ATLAS Highlights.

87th PRC meeting, Hamburg

Matthias Saimpert, on behalf of the group

DESY

21 May 2019

The ATLAS group at DESY

Large group promoting a healthy, positive working atmosphere

Outline

- Overview of group activities
- Recent highlights from the ITk strip end-cap
- Improved method to measure b-jet identification performance
- 4 Search for dark matter with b-jets
- **5** Measurement of W^+W^- production (with b-jet veto)

Outline

- Overview of group activities
- 2 Recent highlights from the ITk strip end-cap
- 3 Improved method to measure b-jet identification performance
- 4 Search for dark matter with b-jets
- **5** Measurement of W^+W^- production (with b-jet veto)

Detector and computing

Strong involvement in the present and future ATLAS detector

Detector operationSemi-Conductor Tracker (SCT)

Computing and Simulation

- MC production, validation and software
- Inner detector tracking software
- Muon software
- Electron and photon software

- Luminosity measurements
- Fast TracKer (FTK)
- ALFA forward detectors

Inner Tracker (ITk) upgrade

- Module and sensors
- Mechanics and electronics
- End-cap integration
- Generic R&D

Detector and computing

Strong involvement in the present and future ATLAS detector

Detector operationSemi-Conductor Tracker (SCT)

Computing and Simulation

- MC production, validation and software
- Inner detector tracking software
- Muon software
- Electron and photon software

- Luminosity measurements
- Fast TracKer (FTK)
- ALFA forward detectors

Inner Tracker (ITk) upgrade

- Module and sensors
 - Mechanics and electronics
 - End-cap integration
- Generic R&D

Physics object performance and analysis

 Expertise in physics objects is a prerequisite to design high-quality data analyses

Object Performance

- Jet energy scale and resolution
- Jet flavour-tagging & GPUs
- Track particles
- Electron & photon identification
- Photons energy scale

Data Analysis

- Standard model measurements, PDF
- Top and ttH measurements
- Higgs physics with electrons/γ
- Search for new phenomena supersymmetry, dark matter,...

Physics object performance and analysis

 Expertise in physics objects is a prerequisite to design high-quality data analyses

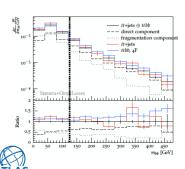
Object Performance

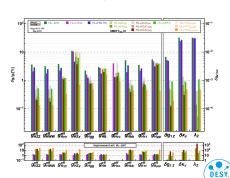
- Jet energy scale and resolution
 - Jet flavour-tagging & GPUs
 - Track particles
 - Electron & photon identification
 - Photons energy scale

Data Analysis

- Standard model measurements, PD
- Top and ttH measurements
- Higgs physics with electrons/y
- Search for new phenomena supersymmetry, dark matter, ...

Highlighted today





Working together with theorists

Many fruitful collaborations with on-site and off-site theorists

- interpretation of ATLAS Higgs results (F. Tackmann) LHCHXSWG-2019-003
- top quark effective field theory fits (C. Englert, C. White, ..) arXiv:1901.03164
- future of Higgs physics (C. Grojean, Y. Nir, ..) arXiv:1905.00382, 1905.03764
- next generation spin-0 dark matter models (F. Kahlhoefer, ..) CERN-LPCC-2018-02
- predictions for $t\bar{t}$ + extra b-jets (F. Siegert, in progress)

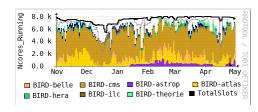
Working together with theorists

Many fruitful collaborations with on-site and off-site theorists

- interpretation of ATLAS Higgs results (F. Tackmann) LHCHXSWG-2019-003
- top quark effective field theory fits (C. Englert, C. White, ..) arXiv:1901.03164
- future of Higgs physics (C. Grojean, Y. Nir, ..) arXiv:1905.00382, 1905.03764
- next generation spin-0 dark matter models (F. Kahlhoefer, ..) CERN-LPCC-2018-02
- predictions for $t\bar{t}$ + extra b-jets (F. Siegert, in progress)

