IT-Report.

Status of Scientific Computing

Christian Voß – DESY-IT

PRC 88 12/13 Nov. 2019 November 12, 2019

Content

Status of Existing Infrastructure

Grid: Large Scale Production and Analysis NAF: User Analysis Real-Time Astroparticle Data-Analysis Future Challenges: Belle II Data Taking and LHC Run-III and IV

2 Development to Improve User Experience

Support for Modern Data Analysis Methods Remaining Challenges to Improve Usability

3 Future Plans for Computing at DESY

Interdisciplinary Data Analysis Facility – PoF IV National, European and Wordwide Projects

Content

Status of Existing Infrastructure

Grid: Large Scale Production and Analysis NAF: User Analysis Real-Time Astroparticle Data-Analysis Future Challenges: Belle II Data Taking and LHC Run-III and IV

2 Development to Improve User Experience

Support for Modern Data Analysis Methods Remaining Challenges to Improve Usability

3 Future Plans for Computing at DESY

Interdisciplinary Data Analysis Facility – PoF IV National, European and Wordwide Projects

Overview: DESY Grid Computing Hamburg and Zeuthen

Resources for the supported HEP and Astro-Particle Experiments

Relative Share of normalized CPU hours per Experiment (2019.May - 2019.Oct)

Supported in Hamburg

- > ATLAS
- > Belle-II
- > CMS
- > ILC
- > LHCb Supported in Zeuthen
- > ATLAS
- > CTA
- > HESS
- > ICECUBE

Christian Voß – DESY-IT | Status of Scientific Computing | PRC 88 12/13 Nov. 2019 | November 12, 2019 | Page 4

Overview: Interactive and Batch Computing

High Throughput Computing

- Support different usage modes with the same hard and software
 - Global production and simulation
 - Ø Interactive user analysis

Overview: Interactive and Batch Computing

High Throughput Computing

- Support different usage modes with the same hard and software
 - Global production and simulation
 - 2 Interactive user analysis
- > User analysis wants
 - Fast turn-around of jobs
 - 2 Lower job latency
 - 8 Fast scratch space

Overview: Interactive and Batch Computing

High Throughput Computing

- Support different usage modes with the same hard and software
 - Global production and simulation
 - 2 Interactive user analysis
- > User analysis wants
 - Fast turn-around of jobs
 - 2 Lower job latency
 - 8 Fast scratch space
- > Split the HTC cluster in two independent entities
 - 1) Grid Cluster
 - 2 Interactive Cluster

DESY Grid Computing

Global Production and Simulation

Grid Cluster – CPU Utilisation

DESY-Hamburg

DESY-Zeuthen

DESY Grid Computing

Computing Contributions to Major Supported Experiments (EGI and OSG Accounting only)

National Analysis Facility

High Throughput Computing for Interactive User Analyses

Purpose of the NAF

- > Platform for user jobs
- > Lower latency and smaller jobs
- > Faster turn around time
- \rightarrow Aim for less than 75% utilisation

NAF Cluster Utilisation – October 2019

National Analysis Facility

High Throughput Computing for Interactive User Analyses

Purpose of the NAF

- > Platform for user jobs
- > Lower latency and smaller jobs
- > Faster turn around time
- \rightarrow Aim for less than 75% utilisation
- NAF CPU Usage above 75%
- > Affecting User Experience
- \rightarrow Increase number of cores

NAF Cluster Utilisation – October 2019

National Analysis Facility

High Throughput Computing for Interactive User Analyses

Purpose of the NAF

- > Platform for user jobs
- > Lower latency and smaller jobs
- > Faster turn around time
- \rightarrow Aim for less than 75% utilisation
- NAF CPU Usage above 75%
- > Affecting User Experience
- \rightarrow Increase number of cores

NAF Cluster Utilisation – October 2019

- GPU Resources within the NAF > Interactive development servers
- > Batch nodes for production runs

Long Term Storage

HEP dCache installations at DESY

DESY Storage

- > DESY a major EU Grid Storage site
- > Platform: dCache co-developed by DESY
- > Capacity: Hamburg 16PB, Zeuthen 6.3PB

HEP storage over time (Hamburg)

