Improving the assembly and metrology of the PS Modules for the CMS Phase-2 Tracker

Speaker: Marta Lisowska Wroclaw University of Science and Technology Supervisor: Marino Missiroli DESY

Hamburg, 2nd of September 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Politechnika Wrocławska

Outline

01 Introduction

- The CMS Tracker
- The PS Module

02 PS Module assembly

- Baseplate+kapton gluing
- Baseplate+sensors gluing
- 03 PS Module metrology measurements
- Misalignment measurements
- 04 Summary

Introduction

Introduction

The CMS Tracker and the HL-LHC

- The CMS Tracker:
 - → innermost sub-detector of CMS;
 - → thousands of silicon sensors used to reconstruct the trajectories of charged particles from LHC collisions.
- The future: High-Luminosity LHC, 2026-2038:
 - → higher instantaneous luminosity (up to $5.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$);
 - → unprecedented levels of integrated luminosity (up to 4000 fb⁻¹).
- For the HL-LHC, CMS will install a completely new tracking detector **the CMS Phase-2 Tracker**:
 - → increased radiation tolerance, granularity and η-coverage; input to the Level-1 trigger;
 - → the DESY Tracker Upgrade group contributes to construct the new Outer Tracker.

Pic. 1. A transverse slice through one segment of the CMS detector.

Pic. 2. A sketch of one quarter of the CMS Phase-2 Outer Tracker.

Introduction

The PS Module

- The CMS Phase-2 Outer Tracker: two types of modules:
 - \rightarrow Pixel-Strip (PS) Modules and Strip-Strip (2S) Modules.
- **The PS Module** most important components are **2 silicon sensors** (dim.: 10 x 5 cm², thick.: 200 um) in a sandwich configuration.
- Stacked-sensors design will allow to have local reconstruction of high-p_τ tracks and use this information in the Level-1 trigger:
 - → Correlation of hits requires very precise assembly of the sensors:
 PSp-PSs max-allowed rot. misalignment < 800 urad (0.045 deg).
- The PS Module assembly is one of the activities of the DESY Tracker Upgrade group:
 - \rightarrow DESY will produce more than 1000 PS Modules.
 - → Currently developing assembly procedure using following parts: baseplate, kapton, 2 glasses (instead of silicon sensors), spacers.

Pic. 1. Momentum measurement concept.

Pic. 2. The PS Module design.

PS Module assembly

Baseplate+kapton gluing

Motivation, goal and method

- Motivation:
 - → The PS Module will be attached to a baseplate made of carbon fiber reinforced polymer in order to support the structure.
 - → A kapton foil (thick.: 25um) on the baseplate is necessary to electrically isolate the baseplate from the PS-p sensor.
- Goal:
 - → Development of a procedure to glue kapton foil to baseplate (and perform this step in the reproducible way).
- Method: Program the automatic dispenser to dispense glue on baseplate.
 - \rightarrow Development of a program to operate the automatic dispenser.
 - \rightarrow Tested different patterns to dispense the glue (Polytec EP 601 LV).
 - \rightarrow Best configuration: one 7,5 cm line in the middle, 30-40 mg of glue.

Pic. 1. The PS Module design.

Pic. 2. The automatic dispenser.

Baseplate+kapton gluing

Results

- Two important factors to account:
 - L. Modification of the routine parameters dispensing velocity wrt time passed after mixing the glue:
 - \rightarrow Goal: constant amount of the glue.
 - → Red: constant velocity;
 Blue: adjusted velocity.
 - \rightarrow Found rule to adjust dispensing velocity wrt time.
 - 2. Method of manually squeegeeing (after dispensing).
 - \rightarrow Improper squeegeeing can lead to air bubbles.
- Results:
 - \rightarrow Development of the procedure to dispense the glue.
 - → Glued 7 prototypes using different methods (last 3 without air bubbles).
- **Next step:** Improve the positioning of kapton on baseplate (currently done manually).

Pic. 1. Glued baseplates (5 of 7) with kapton foil on top.

Baseplate+sensors gluing

Gluing baseplate to glass+glass sandwich

- Motivation:
 - → Development of a procedure to glue baseplate to sensors-sandwich obtaining thin glue layer with full coverage.
- **Method**: development of a routine with the automatic dispenser:
 - → Goal: thickness of glue layer: \sim 25 um → amount of glue: \sim 100 mg.
 - \rightarrow Best configuration: one 8,5 cm line in the middle + 4 dots in the corners.