Many regular informal discussions at DESY with other groups

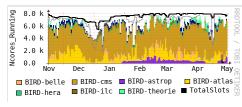
- "Quantum universe", monthly "LHC discussions", "theorist of the month", ...
- Higgs CP studies at HL-LHC (H. Bahl, T. Stefaniak, G. Weiglein)
- predictions for diboson (M. Grazzini, F. Tackmann)

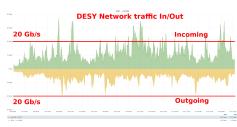


Working together with computing

Excellent support and collaboration with the DESY-IT department

- Continuous use of NAF by all groups
 - batch system
 - local disk storage
- Introduction of GPUs [more later]
 - test-bed for state-of-the art machine learning techniques





Working together with computing

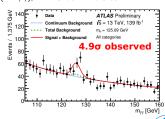
Excellent support and collaboration with the DESY-IT department

- Continuous use of NAF by all groups
 - batch system
 - local disk storage
- Introduction of GPUs [more later]
 - test-bed for state-of-the art machine learning techniques
 - Important Tier 2 grid site (ATLAS/CMS)
 - all pledges met for the next year
 - increased resources required due to LHC luminosity increase
- New 100 Gb/s link in place
 - previous WAN links via LHCONE
 (20 Gb/s) regularly saturated

More in the following talk

ATLAS and the LHC physics programme

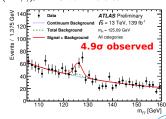
- LHC status presented by CMS this morning



ATLAS and the LHC physics programme

- LHC status presented by CMS this morning
- First releases of ATLAS full Run 2 results, many more to come

$ttH(\rightarrow \gamma \gamma)$, ATLAS-CONF-2019-004

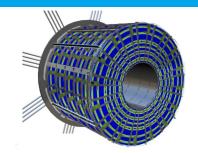


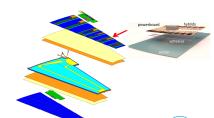
ATLAS and the LHC physics programme

- LHC status presented by CMS this morning
- First releases of ATLAS full Run 2 results, many more to come
- In parallel, on-going work on improving physics object performance and upgrade

ttH($\rightarrow \gamma \gamma$), ATLAS-CONF-2019-004

Outline

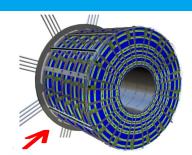

- 1 Overview of group activities
- Recent highlights from the ITk strip end-cap
- 3 Improved method to measure b-jet identification performance
- 4 Search for dark matter with b-jets
- **5** Measurement of W^+W^- production (with b-jet veto)

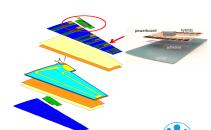


Overview of DESY upgrade activities

- 2019: Preparation of the full construction at DESY of the ITk strip end-cap
 - module building/testing (HH/ZN)
 - precise module loading on petal cores
 - petal core production, incl. bus tape co-curing and Ti pipe welding
 - installation of new robots for petal production
 - petal thermal and mechanical tests
 - end of substructure card
 - frame for full end-cap assembly, integration, transport and insertion into ATLAS
 - upgrade software
 - end-cap thermal models
 - test beam and pixel telescope

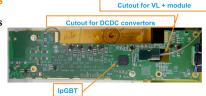
Overview of DESY upgrade activities

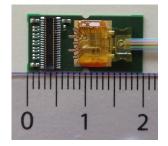

2019: Preparation of the full construction at DESY of the ITk strip end-cap


- module building/testing (HH/ZN)
- precise module loading on petal cores
- petal core production, incl. bus tape co-curing and Ti pipe welding
- installation of new robots for petal production
- petal thermal and mechanical tests
- end of substructure card
- frame for full end-cap assembly, integration, transport and insertion into ATLAS
- upgrade software
- end-cap thermal models
- test beam and pixel telescope

Significant progress in all areas! 2 highlighted today:

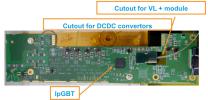
- first operation of transceiver chip (IpGBT)
- successful test of petal insertion tool

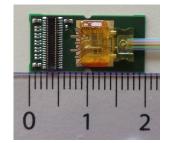




First tests with IpGBT/optoelectronics

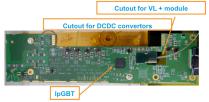
EoS: gateaway between on/off-detector components

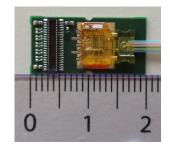




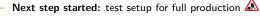
First tests with IpGBT/optoelectronics

- EoS: gateaway between on/off-detector components
- GBTx-based EoS (first prototype, old chip)
 - bit error rate tested with full data path \checkmark
 - integration with full stave prototype 🗸
- Design concept with IpGBT (final chip) ready
 - based on latest information on IpGBT and optic link (VL+)
 - electronics-mechanics integration

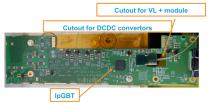

First tests with IpGBT/optoelectronics

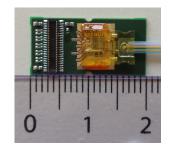

- EoS: gateaway between on/off-detector components
- GBTx-based EoS (first prototype, old chip)
 - bit error rate tested with full data path \checkmark
 - integration with full stave prototype <
- Design concept with IpGBT (final chip) ready
 - based on latest information on IpGBT and optic link (VL+)
 - electronics-mechanics integration

- 3 IpGBT chips received in April
 - communication with chip established <
 - → great success! full debugging 🖎



First tests with IpGBT/optoelectronics


- EoS: gateaway between on/off-detector components
- GBTx-based EoS (first prototype, old chip)
 - bit error rate tested with full data path \checkmark
 - integration with full stave prototype <
- Design concept with IpGBT (final chip) ready
 - based on latest information on IpGBT and optic link (VL+)
 - electronics-mechanics integration



- 3 IpGBT chips received in April
 - communication with chip established <
 - → great success! full debugging 🖎

design of special components, firmware/software

Petal insertion tool

Expansive/fragile petals, restricted space \rightarrow in-house tool

- Test of the v2 updated design
 - tilting, rotation and clamping mechanism outside of the end-cap < → more space for moving inside
 - camera monitoring position between locator and locking point <
 - overall handling improved

Tested successfully with end-cap mock-ups at **DESY and Nikhef!**

LFD + camera

Petal insertion tool

Expansive/fragile petals, restricted space \rightarrow in-house tool

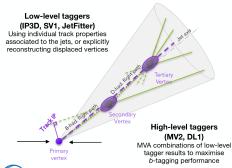
- Test of the v2 updated design
 - tilting, rotation and clamping mechanism outside of the end-cap ✓
 → more space for moving inside
 - camera monitoring position between locator and locking point ✓
 - overall handling improved
- only some fine-tuning remains for final version

Tested successfully with end-cap mock-ups at DESY and Nikhef!

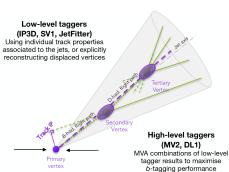
LED + camera

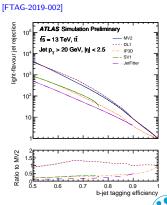
Outline

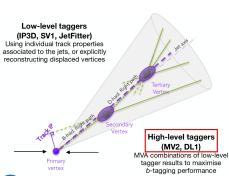
- Overview of group activities
- 2 Recent highlights from the ITk strip end-cap
- Improved method to measure b-jet identification performance
- 4 Search for dark matter with b-jets
- Measurement of W^+W^- production (with b-jet veto)

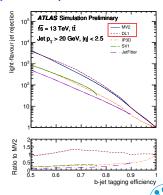


- Identification of jets originating from b quark fragmentation
 - key ingredient to many physics analyses (ex: ttH) [more on this later]
 - relies on tracking: ATLAS b-tagging/tracking workshop at DESY-HH

