- Di, 16:00–18:35 ST 3 T 44: Gaseoues Detectors
- 16:00 T 44.1 Gruppenbericht: A Prototype High Pressure Gas Time Projection Chamber for Future Long Baseline Neutrino Experiments — •Philip Hamacher-Baumann for the HPTPC collaboration
- 16:20 T 44.2 The contribution has been withdrawn.
- 16:35 T 44.3 Fake track studies for the ATLAS TRT in high pileup scenarios •Patrick Bauer, Klaus Desch, and Christian Grefe
- 16:50 T 44.4 Commissioning of a new gas system for the Würzburg cosmic ray facility •Thorben Swirski, Deb Sankar Bhattacharya, and Raimund Ströhmer
- 17:05 T 44.5 Developement of a low background low energy X-ray detector for IAXO •Tobias Schiffer, Klaus Desch, and Jochen Kaminski
- 17:20 T 44.6 Setup of a prototype for the SHiP Straw Tracker Spectrometer •Benedict Kaiser, Caren Hagner, Daniel Bick, Stefan Bieschke, and Walter Schmidt-Parzefall
- 17:35 T 44.7 Measuring the transverse diffusion with a Gas Monitoring Chamber Philip Hamacher-Baumann, •Thomas Radermacher, Stefan Roth, and Jochen Steinmann
- 17:50 T 44.8 Studies on Temperature Effects in GridPix-based Detectors •Lucian Scharenberg, Klaus Desch, Jochen Kaminski, and Tobias Schiffer
- 18:05 T 44.9 Study of ionizazion, apmplification and energy resolution in GridPix detectors Klaus Desch, •Markus Gruber, and Jochen Kaminski
- 18:20 T 44.10 **ROPPERI** A TPC readout with GEMs, pads and Timepix •Ulrich Einhaus

Readout Of a Pad Plane with ElectRonics designed for plxels

A TPC readout with GEMs, pads and Timepix

Ulrich Einhaus (DESY) Jochen Kaminski (Uni Bonn), Michele Caselle (KIT) DPG Frühjahrstagung Aachen 26.03.2019

- Motivation: High Granularity dE/dx
- Software Simulation: Prospects
- Hardware Development: Feasibility

dE/dx in a TPC

- Energy loss measurement is an advantageous intrinsic capability of TPCs
- Via Bethe-Bloch curve in combination with momentum this leads to the identification of the particle species
- The measurement is usually done via charge summation
- Due to large fluctuations in each ionisation step like δ -electrons the charge / distance distribution is Landau shaped \rightarrow large RMS
 - \rightarrow mediocre correlation with energy loss

dE/dx Resolution at High Granularity

- To increase resolution increase granularity
- Empirically found: $\sigma(dE/dx) \propto L^{-0.34} \times N^{-0.13}$
 - Introduce readout granularity G = N/L $\sigma(dE/dx) \propto L^{-0.47} \times G^{-0.13}$
- Usual approach: Keep G constant, vary L (TPCs of different size, extrapolation of small prototype to full detector)
- Here: Keep L constant, very G This should improve dE/dx resolution with conventional method of charge summation for higher granularity.

Cluster Counting

- The number of ionisation steps / distance is Poisson shaped
 → smaller RMS → better correlation → better particle identification
- Counting clusters allows for improved particle separation compared to conventional charge summation
- Depends on fraction of identified clusters (counting efficiency)
 → Need sufficient granularity to identify clusters!

Ulrich Einhaus | A TPC readout with GEMs, pads and Timepix | 26.03.2019 | Page 6

Simulation: Software

- Simulation and reconstruction chain: MarlinTPC within the ILCsoft framework
- Cluster identification via external software 'Source Extractor' → returns 'hits' for tracking [http://www.astromatic.net/software/sextractor]
- Event display:
 - Green: electrons after drift
 - Red: digitised raw data 'heat map'
 - Blue: reconstructed hits
- Count number of reconstructed hits

