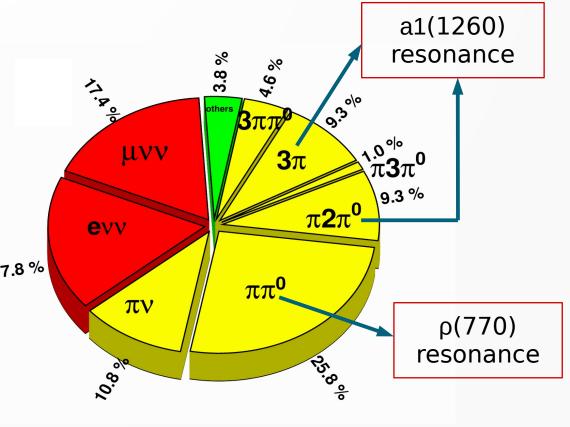


Measurement of the misidentification rate of $e \rightarrow \tau_h$

Lorenzo Giannessi¹

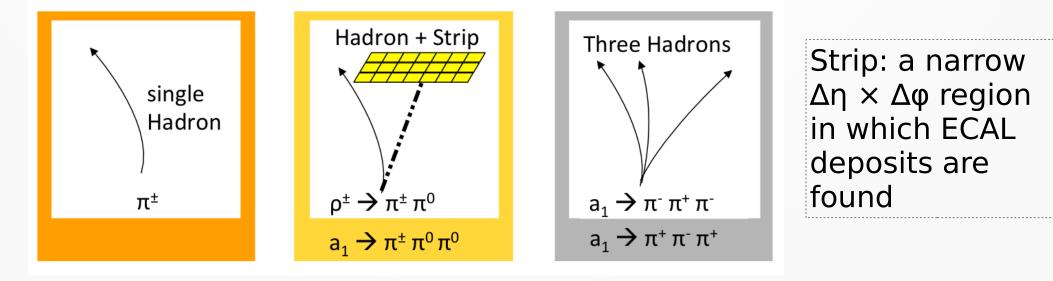
Supervisor: Andrea Cardini²


¹Università Degli Studi di Firenze, ²DESY

Motivation

- $H \rightarrow \tau \tau$ analysis: Higgs coupling with leptons and BSM
- τ leptons decay before reaching CMS detector: $\tau_{\tau} = 2.9 \times 10^{-13} s$ how is it detected?
- Need to use its decay modes
 - ~35% Leptonic

~65% Hadronic


Decay mode	Resonance	Branching ratio $(\%)$	
$h^- \nu_{\tau}$		11.5	
$h^-\pi^0 u_ au$	ho(770)	25.9	17
$h^-\pi^0\pi^0 u_ au$	$a_1(1260)$	9.5	
$h^-h^+h^- u_{ au}$	$a_1(1260)$	9.8	
$h^-h^+h^-\pi^0 u_ au$		4.8	
Other		3.3	

Lorenzo Giannessi: e→τ_h Fake Rates

The hadronic Tau reconstruction

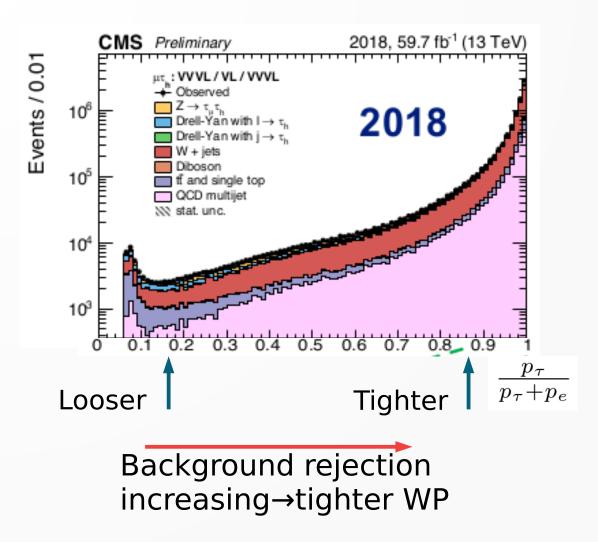
- The hadron-plus-strip (HPS) algorithm:
 - Charged hadron ("prong"): track in the tracker and ECAL/HCAL deposit
 - Neutral hadron (π_0): produces a "*strip*" in the ECAL by $\gamma\gamma$ decay
- Various categories \rightarrow search for matching with one of the τ decay modes

September 2, 2019

Lorenzo Giannessi: e→τ_h Fake Rates

Why this measurement?