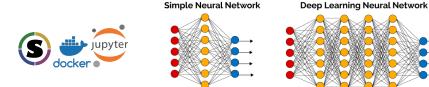

- Identification of jets originating from b quark fragmentation
 - key ingredient to many physics analyses (ex: ttH) [more on this later]
 - relies on tracking: ATLAS b-tagging/tracking workshop at DESY-HH
 - exploit b-hadron and b-quark fragmentation properties in a two-step approach




- Identification of jets originating from b quark fragmentation
 - key ingredient to many physics analyses (ex: ttH) [more on this later]
 - relies on tracking: ATLAS b-tagging/tracking workshop at DESY-HH
 - exploit b-hadron and b-quark fragmentation properties in a two-step approach

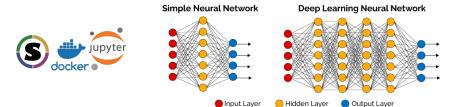


- Identification of jets originating from b quark fragmentation
 - key ingredient to many physics analyses (ex: ttH) [more on this later]
 - relies on tracking: ATLAS b-tagging/tracking workshop at DESY-HH
 - exploit b-hadron and b-quark fragmentation properties in a two-step approach


[FTAG-2019-002]

Making the best of the NAF performance

- Collaboration with IT to integrate new software technology
 - building and running of container images and "notebooks" on the NAF
 - major step in code portability (Ixplus, LHC grid) and flexibility (GPUs)
 - > > speed/performance, exploration of more complex, better tuned machine learning architectures e.g. for b-tagging algorithms


Input Laver

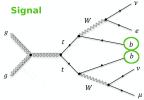
Hidden Laver

Output Laver

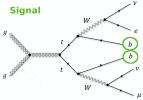
Making the best of the NAF performance

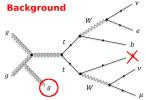
- Collaboration with IT to integrate new software technology
 - building and running of container images and "notebooks" on the NAF
 - major step in code portability (Ixplus, LHC grid) and flexibility (GPUs)
 - > > speed/performance, exploration of more complex, better tuned machine learning architectures e.g. for b-tagging algorithms

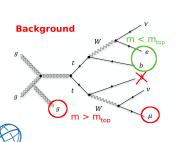
- Important toolbox for the future
 - main work tool of an ATLAS student already
 - more users expected soon, e.g. summer-students this year

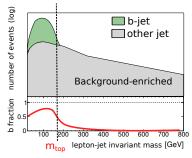

b-jet tagging efficiency in data (80.5 fb^{-1})

- Imperfect detector response and physics modeling in simulation
 - precision measurement in collision data required
 - ${}^{\blacksquare}$ pure sample of b-jets from $t \overline{t}$ events: $e \mu + {
 m exactly } 2 {
 m jets}$

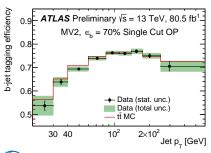

- Imperfect detector response and physics modeling in simulation
 - precision measurement in collision data required
 - ${}^{\blacksquare}$ pure sample of b-jets from $t \overline{t}$ events: $e \mu + {
 m exactly } 2 {
 m jets}$

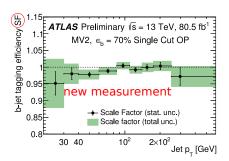

- Imperfect detector response and physics modeling in simulation
 - precision measurement in collision data required
 - ${}^{\blacksquare}$ pure sample of b-jets from $t \overline{t}$ events: $e \mu + {
 m exactly } 2 {
 m jets}$
 - main background from $t\bar{t}$ as well: extra q/g radiations + lost b-jet(s)


- Imperfect detector response and physics modeling in simulation
 - precision measurement in collision data required
 - ${}^{\blacksquare}$ pure sample of b-jets from $tar{t}$ events: $e\mu + {
 m exactly} \ 2 {
 m jets}$
 - main background from $t\bar{t}$ as well: extra q/g radiations + lost b-jet(s)

