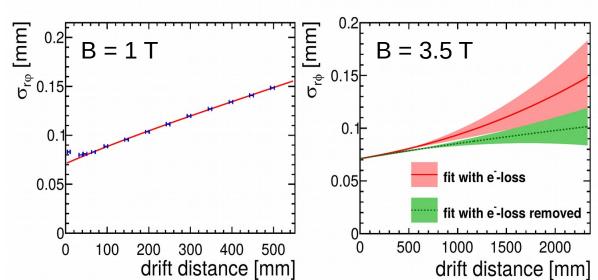
Gaseous Detectors: TPC R&D at DESY/FLC

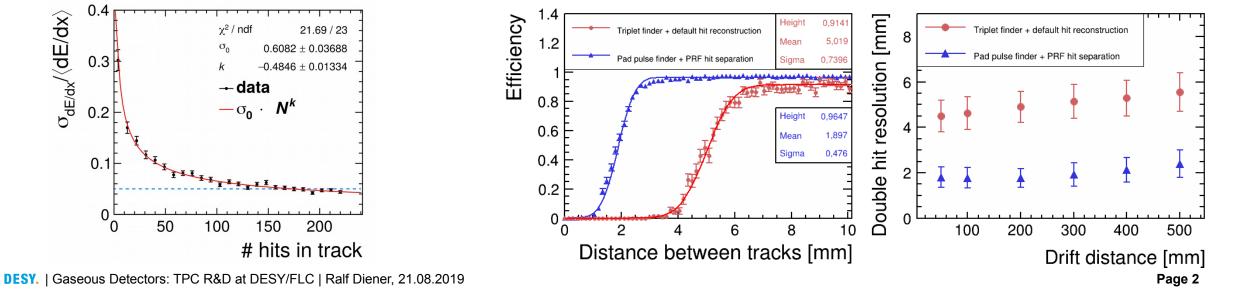
The second statement and the second statement of the second statement of the

Motivation, Status, Future

Ralf Diener

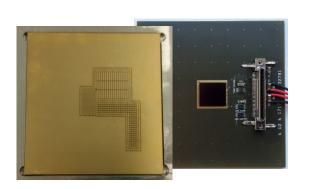
Detector R&D Meeting DESY, 21.08.2019

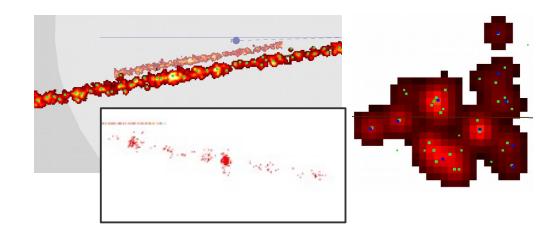

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

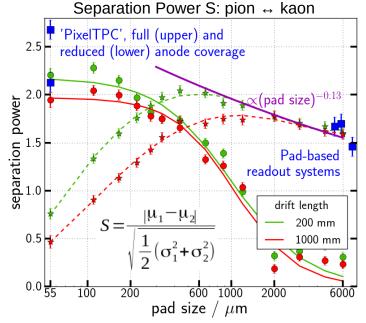

Motivation & Status

TPD R&D @ FLC

- Light weight, high precision TPC for ILD @ ILC
- Shown in prototype measurements
 - Meeting requirement on point resolution \leq 100 µm
 - Double hit/track separation: ~ 2 mm (pad \geq 1 mm) ٠
 - dE/dx resolution ~ 5 %
- Next step: Momentum resolution (using new Si hodoscope)

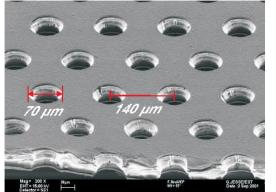


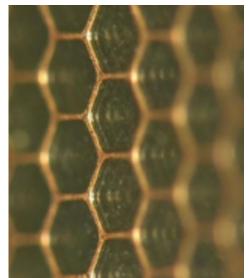


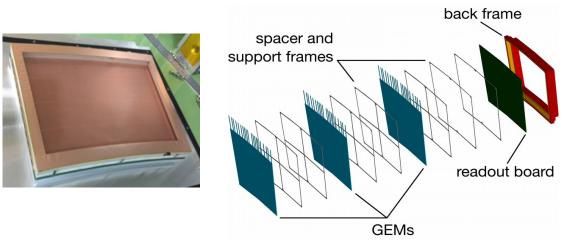

Pixelized TPC

Highly Granular Readout / Ropperi

- Information in gas detector in the primary ionization clusters
 → resolve these to get most out of the measurement
 - High, angle independent spatial resolution
 - Excellent particle identification (dE/dx)
 - → Combination gaseous TPC + silicon detector readout (highly integrated readout)
- GridPix (InGrid: TimePix+Micromegas): single e⁻ (*"too"* precise)
 → Ansatz: TimePix + pad board → Optimize readout granularity
- Ongoing studies point towards pad sizes of a few 100 μm
- Hardware tests: capacitance, S/N?
 - First bonding tries not overly successful
 - → Process optimization? New board material? Interposer?