- Electron can fake the τ_h signature:
 - Electron itself mimicks prong (charged hadron)
 - Bremsstrahlung photons mimick π^0 photons (i.e. a strip)


 $\tau^-
ightarrow h^- \pi^0 \nu_{ au}
ightarrow$ 1 strip + 1 prong: HPS matching

 Montecarlo simulations have to model the fake rate in order to correctly reproduce data

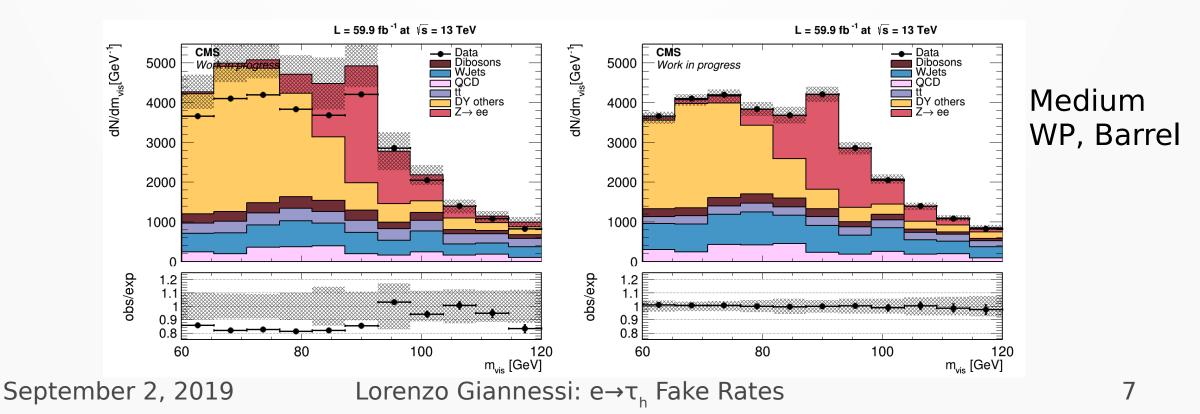
 \rightarrow correction scale factor measured

The DeepTau discriminator

- Deep neural network used to discriminate hadronic taus from mimicking objects
- Used the one against electrons
- Working points are defined based on efficiency

The TAG & PROBE method

- We want events in which two such particles can be found:
 - A well identified and isolated electron, matching the trigger object
 → the TAG
 - A particle which has matched one of the decay modes from HPS: that is a τ_h which has passed "loose preselection criteria" \rightarrow the PROBE
- If we look only at Z→ee events we are sure that the Probe is indeed a fake.


So we can calculate the PRE-FIT fake rate ϵ as the efficiency of the anti-electron discriminator:

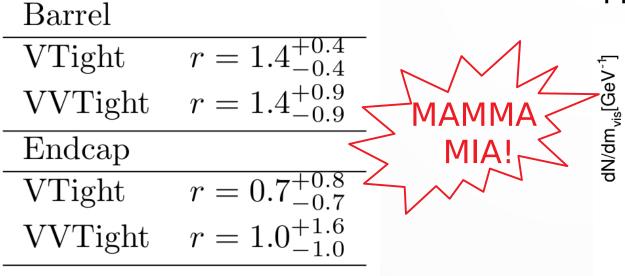
$$\epsilon = \frac{N_{Z \to ee}^{pass}}{N_{Z \to ee}^{pass} + N_{Z \to ee}^{fail}}$$

T&P: maximum likelihood fit

Maximum likelihood fit: parameter of interest (POI) $r = \mathcal{E}'/\mathcal{E}$ (it's the **scale factor**)

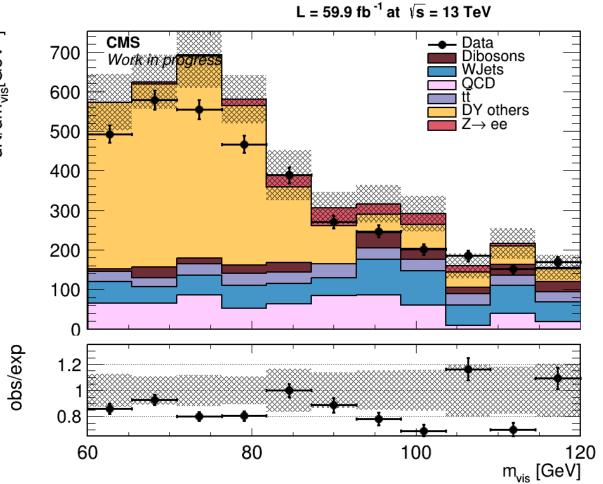
Fit is performed on visible mass, 60 GeV - 120 GeV

