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● Electron beam provided by DESY II synchrotron.
● e+/e- particles with energy up to 6 GeV.
● 1.35 T Dipole magnet in T21 .

● Three EUDET silicon pixel Telescopes (Datura/Duranta/Azalea),  based on Mimosa 26, in 
T21, T22 and T24.

● 1 T Superconducting solenoid (PCMAG) in T24/1.

The DESY II Test Beam Facility



Page 3

The Lycoris Telescope

● A new large area strip telescope within the Test Beam 
Area 24/1 solenoid:
● Wall thickness of 20% X

0
. 

● Magnetic field strength of up to 1T.

● Telescope demands complementary to existing EUDET 
Telescopes and user demands:
● Larger area ~10x10 cm².
● Less than 3.5 cm of space per telescope module.
● Spatial resolution requirements better than:

● σ
Bend

= ~10 μm.

● σ
opening

= ~1 mm.
● Higher time resolution (< 100 μs).
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● A strip pitch of 25 μm. 

● ~7 micron tracking resolution.

● Alternate strips are being read out.

● An integrated pitch adapter and digital 
readout (KPiX).

● Directly bump bonded to sensor surface.

● Thickness of 320 μm.

● Material budget of 0.3% X0.

Hybrid-Less silicon strip sensor designed
by                   for the ILC :

The SiD Silicon Strip Sensor

Fig.: Assembled Tracker Module
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The final system: The cassette

1
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m
Aluminium frame for 

mechanical stability

Carbon fiber window for protection + grounding shield

Torlon frame to  

carry the sensor
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The final system: The cassette
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The final system: The rail structure

200 cm

5
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m

Rail structure for movement 
along magnet angle

Rail structure for movement along 
magnetic field axis
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The final system: The rail structure
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● Full coincidence: 
● SiD Strip Tracker↔SiD ECAL Pixel Sensor↔Beam Scintillators.

System Status: Sensors

● Just completed a very successful testbeam 
campaign using multiple tracker and ECAL sensors.

● Recorded ~ 600.000 beam spills, split between 
different running modes, positions, angles, bias 
voltages etc.

Fig.: Mapping of trigger hits to ECAL (left) and tracker (right)

Self triggering operation

Fig.: Testbeam setup with the tracker in front and ECAL in the back.

ECAL Pixel 
Sensors

Strip Tracker 
Sensors

Electron beam

Pixel ECAL 
sensors

Strip tracker 
sensors
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System Status: Sensors

● Final running operation with many DUT is 
going to be in external triggering
● Current system noise is ~0.19 fC*
● ~3 fC expected signal charge in 320 micron 

silicon
● → S/N = ~15*

External triggering operation

*Preliminary as this was measured with the old electronics

Fig.: Charge distribution of hit candidates.

Fig.: Pedestal distribution for Tracker sensor
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System Status: Reconstruction
External triggering operation

● Very early steps into cluster reconstruction 
shows promising results.

● Charge readout of sensor demands closer look 
into hit candidates:

✔ Case 1: Readout strip hit 
→ Single high charge strip

✗ Case 2: Floating strip hit 
→ Two low charge strips

Faulty calibration

High noise channel



Page 12

External triggering operation

● Clearly visible strip correlation between two modules.
● Offset between Module 1 and Module 2 of roughly 20 strips 

= 1 mm.
● Agreement with tilt of modules to the electron beam as a 

result of stage tilt.

Strip offset between Module 1 and Module 2

System Status: Reconstruction
1 mm
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Outlook
● All components, mechanics and electronics, of the telescope are on site and 

working.

● Completed first successful testbeam campaign with multiple tracker sensors and 
performed first steps for clustering and tracking.

● Final test during Testbeam of LYCORIS within T24/1 solenoid with EUDET 
telescope as reference, scheduled for 04/2019.

● Completion of the system this year.



