Executive summary on ELADs

Towards the optimal position resolution

<u>Hendrik Jansen,</u> Simon Spannagel, Anastasiia Velyka

DSF project: Development of an enhanced lateral drift sensor

Project information

PI(s) Hendrik Jansen (DESY/FH/CMS)

Role Inventor, PI, supervisor

Starting date 01.03.2017

Position resolution revised

Free charges follow field lines \rightarrow Exploit Maxwell's 1st eq.

Concept of ELAD sensors

p-n-p (or n-p-n) structure creates lateral electric field

- \rightarrow Charges drift towards unit cell boundary
- \rightarrow Diffusion enables 'crossing of boundary'

(2016)eding 42 oce ÒÓ Datent granted Jansen С С g Т

No one has done this before

... can we do it?

Goal: Produce a functional prototype

- Extensive device (static + transient) simulation →
 Find 'good' parameters for an ELAD sensor
- **Detector simulation** for performance benchmarking

 \rightarrow AllPix squared

- Process simulations to study process features
 - \rightarrow alternate implantation and epitaxial growth
- Develop process for bulk engineering
 → Test structures, full wafers
- Standard read-out implants and thinning
- Flip chipping with TimePix3 ASIC
- Testbeam and lab characterisation at DESY/CERN

TCAD simulations

Buried implants create lateral electric field

Scan charge sharing a.f.o. MIP position

- \rightarrow ELAD design allows to tune charge sharing
- \rightarrow No charge loss (no low-field areas)
- \rightarrow Close to theoretical optimum

Total electric field

Detector simulation – AllPix²

Study impact of deep implants on spatial resolution \rightarrow Final step of the optimisation scheme

AllPix²: generic detector simulation framework

- \rightarrow Monte Carlo particles from Geant4
- \rightarrow Charge deposition
- \rightarrow Charge drift/diffusion (import TCAD E-field)
- \rightarrow Digitizer

Result - Large CS2 region - Improvement: ~2.4 vs bin. res.

Process development / Project status

Process not available, started R&D at ISE, Freiburg

 \rightarrow After 1y, ISE announced to not be able to pursue process R&D

Consultation with FMD (`Forschungsfabrik Mikroelektronik Deutschland')

- \rightarrow Network of Fraunhofer Institutes for microelectronics
- \rightarrow Signed contract beginning of June
 - \rightarrow Process development on-going

Expected result

- \rightarrow "Buried implant process"
- \rightarrow 200 mm wafer
- → Total price ~40k for 25 wafers with complete ELAD structure (3 layers)

Conclusion

- Technologically challenging project (no one tried this before in HEP)
- Try to reach theoretical optimum of position resolution
- Interesting technology for future HEP detectors reached RMS residual of 6.5 um @ 55 um pitch
- Bulk engineering opens new possibilities in sensor design

Backup

Process development

FMD (`Forschungsfabrik Mikroelektronik Deutschland')

- \rightarrow Network of Fraunhofer Institutes involved in microelectronics
- \rightarrow Very open to R&D projects

Received contract for 'pre-studies', already signed

- 200 mm wafer, p-type, 5kOhmcm
- Implant unstructured p(n) on p-substrate through oxide
- RTA or oven annealing
- intrinsic EPI (slightly p), 15 um
- oven for temperature budget mimicking
- SRP and SIMS for depth analysis
- → Allows understanding of buried implants and qualification for possible ELAD run

\rightarrow Results expected in 6 to 8 weeks

Grand comparison

D

allpix squared

DESY. | ELAD sensors | Jansen, Hendrik |

n-ELAD, CP2, 3.0e15, 100 V, 50 um, LT

corr. res y [µm]

 $[\]rightarrow$ Next step: include also 50 μ m

TCAD simulations - Geometry

- deep p- and n-implants deep in the sensor bulk
- first and second layer epitaxial part
- TimePix3 footprint squared pixel with pitch 55 μm r/o implant size 20 - 30 μm
- Total thickness 50 150 µm
- Epi thickness 40 μm
 Epi quality ~1e14 cm⁻³
- p-substrate, p-EPI, p-n-p structure \rightarrow p-ELAD

n-substrate, n-EPI, n-p-n structure \rightarrow n-ELAD

TCAD simulations – MIP transient

Unlike standard planar sensors, ELAD shows charge sharing

 \rightarrow Charge beneath deep implants detours towards unit cell boarder \rightarrow Active charge sharing!