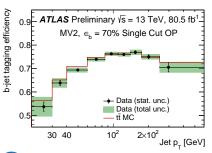


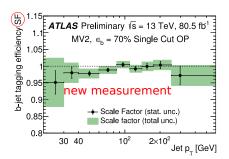
- Imperfect detector response and physics modeling in simulation
 - precision measurement in collision data required
 - ${}^{\blacksquare}$ pure sample of b-jets from $t \overline{t}$ events: | e μ + exactly 2 jets
 - main background from $t\bar{t}$ as well: extra q/g radiations + lost b-jet(s)
- New measurement method developed at DESY [FTAG-2019-002]
 - introduction of background (i.e. q/g radiation) enriched regions



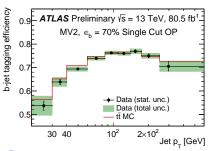

- Global fit of signal and background enriched regions
 - %-level constraints on sample b-jet composition before tagging
 - b-jet tagging efficiency measurement less dependent on $t\bar{t}$ modeling

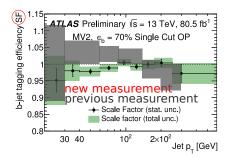
- Global fit of signal and background enriched regions
 - %-level constraints on sample b-jet composition before tagging
 - ${}^{\blacksquare}$ b-jet tagging efficiency measurement less dependent on $t \bar{t}$ modeling





- Global fit of signal and background enriched regions
 - %-level constraints on sample b-jet composition before tagging
 - b-jet tagging efficiency measurement less dependent on $t\bar{t}$ modeling
- precision improved by a factor of 2. Paper release imminent.





- Global fit of signal and background enriched regions
 - %-level constraints on sample b-jet composition before tagging
 - b-jet tagging efficiency measurement less dependent on $t\bar{t}$ modeling
- precision improved by a factor of 2. Paper release imminent.

Outline

- Overview of group activities
- 2 Recent highlights from the ITk strip end-cap
- 3 Improved method to measure b-jet identification performance
- Search for dark matter with b-jets
- **5** Measurement of W^+W^- production (with b-jet veto)

- Many dark matter (DM) models involve an extended Higgs sector

- Many dark matter (DM) models involve an extended Higgs sector
- Higgs-like mediator \rightarrow production in association with $t\bar{t}$: $t\bar{t}+{\sf E}_{\rm T}^{\rm miss}$ search JHEP 06 (2018) 108 Eur. Phys. J. C78 (2018) 18

- Many dark matter (DM) models involve an extended Higgs sector
- Higgs-like mediator \rightarrow production in association with $t\bar{t}$: $t\bar{t}$ + $E_{\rm T}^{\rm miss}$ search

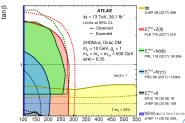
 JHEP 06 (2018) 108 Eur. Phys. J. C78 (2018) 18 Eur. Phys. J. C78 (2018) 565 JHEP 10 (2018) 180

- various complementary channels with (and without) b-jets:
 - $t\bar{t}$ resonances, 4-tops, ...
 - $X + E_{T}^{miss}$ (H, V, ...), VBF, ...

- Many dark matter (DM) models involve an extended Higgs sector
- Higgs-like mediator \rightarrow production in association with $t\bar{t}$: $t\bar{t}$ + $\mathsf{E}_{\mathrm{T}}^{\mathrm{miss}}$ search

 JHEP 06 (2018) 108 Eur. Phys. J. C78 (2018) 18 Eur. Phys. J. C78 (2018) 565 JHEP 10 (2018) 180

- various complementary channels with (and without) b-jets:
 - $t\bar{t}$ resonances, 4-tops, ...
 - ${}^{\scriptscriptstyle{\blacksquare}}$ $X + \mathsf{E}_{\mathrm{T}}^{\mathrm{miss}}$ $(H, V, ...), \, \mathsf{VBF}, \, ...$
- long-term involvement of DESY to draw a consistent picture of LHC sensitivity