Thank you for your attention

Fig.: Datura
Fig.: Duranta

Fig.: Lycoris

Fig.: Azalea
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BACKUP
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use this

to investigate this

The LYCORIS Project In the Context of ILC
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Silicon Telescopes

● High precision silicon trackers

● Used to provide reference measurements of particle track

● Multiple layers placed before and after the Device Under Test (DUT)

→ Provide tracking through the DUT even in the case of multiple scattering 

Fig.: External strip tracker sketch Fig.: EUDET Type Telescopes at DESY II Test Beam Facility
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● Challenge: Distortion of particle trajectory as a 
result of multiple scattering or inhomogeneous 
electric fields

● Solution: Reference measurement of the particle 
position before and after the DUT 

● Challenge: Smearing of particle momentum as a 
result of interactions with the magnet wall

● Solution: Accurate measurement of the momentum 
after magnet wall

1/p
T
[1/GeV]

N
or

m
. n

o.
 o

f t
ra

ck
s

PCMAG TPC

Strip Telescope

Reference  
"real" 
Trajectory

TPC  
Measured 
Trajectory

Case for an External Reference Tracker

Fig.: Sketch explanation for the need of a reference trajectory

Fig.: Momentum distribution after interaction with the PCMAG wall
(Felix Müller | DOI: 10.3204/PUBDB-2016-02659 )
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● 1024 channel fully digital readout with 13 bit resolution (8192 ADC).
● 100 MHz clock → 10 ns flexible acq. Clock period.
● Can work in two modes:

● Self/Internal trigger =  4 events per channel per cycle stored.
● External trigger = 4 events per cycle stored.

● Power pulsing operation → Only open for a short time frame.
● Length of the opening period depends on timing resolution.

Fig.: Acquisition cycle of the KPiX readout chip

Start-up Up to 8192    
bunch trains

Digitization of Data Reading out

~ 1ms 8*acq.clock*#BunchTrains ~ 2ms ~ 20ms

Start-up

~ 1ms

Shut off time

0 to X ms

(up to 4 events per channel)

Acquisition Cycle

Delayed DESY II minimum  
energy signal

Delayed DESY II minimum  
energy signal

KPiX readout chip

● Only open for a maximum time of 8192*8*acq.clock.
→For example with a 320 ns acq.clock = 20.97 ms.
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● 27 Bump Bonded sensors tested:

● Good behaviour:

● ~ 100 nA currents, stable up to 300 V
● Depletion voltage for all sensors at ~50 V

● Two sensors show breakdown beginning at  280 V

Fig.: Bump Bonded Sensor with flex cable on the probe station

T = 20°C

T = 20°C

60V operational voltage

60V operational voltage

System Status: Sensors

Fig.: IV (top) and CV (bottom) of the sensors
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80 ms

Minimum energy signal

E_cut

t_first
t_last

Fig.: Time difference from min. energy to trigger signal Fig.: First and last DESY signal in a cycle for different energies

Fig.: DESY II energy cycle

● DESY II energy cycle follows a sinoidal 
curve

● Time difference between minimal energy 
signal and signal in the test area is 
measured using scintillator triggers in the 
area

The DESY II Energy Cycle



Page 22

System overview: Mechanics

● All mechanical components have been 
assembled.

● Functionality has been shown in first tests 
with dummies.

● Sensors were installed in the Cassette for 
first test beam.

● Average radiation length in beam path per 
cassette = ~1% X

0
.

● Carbon Fiber windows = ~0.1% X
0
.

● Araldite2011 = ~0.03% X
0
.

● Aluminium foil = ~0.015% X
0
.

● Silicon Sensors = ~0.7% X
0
.

Fig.: Cassette Housing with Carbon Fiber Cover

Fig.: PCMAG with cassette rails
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System Overview: New Electronics

Fig.: AIDA TLU

Fig.: New DAQ board with front and backside of cassette board.

● All new electronic components are at DESY 
and currently under test.

● AIDA trigger logic unit (TLU):
● Needed for synchronized data readout 

of DUT and telescope.
● Can provide a common clock to all 

devices.
● New data acquisition (DAQ) board: 

● Provides necessary interfaces between 
new electronics and AIDA TLU.

● Hardware/Firmware improvements 
compared to old system.

● Cassette boards:
● Interface between the inside and 

outside of the cassette.
● Provides on board power distribution 

and noise filtering
● Ensures inside of the cassette needs 

not be touched during normal operation
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System Status: Sensors

● Multiple sensor modules assembled:
● Shown the functionality of overall principle.
● Sensor depletes through wire bonds and shows sensitivity to light and 

radioactive sources.
● Functionality of sensors confirmed through calibration, pedestal data taking as 

well as multiple test beam campaigns.