	Drift
	GEM Amplification
g	Projection onto Timepix
	Timepix Digitisation
	Export to .fits
	Source Extractor
	Import to .slcio
	Tracking: Hough Trafo
	Analysis e.g. cluster-hit

identification

Generate MCParticles

Primary Ionisation

Reconstruction

Analysis

- Track length = 300 mm
- Compare pions and kaons at 3 GeV, relative ionisation difference of 15 %
- Cluster counting 'resolution' difficult to define
- Use separation power:

$$\Rightarrow S = \frac{|\mu_{\pi} - \mu_{K}|}{\sqrt{\frac{1}{2}(\sigma_{\pi}^{2} + \sigma_{K}^{2})}}$$

• Use benchmark point to compare separation power of charge summation and cluster counting

→ Need very high granularity, pad sizes < 200 µm!</p>

Charge summation

→ Get improvement down to
 ~ 500 µm pads, when
 threshold effects kill the signal

• Combine results, compare to existing systems and test beam results, extrapolated to studied scenario:

- GEMs, small pads, Timepix chip as readout electronics
- Connections from pads to chip are routed through the board, then bump bonded to the chip
- Timepix: 65,536 pixels, 55 µm pitch

Benefits

- Compared to the existing GEMs+pads system:
 - Higher granularity \rightarrow better occupancy, double track resolution, possible cluster counting
 - Square pads, several pads per charge cloud \rightarrow no tan² θ -effect
 - High integration: O(30) smaller footstep
- Allow for "arbitrary" pad sizes, full anode area coverage GEM P

Flat surface for bonding Bump bonds Timepix chip VHDCI connector

Hardware: Concept

- PCB of 9 x 9 cm²
- 3 pad sizes and different connection lengths to be tested, smallest pads with shortest connections directly on the chip
 → influence of capacitance
- 500 channels connected in total
- To be used with 10 x 10 cm² GEMs in a small TPC
- Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) coating for bonding

Stud Ball Bumping (SBB) process

Gold stud bumping is an evolution of the \sim 60 years-old wire bonding process. **Gold stud ball**: the wire is snapped off after the ball is initially connected to the substrate

 Low-cost process: direct deposition on Al pad (No UBM, lithography process)

Fast deposition: 20 bumps/s

 Short setup time: ideal for single die bump-bonding (i.e. prototype and R&D)

Gold Ball-wedge wire-bonding

Achieved Bump & pitch size

Au wire diameter (µm)	Bump diameter (µm)	Minimum pitch (µm)
25	60	100
15	30	50
12.5	23	35

KIT, Institut für Prozessdatenverarbeitung und Elektronik

Flip-Chip Process - Bonding Maschine

Ulrich Einhaus | A TPC readout with GEMs, pads and Timepix | 26.03.2019 | Page 15

- Broken connections: no communication with chip, no data readout
- First time (?) bonding at 55 μ m pitch directly from silicon to a PCB
- Problem: different coefficients of thermal expansion (CTE):
 - Si ~ 2.5 ppm/K, FR-4 ~ 15 ppm/K
 - → over 14 mm and at 250°C: ~ 40 μ m offset
- Stability only given for ~ days-weeks
- Finally produced 3 working systems, immediately took (noise) data, but unable to inject a signal before breakdown

Hardware: Capacitance Challenge

- With growing input capacitance the signal to noise ratio goes down
- Timepix was developed C < O(100fF)
- Capacitances: Pads: O(0.1pF) Lines: O(1pF/2.5cm) Bump bond connections: O(0.1pF)
- Gain for triple GEM stack: 2k-5k, potential for significant increase

X. Llopart: Timepix Manual v1.0

- Took noise data 'threshold runs':
 - For each channel measure the noise level at different thresholds
 - Check the necessary threshold increase to move a channel from being in constant firing to being constantly silent: drop width
 - This drop width is be proportional to the equivalent noise charge (ENC)

- Absolute noise drop width is difficult to interpret
 - → compare ROPPERI system to bare Timepix
 - \rightarrow compare large pads, long lines to small pads, short lines
- Largest pads about 11 times as noisy as bare Timepix, with a known ENC of \sim 90 electrons

