Probing aQGCs at the International Linear Collider DPG Spring Meeting - Aachen 2019

Jakob Beyer ^{1,2,3}, Michael Kobel ², Jenny List ¹

 $^{1}\mathsf{DESY}$ Hamburg

 $^{2}\mathrm{TU}$ Dresden

³Universität Hamburg

March 25, 2019

Vector Boson Scattering

$$\mathcal{L}_{U(1)\otimes SU(2)} = \dots - \frac{1}{4} W_i^{\mu\nu} W_{\mu\nu}^i$$
$$W_i^{\mu\nu} = \dots - g\epsilon_{ijk} W_j^{\mu} W_k^{\nu}$$

 \implies Quartic Gauge Coupling (QGC):

- SM Higgs?
- Composite H?
- Extra H?
- High-E effects?

BSM theory:

Resonances, High-E physics

Phenomenology: Mass peaks, shape / normalization

Modeling:

 \implies

Generalized Resonances, Effective Field Theories

 \implies Limits on anomalous parameters

DESY. | aQGCs @ ILC | Jakob Beyer | March 25, 2019

Which collision?

+ High \sqrt{s}

 Precise measurement (known initial state & theory, precise detectors, less beam-background)

 Many uncertainties (initial state, theory, pile-up, ...)

– Limited \sqrt{s}

 $\implies pp$ and e^+e^- are complementary!

The International Linear Collider

► ILC: Future e^+e^- collider, \sqrt{s} extendible to 1 TeV

► International Large Detector (ILD): Particle Flow optimized detector \Rightarrow Jet Energy Resolution $\sim 3 - 4\%$ $\implies W \rightarrow q\bar{q'} / Z \rightarrow q\bar{q}$ separation!

Achievable anomalous QGC limits

Achievable anomalous QGC limits

Assumptions of generator level study

Study assumes detector effects:

► Confusing Ws and Zs: $m_W - m_Z \sim 10 \text{ GeV}$, width, detector resolution ⇒ Confusion!

Crucial for analysis: Different couplings in WW and ZZ states!

Assumption:

true $W \quad \rightarrow {\rm reconstr.:} \ 88\% \ W$, $12\% \ Z$

true $Z \longrightarrow$ reconstr.: 88% Z, 12% W

 \implies For WW/ZZ signals:

true $WW \rightarrow \text{reconstr.: } \mathbf{77.4\%} WW$

true $ZZ \rightarrow \text{reconstr.: } \mathbf{77.4\%} ZZ$

\implies Can we verify this?

Detector level analysis

▶ VBS analysis on detector level ⇒ Full ILD simulation of 1 TeV e^+e^-

Analysis:

- Remove beam backgrounds: Exclusive jet clustering
- Cluster to 4 jets: e^+e^- - k_t algorithm
- Pair 4 jets to 2 bosons: Require minimal $|m_{jj,1} m_{jj,2}|$

$\implies WW/ZZ$ separation by invariant masses

Detector level VS Assumptions

\implies What limits separation / should be optimized?

Identifying challenges

From MC info:

 $\mathsf{Colour}\ \mathsf{neutral} \longrightarrow \mathsf{partons} \longrightarrow \mathsf{jet}\ \mathsf{particle} \longrightarrow \mathsf{reconstr.}\ \mathsf{particles}\ \mathsf{connections}\ \mathsf{known!}$

 \implies *Cheat* reconstruction step \implies See influence!

Ideal clustering:

Cheat jet particle finging

- ⇒ clustering algorithm & removing beam bkg.
- Ideal pairing: Cheat combining jets to bosons

⇒ Limiting factor: Jet clustering!

WW/ZZ separation w/ cheated clustering: 86% (full reco: 71%, prev. assump.: 77%)

Conclusion

- Detector level analysis needs improvement
 identified problem: Jet clustering
- Future studies:
 - Improve clustering
 - Use more sophisticted separation (flavor tag!)
- Assumptions in gen. level study reasonable

Future high- $\sqrt{s} e^+e^-$ facility complementary to hadron machines!

BACKUP

[Twitter:LCNewsline (26.07.2016)]

Theory in [EPJC(2017):77:120]

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{known}} + \sum_i rac{c_i}{\Lambda_i^{D_i - d}} \mathcal{O}_i$$

$$\begin{split} \mathcal{L}_{S,0} &= F_{S,0} \operatorname{Tr} \left[(D_{\mu} H)^{\dagger} \, D_{\nu} H \right] \operatorname{Tr} \left[(D^{\mu} H)^{\dagger} \, D^{\nu} H \right] \,, \\ \mathcal{L}_{S,1} &= F_{S,1} \operatorname{Tr} \left[(D_{\mu} H)^{\dagger} \, D^{\mu} H \right] \operatorname{Tr} \left[(D_{\nu} H)^{\dagger} \, D^{\nu} H \right] \,, \end{split}$$

with $F_{S,i} = c_i / \Lambda^4$.

