TCAD Simulation of High Voltage Monlithic Active Pixel Sensors

Physikalisches Institut Heidelberg

Bundesministerium für Bildung und Forschung

Technology Computer Aided Design

Simulation of semiconductor processing technology and device operation for development, manufacturing and characterization

What do TCAD tools do?

▶ Simulation of tiny and complex structures in 2D and 3D.

Device structure and doping profiles

Reproduction of the steps in the

- fabrication process
- Deposition of layers
- ► Etching
- ▶ Ion implementation
- ► Diffusion
- ► Etc ... (almost any process perform in a real clean room)
- Used for the foundry to evaluate the technological process

Simulation of electrical, thermal, and optical characteristics using a FEM

- ▶ Physical models: mobility, recombination, avalanche, ...
- Quasistationary simulation (Capacitance, Electric Field ...)
- Transient simulation of Minimum Ionizing Particle (MIP)

TCAD

Why use TCAD?

- 1. Reduce the iteration process, saving time and money
- 2. Help to estimate essential properties in the sensor performance, as
 - Breakdown Voltage
 - Pixel Capacitance
 - ► Charge collection time
- 3. Complement to laboratory measurements

In our case ...

- 1. We are not developing a technological process
- 2. In most of the cases, the foundry does not reveal the process

TCAD

In our case ...

- 1. We are not developing a technological process
- 2. In most of the cases, the foundry does not reveal the process

Reproduction of the device structure and doping profiles using geometric shapes Simulation of electrical, thermal, and optical characteristics using a FEM

- 3. The mesh (SNMESH) is the most time consuming step (Trial and error)
 - Should be fine (have small elements) in areas that are important for the subsequent calculations
 - Too many points cause very long simulation and memory errors

Substrate resistivity

Substrate resistivity

1. Depletion depth

- ▶ Higher resistivity → Thicker depletion zone (More sensitive area)
- 2. Electric Field
 - Lower resistivity \rightarrow Higher Electric Field (Faster collection charge)

Substrate resistivity

► 80 Ωcm

▶ 1000 Ω*cm*

@ -100 V

Why do we need isolation between pixels?

- SiO2 used for surface passivation, protecting from moisture and atmospheric contaminants (also as active gate electrode in MOS devices)
- Crystal structure highly irregular, displacement of single atoms do not lead to macroscopic changes, but is the main material damaged by ionizing radiation
- ▶ If the holes arrive to the transition region between Si and oxide where many hole traps exist, they may be kept there permanently
- ▶ The positive oxide charge have an influence in the electric field in the Si bulk close to the surface, inducing a compensating electron accumulation layer

*Charge density in Si-SiO2 interface from 10^{11} cm⁻² to 10^{12} cm⁻² between 0 and 10^8 Rad

► Simple Pixel Structure

▶ Pixel Isolation

► Simple Pixel Structure

▶ Pixel Isolation

eDensity @ 20 Ωcm @ 10¹¹ density of charge in Si-SiO2 interface

1. InterPixel Capacitance

- ▶ lower \rightarrow p-spray Example: Mupix8
 - \blacktriangleright without isolation: 21.56 fF
 - ▶ p-stop: 1.39 fF
 - ▶ p-spray 6.5×10^{16} : 0.61 fF

2. Breakdown Voltage

 $\blacktriangleright \text{ lower} \rightarrow \text{p-spray}$

1. InterPixel Capacitance

- lower \rightarrow p-spray Example: Mupix8
 - ▶ without isolation: 21.56 fF
 - ▶ p-stop: 1.39 fF
 - ▶ p-spray 6.5x10¹⁶: 0.61 fF

p-spray 1x10¹⁷

Breakdown voltage for different pixel isolation 80 Ωcm

2. Breakdown Voltage

p-stop

lower \rightarrow p-spray

p-spray 6.5x10¹⁶

p-spray 5x10¹⁷

Electric Field

Electrostatic Potential

 $\blacktriangleright~1~\mu m$ mask

• 4 μm mask

@ 20 Ωcm @ 10^{11} Si-SiO2 interface charge

Experimental Breakdown Voltage

$[\Omega cm]$	Expe.[V]	TCAD [V]
20	-48.0	-48.0
80	-63.0	-59.8
200	-60.2	-58.5
1000	-46.4	-51.4

The use of p-spray in the MuPix8 structure reproduce the experimental results

@ -60 V @ 80 Ωcm @ 10^{11} Si-SiO2 interface

Simulation result shows that a distance of 3.5 create a Break Down Voltage above -120 V

First Metal Layer

 AtlasPix3 (200 Ωcm at -60 V)
6.16 μm
High Electric Field Area

AtlasPix3 Breakdown Voltage

► AtlasPix3 (200 Ωcm)

Breakdown Voltage:

without mask: -59 V with mask: -250 V

► Experimental: -65.8 V (Rodolph reported measuring)

AtlasPix3 Breakdown Voltage

□ TCT structures holding 3x3 pixels with similar pixel flavor of ATLASPix3 matrix

 $\Box\,$ All connections from electronics have been removed

 $\hfill \Box$ Shallow n-well (holds CMOS) sits upon the deep n-well is connected to GNDA pad

AtlasPix3 Breakdown Voltage

Break Down Voltage: -222 V @ 20°C Structure more similar to simulation

□ Simulations including NMOS and PMOS transistors

Pixel Dimensions

Diode Capacitance (C_0) in 80 Ω cm

▶ Design like MuPix8

- ▶ Linear function of the diode width
- ▶ Capacitance increases with diode size and decreases with HV

$$C_0[\frac{fF}{\mu m}] = (-1.538 * |V| + 539) * 10^{-5} * diode \ width + 0.18$$

Shallow p-well capacitance (C_1)

Capacitance shallow p well - n well in fF

MuPix 8 (14.85 x 14.2 µm²)

AtlasPix 3 (30 x 12 μm²)

shallow p-well n-well►	0	-3	-5	shallow p-well n-well →	0	-3	-5
0.4	47.91	24.99	20.53	0.4	76.47	39.19	31.91
0.8	41.46	24.02	19.83	0.8	66.00	37.62	30.78
1.2	36.58	23.12	19.38	1.2	58.05	36.14	30.05

58 % decrease of the capacitance from 0 V to -5 V !!!

Prototypes

► MuPix8

► Total pixel capacitance (@ -60 V n-well = 1.2 V shallow p = 0 V) □ 80 Ωcm

 $\begin{array}{lll} C_t = 29.07 fF + 36.58 fF & C_t = 15.13 fF + 58.05 fF \\ C_t = 65.65 fF & C_t = 73.18 fF \\ & \Box \ 200 \ \Omega cm \end{array}$

 $\begin{array}{l} \mathbf{C}_t = 20.34 fF + 36.58 fF \\ \mathbf{C}_t = 56.93 fF \end{array}$

 $\begin{aligned} \mathbf{C}_t &= 9.62 fF + 58.05 fF \\ \mathbf{C}_t &= 67.66 fF \end{aligned}$

▶ TCAD simulation is a powerful tool for designing and optimizing semiconductor detectors.

Ongoing studies:

- ▶ Pixel structure in 3D
- ► Electric Field for AllPix2
- ► Small fill factor structures

Shallow p-well

