EICUG-MCnet MCEG Workshop

PROGRAM

Updates to general-purpose MCEG for ep /eA Status of NLO simulations for ep/eA GPDs and TMDs in MCEGs QED+QCD effects in ep/eA simulations

ORGANIZERS

Elke-Caroline Aschenauer (BNL) Andrea Bressan (INFN Trieste) Markus Diefenthaler (JLAB) Hannes Jung (DESY) Simon Plätzer (University of Vienna) Stefan Prestel (Lund University)

www.desy.de/mceg2019

Workshop: MCEGs for future ep and eA facilities

22+ participants

www.desy.de/mceg2019

Workshop history

• Started as satellite workshop during POETIC-8

Collaboration EICUG-MCnet

Goal of workshop series

- Requirements for MCEGs for ep and eA
- R&D for MCEGs for ep and eA

Focus of DESY workshop on Feb. 20 – 22

- Status of ep and eA in general-purpose MCEG
- Status of NLO simulations for ep
- MCEGs and TMDs and GPDs
- Merging QED and QCD effects

Program

Wednesday, February 20, 2019 14:00 - 15:45 General-Purpose MCEG: Precision for ep processes		Thursday, Fe	bruary 21, 2019 Friday, February 22, 2019
14:00 - 15:45	General-Purpose MCEG: Precision for ep processes 14:00 Intro 5' Material: 14:05 Simulation of ep and eA processes in general-purpose MCEG 30' Speaker: 14:05 Simulation of ep and eA processes in general-purpose MCEG 30' Speaker: 14:05 Situs of (N)NLO simulations for ep and eA processes 30' Speaker: 14:35 Status of (N)NLO simulations for ep and eA processes 30' Speaker:	09:00 - 10:30	TMDs and MCEGs: Part I 09:00 - 10:30 Requirements 09:00 Pequirements 00:00 Pequirements 00:00
	Material: Slides 15:05 Status of aMC@NLO for DIS 10' Speaker: Buarque Franzosi Diogo Material: Slides	10:30 - 11:00	10:00 Matrix element calculations with off shell partons: KaTie 30 10:00 Discussion 30' Speaker: Andreas van Hameren 10:30 - 11:00 Coffee Material: Slides 10:00 Wrapping up
15:40 - 16:00 16:00 - 18:00	 15:15 Discussion 30' Coffee General-Purpose MCEG: Combining QED+QCD effects 16:00 QED corrections 30' Speaker: Prof. Hubert Spiesberger (Johannes Gutenberg- Universität Mainz) Material: Slides Slides 16:30 Semi-analytic vs. Monte-Carlo Approaches for QED Corrections to SIDIS 30' Speaker: Prof. Andrei Afanasev (George Washington University) Material: Slides Slides 17:00 Discussion and next steps 1h0' 	11:00 - 12:00 12:00 - 14:00 14:00 - 15:30	TMDs and MCEGs: Part II 11:00 Full event generator with TMDs: CASCADE-3 30' Speaker: Hannes Jung (DESY) Material: Slides 11:30 Revisited version of a recursive model for the fragmentation of polarized quarks 30' Speaker: Albi Kerbizi (University of Trieste) Material: Slides Lunch TMDs and MCEGs: Part III
		15:30 - 16:00 16:00 - 18:30	14:00 Discussion: TMDs and MCEG 1h30' Coffee GPDs and MCEGs 16:00 Towards event generation for GPD physics with PARTONS 30' Speaker: Dr. Herve Moutarde (IRFU, CEA) Material: Slides 16:30 DVCS and exclusive pi0 event generator for JLab fixed-target experiments 30' Speaker: Dr. Carlos Munoz (IPN-Orsay) Material: Slides 16:30 DVCS and exclusive pi0 event generator for JLab fixed-target experiments 30' Speaker: Dr. Carlos Munoz (IPN-Orsay) Material: Slides Discussion ODE and USES of the science

Comparisons to combined H1 and ZEUS analysis (A. Verbytskyi)

General-purpose MCEG and ep collisions

- Sherpa
 - DIS with ME corrections and PS merging
 - Good description of jet data at low Q^2 with \gtrsim 3 partons in the final state
 - Automated NLO matching with Powheg method, applicable for jets at high- Q^2
- Herwig
 - Two shower options with spin correlations and NLO matching
 - Good description for single-particle properties in DIS
 - Also QED radiation for angular-ordered shower
- Pythia
 - Possible to generate DIS events with the new dipole shower implementation
 - Higher-order corrections via Dire plugin, soon part of Pythia core
 - Photoproduction for hard and soft QCD processes, also hard diffraction
- Detailed comparisons between modern MCEG and HERA data
 - Feb. 18 20 Workshop on Rivet for ep, mailing list for comparison studies
 - HERA data not (yet) included in MCEG tunes