Results


BARREL ($ \eta < 1.460$)	pre-fit FR	post-fit FR	scale factor	
VVLoose	$(4.5 \pm 0.5) \times 10^{-2}$	$(5.8 \pm 0.7) \times 10^{-2}$	$r = 1.280^{+0.014}_{-0.015}$	
VLoose	$(2.4 \pm 0.3) \times 10^{-2}$	$(3.3 \pm 0.4) \times 10^{-2}$	$r = 1.368^{+0.029}_{-0.033}$	
Loose	$(1.0 \pm 0.1) \times 10^{-2}$	$(1.31 \pm 0.18) \times 10^{-2}$	$r = 1.31^{+0.05}_{-0.05}$	
Medium	$(3.9 \pm 0.4) \times 10^{-3}$	$(5.0 \pm 0.9) \times 10^{-3}$	$r = 1.35^{+0.09}_{-0.09}$	
Tight	$(1.14 \pm 0.13) \times 10^{-3}$	$(1.5 \pm 0.4) \times 10^{-3}$	$r = 1.32^{+0.22}_{-0.22}$	
VTight	$(4.8 \pm 0.5) \times 10^{-4}$	$(7\pm3) imes10^{-4}$	$r = 1.4^{+0.4}_{-0.4}$	1
VVTight	$(2\pm0.2)\times10^{-4}$	$(2.1 \pm 0.7) \times 10^{-4}$	$r = 1.4^{+0.9}_{-0.9}$	ſ
ENDCAP ($ \eta > 1.558$)	pre-fit FR	post-fit FR	scale factor	Ctatistic is
VVLoose	$(8.7 \pm 0.9) \times 10^{-2}$	$(1.14 \pm 0.13) \times 10^{-1}$	$r = 1.318^{+0.016}_{-0.017}$	Statistic is
VLoose	$(4.4 \pm 0.5) \times 10^{-2}$	$(5.8 \pm 0.8) \times 10^{-2}$	$r = 1.314^{+0.033}_{-0.039}$	very low:
Loose	$(1.9 \pm 0.2) \times 10^{-2}$	$(2.7 \pm 0.5) \times 10^{-2}$	$r = 1.38^{+0.07}_{-0.08}$	Large
Medium	$(9\pm1) imes10^{-3}$	$(1.21\pm 0.12)\times 10^{-2}$	$r = 1.35_{-0.12}^{+0.13}$	uncertainty
Tight	$(2.7\pm 0.3) imes 10^{-3}$	$(4\pm1)\times10^{-3}$	$r = 1.51^{+0.27}_{-0.29}$	
VTight	$(9.3 \pm 1.1) \times 10^{-4}$	$(6.5\pm 6.5) imes 10^{-4}$	$r = 0.7^{+0.8}_{-0.7}$	1
VVTight	$(4.2 \pm 0.5) \times 10^{-4}$	$(4.2 \pm 4.2) \times 10^{-4}$	$r = 1.0^{+1.6}_{-1.0}$	∫

First step for CMS recommendation on scale factors for $e \rightarrow \tau_h$ fake rates

September 2, 2019


Lorenzo Giannessi: e→τ_h Fake Rates

Why this result?

 Low number of Z → ee events so that r doesn't have impact on the fit

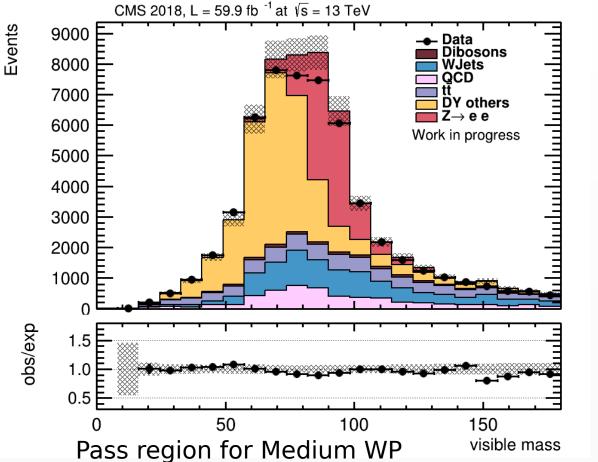
Pre-fit plot for VVTight WP, ENDCAP

Conclusions

- First look at DeepTau discriminator and relative fake rates
- Scale factor measured for future CMS recommendation (at least for WPs below VTight).
- For tightest WPs: DeepTau discriminator practically erases $Z \rightarrow$ ee contribution

Thank you all for paying attention!

