Approaching the Schwinger Critical Field with the LUXE experiment.

Marius Hoffmann¹ Beate Heinemann^{1,2} Aachen DPG-Meeting, electroweak session 25.02.2019

¹ DESY, Hamburg

² University of Freiburg

Introduction and Motivation

Hawking radiation and the Schwinger limit

Pair Production by a single photon decay

- Impossible in vacuum -> violation of energy/momentum conservation
- Needs an external field, for example the presence of atomic nuclei

From quantum fluctuations into real pairs

- If an external field in vacuum is strong enough, it should be able to separate virtual e⁺e⁻ pairs from quantum fluctuations
- Famously: Hawking Radiation possible if:

$$\frac{\hbar c^3}{4G_N M} > 2mc^2$$

• Substitute gravitational field with an electric field: $\frac{\hbar e\varepsilon}{mc} > 2mc^2 \implies \varepsilon > \frac{2m^2c^3}{\hbar e} = 2\varepsilon_{Schwinger} = 2 \times (1.3 \times 10^{18}) \text{ V/m}$

Introduction and Motivation

Measuring the Schwinger critical field

Reasons to be interested

- Astrophysics: Hawking Radiation, Neutrons stars, early universe
- Condensed matter (dielectric breakdown)
- Effects in high energy e⁺e⁻ colliders
- Last but not least: Be the first to test Schwingers prediction for the critical field value

How to reach such field strength

- 1.3 x 10¹⁸ V/m not reachable with current technology
- Solution: Produce high energy photons, which enhances the field strength by γ (High Energy Electron Beam needed)

$$\varepsilon_{Schwinger} = 1.3 \ x \ 10^{18} \ V/m$$

J. Schwinger On Gauge Invariance and Vacuum Polarization Phys. Rev. 82 (1951) 664

Measuring the critical field...

...by counting positrons

Introducing LUXE

"Laser Und European XFEL Experiment"

Fast Simulation of the Detector

Using idealised magnets and detectors for design studies

Assumptions:

- No detector losses (e+/e- only)
- Homogenious magnetic field

Goal of Optimisation:

Close to no losses of e⁺ and e⁻

from detector layout

- space for laser system
- reasonable detector size

Input:

1k Monte-Carlo generated Laser-Photon Interactions for different Laser Parameters (MC Gen. not yet published)

Magnet?

Benefits of doing the experiments at DESY

Taking a look into the storage space

And we find:

A fitting Magnet from old DORIS accelerator

Fast Simulation of the Detector

Using idealised magnets and detectors for design studies

Assumptions:

- No detector losses (e+/e- only)
- Homogenious magnetic field

Goal of Optimisation:

Close to no losses of e⁺ and e⁻

from detector layout

- space for the laser system
- small detector size

Input:

1k Monte-Carlo generated Laser-Photon Interactions for different Laser Parameters (MC Gen. not yet published)

Magnet

- Aperture
 - Horizontal: 0.6m
 - Vertical 0.3m
- Field strength up to 2.24 T
- 1m long

Detector

- Size
 - Max. 1m horizontal
 - Arbitrary vertically
- Min. Pixel size: 50 μm
- Min. distance from Magnet: 1m

Fast Simulation

Particles in the Detector

e^{+/-} with 1 < E < 16 GeV are detected Very low average particle rates of <0.035/pixel per bunch crossing

Parameters

- Magnetic Field 1.4T
- 5 m Distance from Laser Interaction
- 1m Distance Magnet Detector
- Average over 1000 Laser-Photon bunch crossings
- I_{Laser} = 2.8 x 10¹⁸ W/cm²

Fast Simulation 2

Non-perturbative effect in the Detector

Both assuming 10⁹ bunches and 17.5 GeV

Outlook

How we want to continue

1. Finalize fast simulation optimization

- Derive final design for the photon Laser interaction scenario
- Test some prospects of vertexing in Laser diagnostics
- 2. Fast Sim Design studies for direct electron-photon interaction
- 3. Implement final design Full-Sim in GEANT4
- 4. DESY Test beam runs for validation of Photon production models
- 5. Start building the experiments in 2020/2021

Thank you for your Attention

Contact

DESY. Deutsches Elektronen-Synchrotron Hoffmann, Marius DESY FLC group marius.hoffmann@desy.de

www.desy.de

Backup