- Absolute noise drop width is difficult to interpret
 - \rightarrow compare ROPPERI system to bare Timepix
 - \rightarrow compare large pads, long lines to small pads, short lines
- Largest pads about 11 times as noisy as bare Timepix, with a known ENC of ~ 90 electrons
- Estimate for the signal/noise:
 - Assume 1000 electrons noise
 - 1.2 x 1.2 mm² pads receive between 10k and 20k electrons from GEMs at usual amplification voltages
 - \rightarrow S/N >= 10

- Prospects of a high granularity TPC readout: improved PID.
- Simulations show decreasing pad sizes improves dE/dx by charge summation for down to \sim 500 μm . Cluster counting benefits only kick in below \sim 200 μm .
- The ROPPERI system was produced and tested. It aims to combine flexibility and low cost with high granularity and a small electronics footprint.
- Showed a estimated S/N >= 10 \rightarrow general feasibility is given.
- Mechanical stability is an open issue, new materials need to be tested.

Special thanks to: Markus Gruber, Patrick Pfistner and Sumera Kousar!

> Dankeschön! Fragen?

Backup

ILD TPC

Hardware: Flatness

- Sufficient flatness of few µm required for bonding
- Measured after chip came off

Hardware: Flatness

- Sufficient flatness of few µm required for bonding
- Measured after chip came off
- Maps design file very well
- Central peak FWHM: 5 µm, areas without metalisation and gold studs visible

Idea: intermediate solution between pads and pixels

- Clusters contain the primary information of the ionisation
- For a GEM-based system: Can we find a solution to resolve clusters?
- What is the optimal pad size to
 - improve double hit and double track resolution,
 - do cluster counting for improved dE/dx?
 - → O(200µm)

Former Tests with GEMs + pixels

- GEMs + Timepix, by Uni Bonn and Uni Freiburg
 - Charge depositions spread continuously over O(100) pixels (compared to Micromegas)
 - High gains (60k to 100k) necessary for signal/noise
- Large pixels by adding metal pads to chip

J. Kaminski: Measurements during the October test beam with the GEM-TPC and Timepix; at RD-51 meeting 2010

Former Tests with GEMs + pixels

- Clusters visible with large pixels \rightarrow How large can one go?
- Similar to our approach ۲ But: still need up to 120+ • chips per module 4x4: 5x5: 220x220 µm² 275x275 µm² Utilize full chip! • Utilize full anode area! 1x1: 2x2: 55x55 µm² 110x110 µm² 1×1

J. Kaminski: Measurements during the October test beam with the GEM-TPC and Timepix; at RD-51 meeting 2010

GEMs + pixels: event displays

Large pixels Timepix
 [5x5 | 4x4]
 [1x1 | 2x2]

Cluster counting efficiency

- Here:
 - He:CO₂ 70:30
 - Expected: 15.15 clusters/cm
 - Approaches without absorption 14.6 clusters/cm

Readout: Timepix

- Advancement to the Medipix chip (RD51, CERN) with the capability for time measurement
- Geometry:
 - 256 x 256 pixels, 55µm pitch
 - 1.4 x 1.4 cm² active area
- Pixel floor plan: octagon: Al opening for input signal 1: preamplifier
 - 2: discriminator/digitisation
 - 4: configuration
 - 5: mode selection
 - 6: 14-Bit shift register (max. 11810)

X. Llopart: Timepix Manual v1.0

Readout: Timepix

- Mode selection (per pixel) in 5:
 - "Time of arrival" (ToA) gives timing information
 - "Time over threshold" (ToT) gives charge information
 - For the Timepix3 (2nd generation) both modes can run simultaneously
- External reference clock with up to 100MHz / 10ns
- During a given shutter window the register counts and is read out afterwards (serial 10ms, parallel 300µs)

Hardware Readout Setup

 Readout chain based on the Scalable Readout System (SRS) from CERN established

- Simultaneous modes "time of arrival" and "time over threshold"
- To be used after proof-of-principle
- Exchange of information and experience with photon science groups at DESY (member of Timepix3 collaboration)

UNIMOCS prototype TPC