T-Matrix unitarisation: S = 1 + iT, T_0 not unitarised

$$T(T_0) = \frac{1}{\operatorname{Re}(T_0^{-1}) - \frac{i}{2}1}$$

LHC aQGC sensitivy from [Phys. Rev. D 96, 012007]

Generator level signal definition

 $\bar{\nu_{e}}$ e^+ \bar{q} W^+ W/ZW/Z W^{-} \bar{q} ν_e

All signal events:

- $\triangleright e_L^-, e_R^+ \Rightarrow \mathsf{Can} \mathsf{ radiate } W\mathsf{s}$
- $\triangleright \nu \bar{\nu} = \nu_e \bar{\nu_e} \Rightarrow$ Could have radiated 2 Ws
- ▶ $m_{\nu_e \bar{\nu}_e} \ge 100.0 \text{GeV} \Rightarrow \nu_e \bar{\nu_e}$ not from Z

WW events:

- **•** Two up-type–down-type pairs: $q_u \bar{q'_d} + q''_d \bar{q''_u}$
- ▶ $147.0 < m_{q_u \bar{q'_u}} + m_{q''_u \bar{q''_u}} < 171.0$
- $|m_{q_u \bar{q'_i}} m_{q''_i q''_{ii'}}| \le 20.0 \text{GeV}$

ZZ events:

- **•** Two same-flavour pairs: $q\bar{q} + q'\bar{q'}$
- ▶ $171.0 < m_{q\bar{q}} + m_{q'\bar{q'}} < 195.0$

$$|m_{q\bar{q}} - m_{q'\bar{q'}}| \le 20.0 \text{GeV}$$

Generator level signal definition

High level reconstruction

Processors used before analysis:

- IsolatedLeptonTaggingProcessor: Tagging of isolated leptons (using new weights)
- FastJetProcessor:

Exclusive kt_algorithm (E_scheme) with radius parameter 1.3 and clustering to 4 jets. Removes overlay background, afterwards only use reconstructed particles which were in these jets.

FastJetProcessor:

 $\mbox{Exclusive ee_kt_algorithm}$ (E_scheme) clustering to 4 jets. These are taken as the actual jets.

Additional steps in analysis:

Pair up jets into 2 boson-dijet candidates by minimizing $|m_{jj,1} - m_{jj,2}|$

Jet energy distribution

Influence of JER on this sample

Vector Boson Scattering @ ILC

The benchmark

Looking for Vector Boson Scattering:

Goal: Limits on anomalous Quartic Gauge Couplings

$$\mathcal{L}_{\mathsf{EFT}} = \mathcal{L}_{\mathsf{known}} + \sum_i F_{S,i} \mathcal{O}_i$$

▶ WW and ZZ measure different couplings!

 \implies Separate WW and ZZ!

 $\implies \textbf{Detector Benchmark:} Precise Jet Energy Resolution} \\ \longrightarrow \textbf{Mass-separation of } WW \text{ and } ZZ \text{ peaks}$

VBS Benchmark plots

Basic construct

Example for performance plots:

- ILD I5_o1_v02
- iLCSoft v02-00-02
- Full reconstruction

Following jet formation

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

[Lecture D. Zeppenfeld 2005]

Mass distributions: removing semi-leptonic decays

- Two levels: **Full reco:** See previous slides
 - Cheated jets: Use TrueJet

 \rightarrow cheated clustering, pairing and overlay removal

DESY. | aQGCs @ ILC | Jakob Beyer | March 25, 2019 |

Separation curves

Idea: Scan this distribution: $m_{cut} \rightarrow \langle m_{cut} \Rightarrow \text{Reco-}WW \rangle > m_{cut} \Rightarrow \text{Reco-}ZZ \rightarrow \text{Efficiencies to find true-}WW$ as reco-WW? (same w/ ZZ)

- x: Eff. to identify WW correctly y: Eff. to identify ZZ correctly
- Simplified but easy approach
- + Simple test of b tag influence:
 Event contains gen.-level b?
 ⇒ Is reco-ZZ!

Two versions:

- 1. Full reconstruction
- 2. Using cheated jets

Separation curves

Idea: Scan this distribution: $m_{cut} \rightarrow \langle m_{cut} \Rightarrow \text{Reco-}WW \rangle > m_{cut} \Rightarrow \text{Reco-}ZZ \rightarrow \text{Efficiencies to find true-}WW$ as reco-WW? (same w/ ZZ)

- x: Eff. to identify WW correctly y: Eff. to identify ZZ correctly
- Simplified but easy approach
- ► + Simple test of b tag influence: Event contains gen.-level b? ⇒ Is reco-ZZ!

Two versions:

- 1. Full reconstruction
- 2. Using cheated jets

Separation & masses: Cheating steps