Network

Recent and Future Improvements

DESY Network Improvements

- > WAN connection (PRC87)
- > Connection Hamburg Zeuthen
 - Bandwidth in Hamburg: $2\times 50 {\rm Gb}/s$
 - Zeuthen Hamburg: $4 \times 10 {
 m Gb}/s$

Global Improvements – BELLA

EU funded Project for $100 \mathrm{Gb}/s$:

- > Direct connection Europe South America
- > Connect EU and SA research communities
- > Connectivity for observatories in the Andes

Network-Bandwidth Usage (Hamburg)

AMPEL Framework for Zwicky Transient Facility

Alert Management, Photometry, and Evaluation of Light curves

General Idea: to automate the search for new cosmic light sources

- > Message-streaming based analysis framework:
 - 1 Observatory produces a message containing time, direction, intensity, meta-data
 - 2 Messages can be consumed/analysed at any AMPEL centre

Live AMPEL instance at DESY-Zeuthen

- > Alerts in place since June 2018
- > During first half year
 - $\bigcirc 64M$ alerts
 - 2 Latency from shutter close to ingestion at DESY $\sim 10 \min$
 - $\fbox{\ }$ Real-Time AMPEL analysis accounts for 1/3 of Supernovae discovered in the northern sky since summer '18
- > Technical details follow a bit later

Belle II Resource Demands

CPU and Storage Resources pledged the Belle II Collaboration

DESY will become a Raw Data Centre for Belle II

CPUs: Pledged Resources

> By 2022 similar pledges to CMS and ATLAS

Storage: Pledged Resources

- > By 2022 Belle II surpasses ATLAS
- > Very limited group disk requirements
- > Tape resources from 2021 onwards
- > Tape access needs to be balanced with on-site Photon Sources

Towards LHC Runs III and IV

Upcoming Challenges in HEP Computing

Towards HL-LHC

- > Run-III \rightarrow increased Pile-Up per events
- $> \mathsf{Run-IV} \to \mathsf{steep} \text{ increase in luminosity}$

HL-LHC Computing

- > Increase in luminosity \sim increase in compute resource demands
- > Bridge expected funding gap
 - Optimise Code/new Event models
 - Opportunistic CPU cycles (MC prod.)
- > How to optimise storage?
 - Smaller data containers
 - Participation Stream Model (LHCb)

Content

Status of Existing Infrastructure

Grid: Large Scale Production and Analysis NAF: User Analysis Real-Time Astroparticle Data-Analysis Future Challenges: Belle II Data Taking and LHC Run-III and IV

2 Development to Improve User Experience Support for Modern Data Analysis Methods Remaining Challenges to Improve Usability

3 Future Plans for Computing at DESY

Interdisciplinary Data Analysis Facility – PoF IV National, European and Wordwide Projects

Support for Notebooks

New Focal Point for Data Analysis

What are Jupyter Notebooks - Data Analysis in Your Browser

- > Python based interpreter for Python,C++/ROOT,...
- > Heavy data lifting happens on WGS/WN
- > Access via Web-Browser

Support for Notebooks

New Focal Point for Data Analysis

What are Jupyter Notebooks – Data Analysis in Your Browser

- > Python based interpreter for Python,C++/ROOT,...
- > Heavy data lifting happens on WGS/WN
- > Access via Web-Browser

Support for Jupyter Notebooks requested by Belle II for some time

- > Existing Jupyter-Hub on Maxwell but reserving whole nodes
- > Running Jupyter on dynamic batch resources a difficult endeavour \rightarrow sparked major interest in the HTCondor community
- > Work done in close collaboration with HTCondor development team (Thanks)
- > Support for custom user-specific Kernels (Thanks to M. Ritter@LMU)

DESY

NAF Jupyter-Hub

Ready for Access

Deutsches Elektronen-Synchrotron DESY A Research Centre of the Helmholtz Association

og in with DESY Account

Username:	
1	
Password:	
Sign In	

Welcome to the JupyterHub for NAF Users

To login into the JupyterHub, use your regular DESY credentials. Note that you need to have the BATCH resource, since jupyter starts as a job on HTCondor. Contact your group admin to gain the rights to start jobs on BIRD.

You may also be interested services on our supercomputer, Maxwell.

