shortened tracks

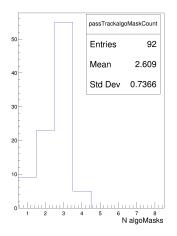
muonSeededStepInOut



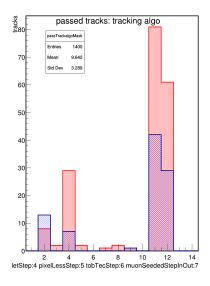
NEW: Default reco 2016 without muon seeds, shortened tracks


NEW: Using the AlgoMask Information

- Possible methods: track.algoName(), trackIsInAlgoMask(e.g.reco::Track::pixelPairStep)
- AlgoMask information is trusted more
- double counting is possible (most likely)

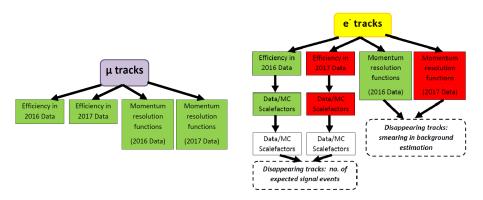

algoName

algoMask



NEW: Using the AlgoMask Information

- tracklsInAlgoMask()
- double counting is possible (most likely)



NEW: Using the AlgoMask Information

- Red algoMask
- Blue algoName
 - duplicateMerge = 1;
 - initialStep = 2;
 - o lowPtTripletStep = 3;
 - pixelPairStep = 4;
 - detachedTripletStep = 5;
 - mixedTripletStep = 6;
 - pixelLessStep = 7;
 - tobTecStep = 8;
 - jetCoreRegionalStep = 9;
 - conversionStep = 10;
 - muonSeededStepInOut = 11;
 - muonSeededStepOutIn = 12;
 - outInEcalSeededConv = 13;
 - inOutEcalSeededConv = 14;

Big scale plans

- Present status at TRK POG miniworkshop @Padova in 2 weeks
- Gather study on electron and muon tracks in a PAS
- Continue study with electrons only

- Start with the 2017 efficiency (scale factors)
- No RAW-RECO for 2017 SingleElectron -> reconstruct samples myself from RAW, e.g. Run2017F, relaese name 9 2 X>10
- used: cmsDriver.py command, -step RAW2DIGI, RECO, with 94X dataRun2 v6 conditions in 9 4 6, 9 2 11
- yields: cscRecHits trying to insert duplicate entry
- Group meeting talk 6th of March
- DPG talk

Backup

Iterative Tracking - 2017

Challenges:

- Tracking mainly combinatorial problem
 - \rightarrow pile up (PU) has strong effect on reconstruction efficiency, accuracy and timing
- Average PU expected to rise with RunII due to 25ns bunch crossing
- $\bullet\,$ Average PU rises from ≈ 25 to ≈ 45
- Higher occupancy in tracker (+5% in Pixel, +45% in Strip)
- Special Problem: ghost hits in double sided strips
- Effect on iterations that are seeded using double-sided hits (PixelLess/TobTec)
- Pixel dynamic inefficiency caused by saturation of the readout chip buffer

Solutions:

- Timing-Oriented developments
- Reduce time needed for strip-seeded iterations
- Extend strip-pair pattern to include additional third hit (nr. of produced seeds reduced, nr. of tracks remains)
- Out of time pileup increases reconstruction time and fake rate
- Particles from different bunch crossing arrive at random time, corresponding clusters characterized by low charge
 - \rightarrow Selection on the cluster charge (CCC)
- Further improvements e.g. order of the iterations (faster iterations run first) [?]

Iterative Tracking After 2017

- Physics-Oriented developments
 MounSeedStep OutIn:
- Outside-in iteration seeding using information from outermost muon detectors
- Recovers PU-dependant efficiency loss
- Re-reconstruction of muon-candidate tracks with looser requirements to recover hit collection efficiency

MounSeedStep InOut:

- Requiring muon candidates (muon detectors) to be confirmed through a corresponding track (tracker)
- Reduces false reconstruction rate, improves momentum resolution DuplicateMerge:
- Tags clusters as merged if they are associated with more than one track
- Setting 'isMerged' flag in SiStripCluster-container