And to the HiggsTauTau group for basically everything


September 2, 2019

Backup slides

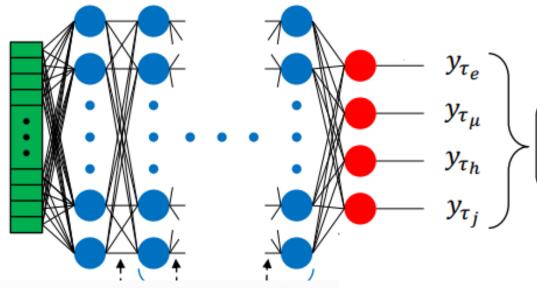
September 2, 2019

The TAG & PROBE method: pass/fail regions

• For each WP the samples undergo the discriminator:

 Fake rate calculated as efficiency of anti-electron discriminator:

$$\epsilon = \frac{N_{Z \rightarrow ee}^{pass}}{N_{Z \rightarrow ee}^{pass} + N_{Z \rightarrow ee}^{fail}}$$


September 2, 2019

Cuts

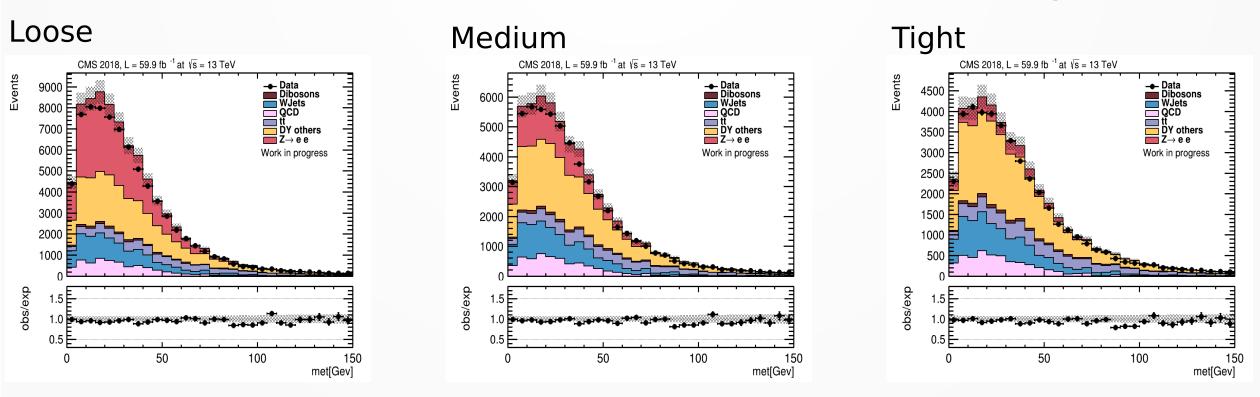
Cuts: TAG transverse momentum > 35GeV PROBE transverse momentum >20GeV TAG $|\eta| < 2.3$ PROBE $|\eta| < 2.1$ PROBE has to pass Loose against Muon, Tight against Jets Tight requirement on electron isolation: " $I_e < 0.1$ " Transverse mass <35GeV $\Delta R > 0.5$ between e and τ_h

Discriminators from DNN

- We have a DNN with 4 outputs:
 - TRUE τ_{h} (y_{\tau h})
 - Muon ($y_{\tau\mu}$)
 - Jet ($y_{\tau J}$)
 - Electron ($y_{\tau e}$)
- Output values run from 0 to 1, telling how "confident" you can be that the particle under test is that type of object.
- With (1) you obtain a test statistic that discriminate τ from e (and so on for other sources of contamination)

(1)

Working points and efficiencies


WP Medium VTight Tight Loose VLoose VVTight. VVLoose 95%Efficiency 60%70%80% 90%98%99%

DNN efficiency on τ_h: number of events accepted by the discriminator over total number of events

September 2, 2019

Various Working points


• Increasing WP of against electron discriminator: less contribution from $Z \rightarrow ee$: fake rate decreasing