News

JupyterHub beta phase is now open for users. November 1st, 2019

Useful Links

- Jupyter on NAF Confluence Page
- Jupyter Notebook Documentation

Administration

- · If you encounter issues with the JupyterHub, please send an email to unix@desy.de
- · or open a ticket in the request tracker rt-system.desy.de directly

JupyterHub for NAF is powered by HTCondor and BIRD

Access to Jupyter-Hub

- > Officially announced
- > Documentation for setups
- > Feel free to test
- > Feel free to send us feedback

Machine Learning Infrastructure

Improving on Existing Data Analysis Methods

- > HEP scientists probe the Standard Model with ever increasing precision
- > Need for improvements in Signal-to-Background ratios to find ever rarer signatures

Machine Learning as Tool of Choice

- > Observe user interest to improve
 - **1** Trigger sensitivity \rightarrow higher rates/improved results
 - b-Tagging, tracking, User analysis,...
- > Neural Networks highly parallelizable \rightarrow Using GPUs
- > DESY-IT hosts dedicated ML-seminar well attended across divisions
- > DESY-IT organises ML round table (next 29/11/19)
- > DESY-IT active in ML projects with Photon Science and HEP – HAF, AmaleA

Some Open Challenges to Improve Usability

Some Possible Road-Blocks for Scientific Users

Parallelism and Scaling

- Batch systems require manual data splitting and merging
 Possible Solution: Apache Spark collaboration with Belle II
- > Batch resources on Demand Possible Solution: Cloud Batch nodes on demand – Collaboration with University of Victoria

Analysis Software Development and Deployment

> Good Practises in Software Engineering not well established, especially user context Possible Solution: Dev. pipeline – Prototype on EGI Cloud/European Open Science Cloud

Automated Workflows

Workflows usually depend on personal communication (bound to specific scientists)
 Possible Solution: Message Systems and Function as a Service – AMPEL Cluster and EOSC

Analysis on Arrival of Data

Experimental Events, Storage Events and Function as a Service

Messages: Producer – Broker – Consumer Model

- > Any Frame from observatory delivers a notification to a message system
- > Message arrival triggers further actions at consumer, e.g. filter or restructure
- > Arrival at AMPEL cluster triggers final analysis and selection
- > Result produces new message \rightarrow send and consumed by scientific portals

Analysis on Arrival of Data

Experimental Events, Storage Events and Function as a Service

Messages: Producer – Broker – Consumer Model

- > Any Frame from observatory delivers a notification to a message system
- > Message arrival triggers further actions at consumer, e.g. filter or restructure
- > Arrival at AMPEL cluster triggers final analysis and selection
- > Result produces new message \rightarrow send and consumed by scientific portals

Storage Events – dCache as Workflow-Engine

- > Idea driven by DESY dCache development team
- > Any transactions delivers a notification to a message system
- > Message arrival triggers further actions \rightarrow Batch jobs

Content

Status of Existing Infrastructure

Grid: Large Scale Production and Analysis NAF: User Analysis Real-Time Astroparticle Data-Analysis Future Challenges: Belle II Data Taking and LHC Run-III and IV

2 Development to Improve User Experience

Support for Modern Data Analysis Methods Remaining Challenges to Improve Usability

3 Future Plans for Computing at DESY

Interdisciplinary Data Analysis Facility – PoF IV National, European and Wordwide Projects

Scientific Computing and PoF-IV

Consolidating Interdisciplinary Efforts into Matter And Technology

Changes with the Upcoming PoF-IV Funding Period

> Creation of a new topic within *Matter And Technology* – Data Management and Analysis

ST1: The Matter Information Fabric

IT Solutions (Hard+Software) for Large Facilities
 Automated Data Lifecycle Management (LK II)
 Solution for Community Specific Demands

ST2: The Digital Scientific Method

Method Research in Data Analysis & Simulation
 Machine Learning, Visual Analytics, Scientific Workflows
 Heterogeneous HPC, HTC, I/O
 New technologies, e.g. Quantum Computing

ST3: The Digital Experiment and Machine

Start-to-End Simulations (Machine/Physics/Detector)
 Fast Feedback ("Human in the Loop")
 Determination of Data Quality, Handling of Metadata
 Control Systems

Scientific Computing and PoF-IV

Consolidating Interdisciplinary Efforts into Matter And Technology

Changes with the Upcoming PoF-IV Funding Period

> Creation of a new topic within *Matter And Technology* – Data Management and Analysis