General-purpose MCEG and eA collisions

- No strong modifications for DIS (nuclear PDFs, what else?)
- For photoproduction need to include interactions between resolved photon and other nucleons
- Complementary to ultra-peripheral collisions at the LHC and RHIC

MCEGs for future ep and eA facilities

Status of NLO simulations for ep

Fixed-order QCD

- QCD calculations available up to N³LO for inclusive DIS
- Peculiarities of DIS require careful selection of scales
- Excellent description of experimental data from HERA

MC event simulation

- DIS simulations available in all three event generation frameworks
- NLO matching & merging standard, NNLO matching available
- Peculiarities of DIS require careful selection of clustering history
- Very good description of wide range of experimental data

MCEGs and TMDs

Vibrant community

MCEG Workshop DESY, February 2019

F Hautmann TMDs from Parton Branching First all flavor. all Q^2 , all x and all k_t TMD at NLO determined.

- Introduction
- The Parton Branching (PB) method
- New results and applications

F Hautmann: MCEG Workshop, DESY - February 2019

Updates for KaTie

presented at the MCEGs for future ep and eA facilities 21-02-2019, DESY, Hamburg First ever off-shell hard process calculation for ep including all flavors. TMD and parton shower: CASCADE-3

Hannes Jung (DESY)

with contributions from A. van Hameren, K. Kutak, A. Kusina, A. Bermudez Martinez, P. Connor F. Hautmann, O. Lelek, R. Zlebcik

• From inclusive to exclusive distributions

Parton Branching method for TMDs

First TMD parton shower using higher order splitting function.

H. Jung, TMD and Parton Shower CASCADE3 , MCEG for future ep facilities, Hamburg, Feb 2019

Lively discussion: Factorization Theorem and MCEG approaches

To what extent are TMDs a result of a coherent branching evolution as, e.g., implemented in Herwig

Next: Comparison to TMD theory

Extract TMD from the different MCs and compare to analytic results.

nTMD using PB method

First all Q^2 , all x, all k_t TMD at NLO for nuclei.

Based on ongoing project with: E. Blanco, A. van Hameren, H. Jung, A. Kusina

Comparison with DY data (pp, pPb, CMS)

Merging QED and QCD effects

CLASSIFICATION OF $O(\alpha)$ QED CORRECTIONS Radiation from the lepton model independent (universal). dominating by far: enhanced by large logs, $\ln(Q^2/m_e^2)$ vacuum polarization (boson self energy) universal, photon self energy $\rightarrow \alpha_{em}(Q^2)$ Radiation from the hadronic initial/final state parton model: radiation from guarks to be considered as a part of the nucleon structure Interference of leptonic and hadronic radiation 2γ exchange new structure purely weak corrections Note: for NC-scattering, straightforward separation IR divergences: need to combine real and virtual radiation H. Spiesberger (Mainz) MCEGs. 20. 2. 2019 5/20

Hubert Spiesberger (Mainz): QED corrections

- High-precision measurements need careful treatment of radiative corrections.
- Closely related to experimental conditions need full Monte Carlo treatment (Unfolding) including simulation of hadronic final states.
- The basics are known and available ...
- ... but improvements are needed.

Andrei Afanasev (GWU): Semi-analytic vs. Monte-Carlo Approaches for QED Corrections to SIDIS

- Consistent approach to address RC for SSA in polarized SIDIS
- SSA due to two-photon exchange need to be included in analysis of SSA from strong interaction, of same size at JLAB experiments
- More detailed calculation of the two-photon exchange at quark level required: elastic scattering, inclusive, semi-inclusive, and exclusive DIS

MCEGs for future ep and eA facilities

Next steps: Discussion based on review by Elke-Caroline Aschenauer (BNL)

- General-purpose MCEGs, HERWIG, PYTHIA, and SHERPA, will be significantly improved w.r.t. MCEGs at HERA time:
 - MCEG-data comparisons in Rivet will be critical to tune the MCEGs to DIS data and theory predictions.
 - The existing general-purpose MCEG should soon be able to simulate NC and CC unpolarized observables also for eA. A precise treatment of the nucleus and its breakup is needed.
 - First parton showers and hadronization models for ep with spin effects, but far more work needed for polarized ep / eA simulations.
 - Need to clarify the details of the radiative corrections (also for TMD and GPD physics and in particular for eA).

• TMD physics

- Vibrant community working on various computational tools for TMDs
- CASCADE: MCEG for unpolarized TMDs at high energy.
- Need more verification of MCEG models with TMD theory / phenomenology.
- GPD physics
 - No modern MCEG available.
 - There is a path from PARTONS to a GPD MCEG (Herve Moutarde (IRFU, CEA)), similar there is a project to extend MCEG for exclusive processes from JLAB12 to EIC (Carlos Munoz-Camacho (IPN-Orsay)).

MCEG for ep We are on a very good path, but still quite some work ahead. MCEG for eA Less clear situation about theory and MCEG.