Channel 10 Channel 10
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15−10×15−

10−
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0
5

10
15

resid_1024_c0010_b0_r0

Charge [C]
Fig.: Pedestal distribution of a single channel

Fig.: ADC response to input charge during calibration
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SiD ECAL
Pixel Sensor

Electron Beam

Without Pedestal 
Subtraction

System Status: Sensors

Prelim
inary

Fig.: Mapping of trigger hits to ECAL (left) and tracker (right)

Fig.: High threshold charge distribution for the 
tracker with landau gauss convolution fit

Self triggering operation

● Full coincidence: 
● SiD Strip Tracker↔SiD ECAL Pixel Sensor↔Beam Scintillators.

● Recently completed first Testbeam with multiple 
tracker sensors

● Recorded ~ 600.000 beam spills, split between 
different running modes, positions, angles, bias 
voltages...
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System Status: Sensors
External triggering operation

Fig.: Hit position after floating strip + single strip hit candidate filtering.Fig.: Charge distribution after floating strip hit candidate filtering

● Deeper look into hit profile candidates for analysis.
● We expect 1 particle per trigger within the sensor with multiple cases depending on where/what it hits

● Case 1: readout strip → look for 1 single channel per trigger with ~3 fC
● Case 2: floating strip → look for 1 single candidate of 2 adjacent strips per trigger each with charge ~1.2 fC
● ...

Case 2 Case 1+2
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System Status: Sensors

Fig.: Signal charge distribution for ECAL sensor with channel preselection

External triggering operation

● Operation works quite well for the ECAL
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Energy dependent spill duration

KPIX acq. cycle

T_0
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T_Setup

T_End Time
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KPiX data taking duration
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E_min =

KPiX synchronisation, DUT and Beam

● KpiX needs to be synchronised to beam spill of the acceleerator and the DUT

● T_0: Accelerator signal for synchronisation with beam spiull

● T_Start: User adjustable delay between T_0 and KpiX switch on.

● T_Setup: Setup time of KpiX. At the end of which KpiX can start the data taking

● T_End: User adjustable signal telling all devices that KpiX has stopped data 
taking

● New AIDA TLU (Trigger Logic Unit) will be able to provide these signals and 
distribute a common clock
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Reflection of heat sources

KPiX Chip

● As a result of power pulsing and only 1024 channels, a low power Consumption 
is expected (40 mW in total)

● Measurement of heat production done via infrared camera

● Overall power consumption and heat generation is negligible
→ No active cooling needed

Heat production
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Radiation Length
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Radiation Length

Grounding planeCopper traces

Components
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Linear Motion rail with Vacuum Pickup

Sensor Positioning Plate with  
vacuum to hold the sensor

Fine screws for initial precision orientationVacuum connection to Hold  
Cable/Sensor Positioning Plate

lever arm with counterweight to easily move  
motion rail and adjust gluing pressure

Silicone Rubber piece to  
fit to the Kapton Flex

● After first manual assemblies, a 
new tool was designed and built 
to provide reproducible results 
through:
● Controlled glue application

● Fine adjustable gluing 
pressure

● Precise cable positioning

● Able to be used for further 
assembly of sensors into Torlon 
frames

Based on a design from

System Status: Mechanics

First assembly with new tool expected to start next week.
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System Status: Sensors

● First sensors assembled and tests on the first sensors are nearing completion:
● Both readout chips can be talked to.
● Sensor depletes through wire bonds and shows sensitivity to light
● First pedestal data taking and calibration measurements completed

Channel 10 Channel 10

0 10 20 30 40 50 60 70 80
15−10×15−

10−
5−
0
5

10
15

resid_1024_c0010_b0_r0

Charge [C]



Page 34| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Time Coincidence
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Minimum required
resolution

Minimum Required
resolution

The expected resolution

● Analytical calculations using GeneralBrokenLines (GBL) by Claus Kleinwort 
with a 25 μm pitch strip sensor. 

● Depending on the orientations, correlations between planes severely limit the 
resolution 

Fig.: Achievable curvature and z resolution of the telescope, with multiple scattering, depending on angular orientation
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Stereo angle variation
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Parameter correlation
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