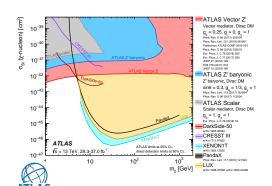


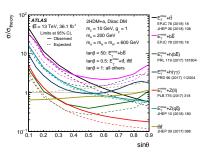
- Many dark matter (DM) models involve an extended Higgs sector
- Higgs-like mediator \rightarrow production in association with $t\bar{t}$: $t\bar{t}$ + $E_{\rm T}^{\rm miss}$ search

 JHEP **06** (2018) 108 Eur. Phys. J. C**78** (2018) 18 Eur. Phys. J. C**78** (2018) 565 JHEP **10** (2018) 180

 $\begin{array}{c} g \\ \text{QROD} \\ \hline \\ g \\ \text{QROD} \\ \hline \\ \phi/a \\ \hline \\ \chi/b/\bar{t} \\ \hline \\ \bar{\chi}/\bar{b}/\bar{t} \\ \hline \\ g \\ \hline \end{array}$

- various complementary channels with (and without) b-jets:
 - $t\bar{t}$ resonances, 4-tops, ...
 - $X + E_{\mathrm{T}}^{\mathrm{miss}} (H, V, ...), VBF, ...$
- long-term involvement of DESY to draw a consistent picture of LHC sensitivity
- Next generation spin-0 models : 2 Higgs Doublet + pseudoscalar
 CERN-LPCC-2018-02
- minimal SM extension beyond simplified model
- more consistent and richer phenomenology
- ex: resonantly enhanced mono-H/Z production

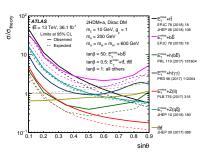



m, [GeV]

Gathering all the pieces together

arXiv:1903.01400 (2019), BMBF newsflash (May 2019)

- Comprehensive summary of mediator-based DM searches at 36.1 fb⁻¹
 - $^{ t t t}\sim$ 20 ATLAS search analyses, including first limits on 2HDM + a
 - DESY strongly involved in 6 analyses and coordination
 - inclusion of first collider limits on scalar dark energy (effective model)



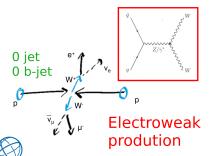
Gathering all the pieces together

arXiv:1903.01400 (2019), BMBF newsflash (May 2019)

- Comprehensive summary of mediator-based DM searches at 36.1 fb⁻¹
 - ullet \sim 20 ATLAS search analyses, including first limits on 2HDM + a
 - DESY strongly involved in 6 analyses and coordination
 - inclusion of first collider limits on scalar dark energy (effective model)
 - lacktriangle high potential of stat.-limited channel for full Run 2 (e.g. $tar{t}+\mathsf{E}_{\mathrm{T}}^{\mathrm{miss}})$

Outline

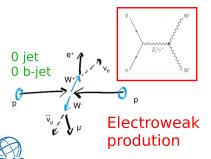
- 1 Overview of group activities
- 2 Recent highlights from the ITk strip end-cap
- Improved method to measure b-jet identification performance
- 4 Search for dark matter with b-jets
- **I** Measurement of W^+W^- production (with b-jet veto)

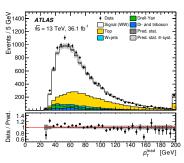


Differential W^+W^- xsec measurement

arXiv:1905.04242 (2019), coordinated by DESY

- Precision measurement of the standard model at 13 TeV (36.1 fb⁻¹)
 - lacktriangledown main challenge o top background: $ig| e\mu + {
 m exactly} \ 0 \ ({
 m b-}){
 m jets} ig|$

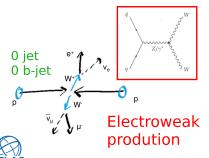


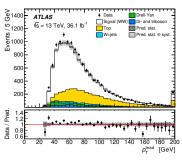


Differential W^+W^- xsec measurement

arXiv:1905.04242 (2019), coordinated by DESY

- Precision measurement of the standard model at 13 TeV (36.1 fb⁻¹)
 - main challenge \rightarrow **top background:** $e\mu + \text{exactly } 0 \text{ (b-)jets}$
 - \sim 65% purity achieved, main background: tops with untagged or lost *b*-jets