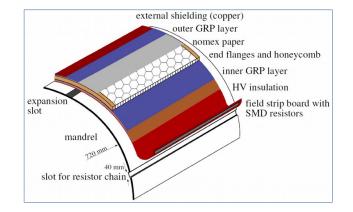





Ion Gating

High Transparency GEM

- Gating ions from the amplification stage (keeping them from entering drift volume) with highly transparent GEM
 - \rightarrow Light weight, easy to integrate ion gate
- Promising results from Japanese colleagues
 - 82.3 % optical transparency, ~ 86 % electron transmission (at 3.5 V)
 - Minimal impact on spatial and dE/dx resolution
- Future @ FLC ?
 - Basic tests of transmission, amplification
 + ion stopping power
 - Integration into DESY readout module
 → performance test



TPC Field Cage - Composite Materials & More

Scaling Up Expertise

- Field cage requirement: Integrated (gas vessel + field shaping + HV shielding)
 - High mechanical precision (order of 100 μm)
 - High HV stability (25 kV)
 - Low material (close to $1 \% X_0$)
- First iteration (external) \rightarrow Does not meet all specs
- Now: develop methods and tooling based on experience with small prototypes
 - Lab for testing and building installed
 - Many issues solved, many material and procedure tests performed
 - Ongoing effort

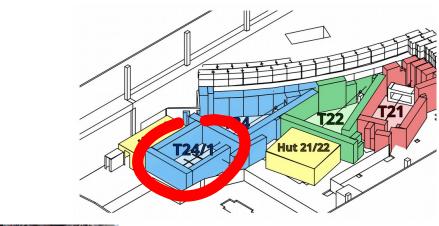
FLC-TRCK

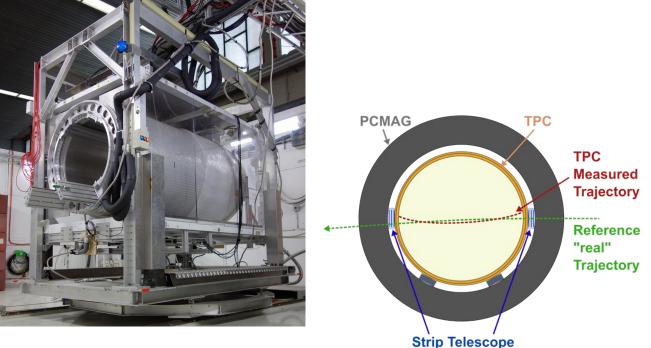
Manpower (head count, not FTE)

- Staff (all part time)
 - Group leader
 - 2 staff scientists
- Post-doc
 - 1 in AIDA²⁰²⁰ (silicon hodoscope)
- PhD
 - 3 finishing
 - 1 in silicon hodoscope
- Technical staff (all part time)
 - 2 engineers
 - 2 technicians
 - 1 constructor of technical items (in education)

Summary / Outlook

Gaseous Detectors @ FLC-TRCK Group


- Existing expertise to build and operate gaseous (GEM) detectors
 - Continued support and improvement of common infrastructure (test beam)
- Detector R&D:
 - GEM+Pad Readout:
 prove momentum resolution
 - Gating GEM:
 studying performance + integration
 - Cluster Readout marrying Gas & Silicon: prove of principle + optimization


Backup

Area T24/1 @ DESY II Test Beam Facility

- Setup for TPC / gas detector tests in area T24/1
 - 1 T large bore, superconducting solenoid magnet mounted on movable stage (usable diameter ~75 cm)
 - All necessary infrastructure
 - Beam+cosmic trigger
 - High voltage and gas systems
 - 2PCO₂ cooling plant (TRACI type)
 - Close to going into user operation: precise Si strip hodoscope

Set up with support of European Infrastructure funding (EUDET/AIDA) and LCTPC collaboration