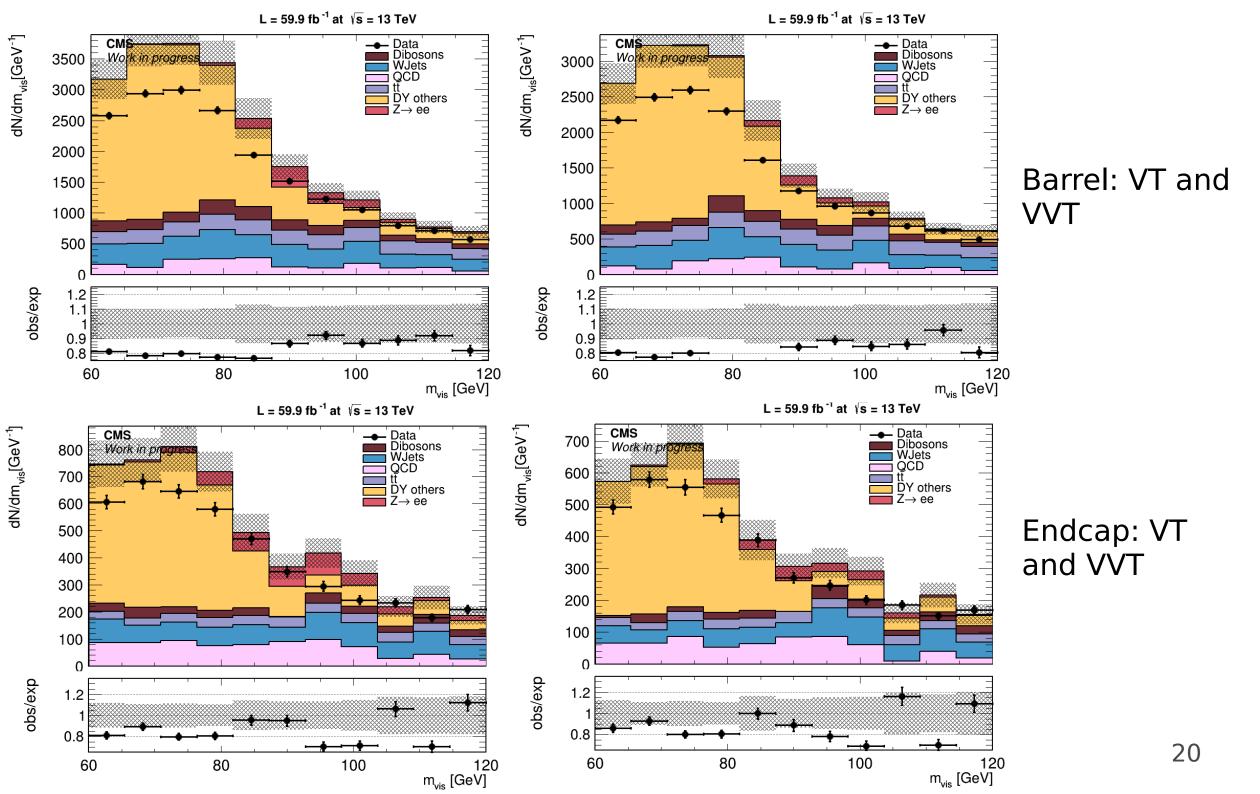
Variable shown: missing transverse energy (PASS REGION ONLY!)