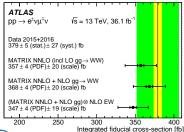




Differential W^+W^- xsec measurement

arXiv:1905.04242 (2019), coordinated by DESY

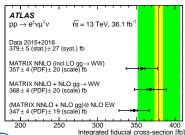
- Precision measurement of the standard model at 13 TeV (36.1 fb⁻¹)
 - lacktriangledown main challenge o top background: $e\mu$ + exactly 0 (b-)jets
 - \sim 65% purity achieved, main background: tops with untagged or lost *b*-jets
- Dominant uncertainty (\sim 5%): *b*-jet identification and jet calibration
 - direct benefit from new b-jet tagging efficiency measurement for full Run 2

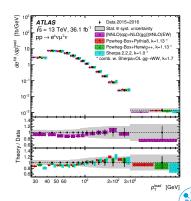


Selection of results (36.1 fb⁻¹)

- Overall good agreement with NNLO QCD predictions
 - getting closer to probe NLO QCD gg production and EW corrections

Fiducial cross section:
$$\sigma = \frac{N^{data} - N^{bkg}}{L \cdot C_{ww}}$$

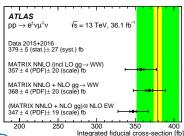


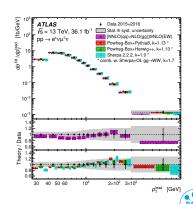


Selection of results (36.1 fb⁻¹)

- Overall good agreement with NNLO QCD predictions
 - getting closer to probe NLO QCD gg production and EW corrections
 - best sensitivity to EW corrections at high p_T^{lep} (due to W polarisation)
 - used to set limits on anomalous triple gauge coupling

Fiducial cross section:
$$\sigma = \frac{N^{data} - N^{bkg}}{L \cdot C_{ww}}$$





Selection of results (36.1 fb⁻¹)

- Overall good agreement with NNLO QCD predictions
 - getting closer to probe NLO QCD gg production and EW corrections
 - best sensitivity to EW corrections at high p_T^{lep} (due to W polarisation)
 - used to set limits on anomalous triple gauge coupling
 - good prospects for full Run 2 analysis!

Fiducial cross section:
$$\sigma = \frac{N^{data} - N^{bkg}}{L \cdot C_{ww}}$$

Outlook

other activities

important role of DESY in detector operation, upgrade projects, computing, simulation, measurements and searches for new phenomena

 \rightarrow most of them not discussed today

Outlook

other activities

important role of DESY in detector operation, upgrade projects, computing, simulation, measurements and searches for new phenomena

- ightarrow most of them not discussed today
- About 20 journal papers and 15 preliminary publications with a strong DESY contribution released since the last PRC

Outlook

other activities

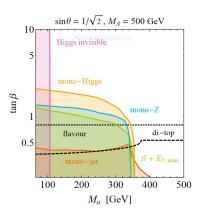
important role of DESY in detector operation, upgrade projects, computing, simulation, measurements and searches for new phenomena

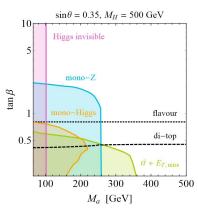
- \rightarrow most of them not discussed today
- About 20 journal papers and 15 preliminary publications with a strong DESY contribution released since the last PRC
- Highlights presented today illustrating:
 - Continuous, fruitful collaboration with on-site/off-site theorists and DESY IT
 - Excellent progress toward the construction of an ITk strip end-cap for the HL-LHC
 - Strong DESY presence in a wide array of performance measurements to maximize the physics output of the Run 2 LHC data
 - DESY leading role in on-going physics measurements and searches connected with this expertise

ATLAS Highlights.

Additional material

Matthias Saimpert


87th PRC, ATLAS highlights 21 May 2019



2 Higgs Doublet + pseudoscalar Model

JHEP 1705 (2017)