Results:

- → Successfully applied the procedure in assembly of last 2 prototypes (1 with 200 um thickness glasses, 1 with 700 um thickness glasses).
- → Good coverage of the glue layer (only few small air bubbles between baseplate and glass).
- Next step: More testing, measurement of the thickness of the glue layer.

Pic. 1. Assembled PS Module.

Baseplate+sensors gluing

Gluing baseplate to glass+glass sandwich

 Pic. 1. The assembly robot.
 Pic. 2. Kapton+baseplate.
 Pic. 3. Gluing the parts together.

 DESY. | Improving the assembly and metrology of the PS Modules for the CMS Phase-2 Tracker | Marta Lisowska | 2nd of September 2019 |

Pic. 4. Assembled PS Module.

PS Module metrology measurements

PS Module metrology measurements

Measurements of rotational misalignment of PS sensors

- Motivation:
 - Verify if components of the PS Module prototypes are assembled well.
- Measurements of the markers:
 - → of all 8 existing modules using a microscope;
 - → of 2 modules using SmartScope (to compare to microscope data).
- Development of a program to analyze microscope data (python, ROOT).
- Results:
 - → 7 out of 8 prototypes have rot. misalignment within specifications (< 800 urad).
- The procedure and tools can be applied to new PS Modules in the future.

Pic. 1. Misalignment concept.

ptype Pic. 2. The microscope in 25c.

Summary

Summary

PS module assembly

- Developed the procedures to perform 2 steps of PS Modules assembly: baseplate+kapton and baseplate+sensors gluing.
- Successfully applied the procedures in assembly of last 2 prototypes (1 with 200 um thickness glasses, 1 with 700 um thickness glasses).
- Good coverage of the glue layer (only few small air bubbles between baseplate and glass).

Metrology measurements

- Developed the procedure to analyze microscope data.
- 7 out of 8 prototypes have rot. misalignment within specifications (< 800 urad).

Next steps

- Improve the positioning of kapton on baseplate (currently done manually).
- Measurement of the thickness of the glue layer between baseplate and sensors-sandwich.
- Improve the metrology tools by adding additional features.

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Marta Lisowska DESY CMS group marta.lisowska@desy.de +48 695 213 603

Back-up

Gluing kapton to a baseplate Results

Test #1

- All: 6 cm line in the center.
- Bp3: 5 min; 1.3 mm/s; 43 mg.
- Bp4: 45 min; 1.1 mm/s; 43 mg.
- Bp5: 80 min; 0.9 mm/s; 46 mg.
- All: different methods of squeezing; by the use of force.
- All: clearly visible air bubbles.

Test #2

- Both: 7.5 cm line in the center.
- Bp3: 27 min; 1.3 mm/s; 43 mg; squeezing by the use of force.
- Bp4: 72 min; 1.3 mm/s; 39 mg; squeezing without using force.
- Bp3: clearly visible air bubbles.
- Bp4: no bubbles, looks properly.

Test #3

- Both: 7.5 cm line in the center
- Bp6: 15 min; 1.3 mm/s; 62 mg; squeezing without using force.
- Bp7: 120 min; 0.9 mm/s; 72 mg; squeezing without using force.
- Both: no bubbles, look the best in comparison to the previous tests.

Metrology measurements

Both glasses' marker's long/middle/short length

- Goal: Additional measurements to calculate the dimensions of the markers and distances between them.
- Measurement of the markers' dimensions of the 7 existing prototypes.
- Markers' design lengths: long \rightarrow 700 um; medium \rightarrow 500 um; short \rightarrow 200 um.

Conclusion: All markers' dimensions are similar for each measured prototype and they are in good agreement with markers' designs.

DESY. | Improving the assembly and metrology of the PS Modules for the CMS Phase-2 Tracker | Marta Lisowska | 2nd of September 2019 |

Metrology measurements

Rectangularity – quality of the markers

Final results for the microscope:

Number of the prototype	Mean angle [degrees]	Std deviation [degrees]
1.	90.000	0.008
2.	90.000	0.012
3.	90.001	0.010
4.	89.999	0.010
5.	90.000	0.008
6.	89.999	0.008
7.	90.000	0.009

Final results for the smartscope:

Number of the prototype	Mean angle [degrees]	Std deviation [degrees]
5.	90.000	0.003
6.	90.000	0.005

Conclusion: all the markers are positioned well.

DESY. | Improving the assembly and metrology of the PS Modules for the CMS Phase-2 Tracker | Marta Lisowska | 2nd of September 2019 |

Histogram of rectangularity