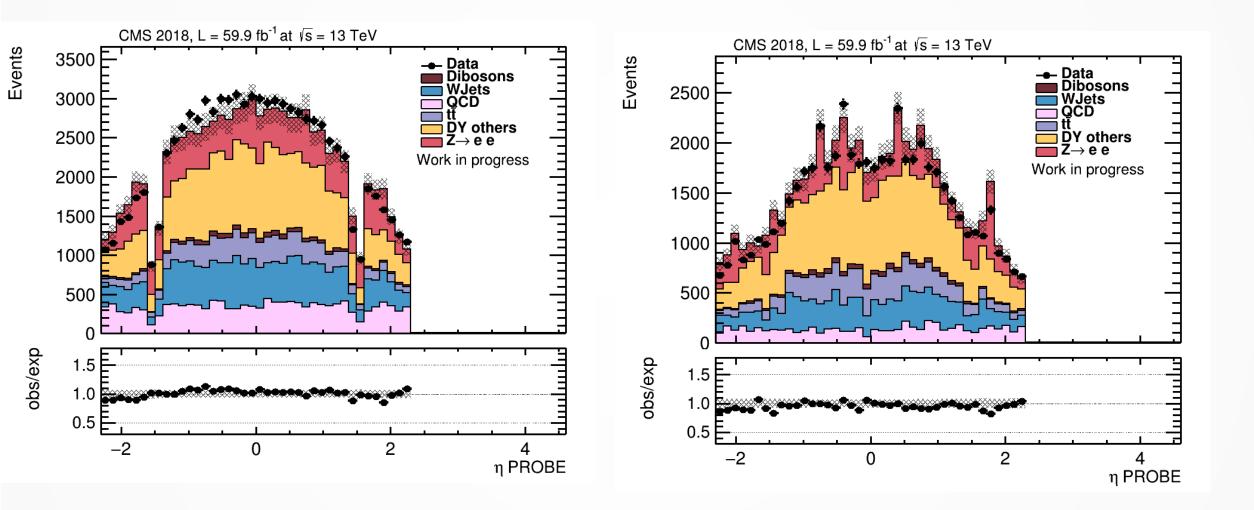
September 2, 2019

The (old) MVA discriminator

VISIBLE MASS: Loose WP against electron. MVA vs. DeepTau

MISSING TRANSVERSE ENERGY: Loose WP against electron. MVA vs. DeepTau


Nuisances (systematic uncertainties)


SHAPE parameters / uncertainties

Uncertainty	Affected processes	Pre-fit value
Electron energy scale	$Z \to ee$	1% B, 2.5% E 3
τ_h energy scale	$Z \to \tau \tau$	1.5%
$e \to \tau_h$ energy scale	$Z \to ee$	3%
Visible mass resolution	$Z \to ee$	20%

NORMALIZATION parameters / uncertainties

Uncertainty	Affected processes	Pre-fit value
Integrated luminosity	All	2.6%
Electron isolation/identification/trigger	All	2%
Tau identification	All	3%
$t\bar{t}$ cross section	$t \bar{t}$	10%
Diboson and single-top cross section	Diboson	10%
W+Jets normalization	W+Jets	20%
QCD normalization	QCD	20%
DY normalization	DY Others	3%
$Z \rightarrow ee$ normalization	$Z \to ee$	6%

September 2, 2019

Try to 'improve' results

- Change binning? (not so much hope on that)
- Applying JETS-fake factors on W+Jets and QCD on DeepTau: data-driven estimation (notice bin-by-bin fluctuations for these processes)
- Abandon T&P method, fit only in pass region

Try to 'improve' results

Use Medium against Jets for more statistic

Tight

VTight

VVTight

	BARREL $(\eta < 1.$	460)	Medium WP SF	Tigh	nt WP SF		
	VVLoose		$r = 1.175^{+0.013}_{-0.014}$	r = 1	$.280^{+0.014}_{-0.015}$	1	
	VLoose		$r = 1.305^{+0.020}_{-0.021}$	r = 1	$.368^{+0.029}_{-0.033}$		
	Loose	Loose		$r = 1.31^{+0.05}_{-0.05}$			
	Medium		$r = 1.30^{+0.08}_{-0.08}$	<i>r</i> =	$1.35^{+0.09}_{-0.09}$		
	Tight		$r = 1.33^{+0.16}_{-0.15}$	$r = 1.32^{+0.16}_{-0.15}$ $r = 1.32^{+0.22}_{-0.22}$			
	VTight		$r = 1.53^{+0.30}_{-0.29}$	$r = 1.4^{+0.4}_{-0.4}$			
	VVTight		$r = 2.2^{+0.7}_{-0.7}$	$r = 1.4^{+0.9}_{-0.9}$			
						,	
EN	DCAP ($ \eta > 1.558$)		Medium WP SF		Tight WI	P SF	
	VVLoose		$r = 1.137^{+0.013}_{-0.014}$		r = 1.318	-0.016 -0.017	
	VLoose		$r = 1.084^{+0.023}_{-0.024}$	$0.84^{+0.023}_{-0.024}$		$r = 1.314^{+0.033}_{-0.039}$	
	Loose		$r = 1.08^{+0.05}_{-0.05}$		r = 1.38 - 1.38	-0.07 -0.08	
	Medium		$r = 0.98^{+0.09}_{-0.09}$		$r = 1.35^{+}$	-0.13 -0.12	

 $r = 1.51^{+0.27}_{-0.29}$

 $r = 0.7^{+0.8}_{-0.7}$

 $r = 1.0^{+1.6}_{-1.0}$

Doesn't seem to help that much

September 2, 2019

Lorenzo Giannessi: $e \rightarrow \tau_h$ Fake Rates

 $r = 0.72^{+0.23}_{-0.25}$

r = 0 (fit does not converge)

r = 0 (fit does not converge)