ST1: The Matter Information Fabric

IT Solutions (Hard+Software) for Large Facilities
 Automated Data Lifecycle Management (LK II)
 Solution for Community Specific Demands

ST2: The Digital Scientific Method • Method Research in Data Analysis & Simulation • Machine Learning, Visual Analytics, Scientific Workflows • Heterogeneous HPC, HTC, I/O • New technologies e. a. Quantum Computing

ST3: The • Start-to-End • Fast Feedba

ST3: The Digital Experiment and Machine

• Start-to-End Simulations (Machine/Physics/Detector) • Fast Feedback ("Human in the Loop") • Determination of Data Quality, Handling of Metadata • Control Systems

Scope

Involves all HH-Departments

> Truly interdisciplinary effort

Interdisciplinary Data Analysis Facility – IDAF

Evolution of the Tier-2 Centre into Matter And Technology

Changes with the Upcoming PoF-IV Funding Period

- > The Tier-2 centre becomes the LK2 **IDAF** within DMA and Matter And Technology
- > Consolidation and sharing of the existing computing infrastructure with all pros/cons
 - 1 Access to the NAF for PETRA-III/FLASH users
 - 2 Extended access to HPC resources for ATLAS/Belle II/CMS beyond backfilling with Grid Jobs
 - 8 Retain essentially the Grid cluster and the HPC buy-in model
- > Gain additional funding for personnel/hardware did not initially materialise

Interdisciplinary Data Analysis Facility – IDAF

Evolution of the Tier-2 Centre into Matter And Technology

Changes with the Upcoming PoF-IV Funding Period

- > The Tier-2 centre becomes the LK2 **IDAF** within DMA and Matter And Technology
- > Consolidation and sharing of the existing computing infrastructure with all pros/cons
 - 1 Access to the NAF for PETRA-III/FLASH users
 - 2 Extended access to HPC resources for ATLAS/Belle II/CMS beyond backfilling with Grid Jobs
 - 8 Retain essentially the Grid cluster and the HPC buy-in model
- > Gain additional funding for personnel/hardware did not initially materialise

IDAF (PoF-IV) Cores: $\mathcal{O}(100\text{K})$ Disk: $\mathcal{O}(100\text{PB})$ HPC capabilities

National, European and Wordwide Projects

Personel and Hardware Resources for Inhouse R&D

Participation in National Projects

- > National research data initiative (NFDI) *e.g.* Pan-Pahn (HEP) and ASTRO (Astroparticle)
- > The Helmholtz Data Federation (HDF)
- > Helmholtz Incubator "Information & Data Science"
 - Helmholtz Infrastructure for Federated ICT Services (HIFIS)
 - Helmholtz Imaging Platform (HIP)
 - Helmholtz Information & Data Science Academy (HIDA)
 - Helmholtz Artificial Intelligence Coordination Unit (HAICU)
 - Helmholtz Metadata & Knowledge Platform
- > PoF-IV Preparation
 - Data Management and Analysis
 - Cross Community Activities (CCA) with Jülich on Artificial Intelligence and Quantum Computing

National, European and Wordwide Projects

Personel and Hardware Resources for Inhouse R&D

Participation in Worldwide Projects

- > Close collaboration between Helmholtz Centres with Canadian Laboratory TRIUMF on Machine Learning, Big Data and Quantum Computing
 → 16-17 September 2019 Workshop on QC, ML & infrastructure DESY
- > World-Wide-LHC-Computing Grid
 - ESCAPE Datalake and new AAI methods

Participation in European Projects

- > European Open Science Cloud
 - PaNOSC Close collaboration with EuXFEL
- > Archiver as follow-up to HNSciCloud data on commercial clouds
- > eXtreme DataCloud storage quality of service

> EXPANDS

Summary PRC 88 DESY-IT

- > DESY continues to deliver significant resources for the HEP and Astro-Particle Physics
 - Grid part of a global effort
 - NAF part of the local effort
- > DESY continues to investigate new methods of data access and analysis
 - Jupyter-Hub
 - Adopt modern workflows and tools
- Continue to represent our user communities in international projects shaping the computing environment
 - Challenges of upcoming new experiments
 - Use new technologies to improve user experience
 - Major source for personnel for in-house R&D projects
- > DESY adapts long-term plans with regards to computing
 - Integration of topic DMA into Matter & Technology
 - Migration of NAF to IDAF

