

1) Introduction

top-quark production via the weak interaction.

	cross sections at LHC with \sqrt{s} = 7 TeV (m _t = 173 GeV)				
64.2 ± 2.6 pb	15.6 ± 1.3 pb	4.6 ± 0.2 pb			

cross sections at the Tevatron with $\sqrt{s} = 1.96$ TeV (m_t = 173 GeV) 2.1 ± 0.1 pb 0.25 ± 0.03 pb 1.05 ± 0.05 pb

Calculation by N. Kidonakis: arXiv 1103.2792, 1005.4451, 1001.5034

Why look for Single Top-Quarks?

- 1. Test of the SM prediction.
 - Does it exist?
 - Cross section ∝ |V_{tb}|² Test unitarity of the CKM matrix, .e.g. Hints for existence of a 4th generation ?
 - Test of *b* quark PDF: DGLAP evolution
- 2. At the Tevatron:
 - Stepping stone to the Higgs.
 - Same signature as WH.
 → backgrounds are the same
- 3. Test non-SM phenomena
 - Search W' or H⁺ (s-channel signature)
 - Search for FCNC, e.g. $ug \rightarrow t$

 $V_{ub}^2 + V_{cb}^2 + V_{tb}^2 \stackrel{?}{=} 1$

First Attempt to Discover (Single) Top ...

- excess in M_{Ivb} vs. M_{Ivbb} scatter plot
- compatible with $m_t = 40 \pm 10 \text{ GeV}$
- later improved background estimate
- \rightarrow background very challenging in single top

Phys. Lett. B 147, 493 (1984) W. Wagner, Single Top Results and Prospects

Recognition of the Relevance of the t-Channel

PHYSICAL REVIEW D

VOLUME 34, NUMBER 1

1 JULY 1986

Production of heavy quarks from *W*-gluon fusion

Scott S. D. Willenbrock and Duane A. Dicus Theory Group and Center for Particle Theory, University of Texas, Austin, Texas 78712 (Received 3 February 1986)

We show that heavy-quark production via W-gluon fusion in high-energy pp and $\overline{p}p$ collisions is an important source of the heavier member of an $SU(2)_L$ doublet of quarks if the mass splitting within the doublet is large. W-gluon fusion exceeds the strong production of heavy quarks for mass splittings greater than 300-350 GeV at $\sqrt{s} = 10$ TeV and 400-450 GeV at $\sqrt{s} = 40$ TeV. An alternative way to regard W-gluon fusion is as the production of the heavier quark by fusing its light partner with a W boson. We use a distribution function for the light partner to show that this process gives results which agree qualitatively with W-gluon fusion. We also discuss the Drell-Yan production of an $SU(2)_L$ doublet of heavy quarks via a virtual W boson and corrections to this process from initial gluons. We find that at the Fermilab Tevatron energy $\sqrt{s} = 2$ TeV, W-gluon fusion exceeds the Drell-Yan production of top quarks for masses above 100 GeV.

Single-Top Searches in Run I and Early Run II

Run I:

- DØ, Phys. Rev. D 63 (2000) 031101
- DØ, Phys. Lett. B 517 (2001) 282 294 (neural networks)
- CDF, Phys. Rev. D 65 (2002) 091102 $(H_{T} \text{ and } Q \cdot \eta \text{ fit})$
- CDF, Phys. Rev. D 69 (2004) 052003 (neural network)

DØ Run II (2007): neural networks

CDF Run II (2005): Q·η fit

Run II:

- CDF, Phys. Rev. D 71 (2005) 012005 $(H_{T} \text{ and } Q \cdot \eta \text{ fit})$
- DØ, Phys. Lett. B 622 (2005) 265 276 (neural networks)
- DØ, Phys. Rev. D 75 (2007) 092007 (cut based and neural networks)
- cross section limits: 5 to 6 pb

Evidence and Observation for Single-Top Production

Boosted decision tree analysis (evidence at DØ, 2006) DØ Run II preliminary 10² Event Yield 0.9 fb^{-1} tb+tqb **3.4** σ W+jets 10 Multijets ±1o uncertainty on background 1 10⁻¹ 0.6 0.7 0.8 0.9 tb+tqb Decision Tree Output

Evidence Papers

- DØ, Phys. Rev. Lett. 98 (2007) 181802, Phys.
 Rev. D 78 (2008) 012005
- CDF, Phys. Rev. Lett. 101 (2008) 252001

Observation Papers

- DØ, Phys. Rev. Lett.103 (2009) 092001.
- CDF, Phys. Rev. Lett. 103 (2009) 092002,

Phys. Rev. D 81 (2010) 072003, Phys. Rev. D 82 (2010) 112005. W. Wagner, Single Top Re

- Combined t-channel + s-channel analysis
- Several multivariate analysis techniques.
- Combination of analyses (not results).
- Very intense checks on kinematic modeling.
- Mainly relying on ALPGEN W+jets MC.
- Signal models: CompHep (DØ) and MadEvent (CDF)

2 Experimental Status

 Assume Standard Model (V-A) coupling and |V_{tb}| >> |V_{ts}|, |V_{td}| (from BR(t →Wb) measurements))

CDF and DØ Collaborations: arXiv: 0908.2171 [hep-ex]

- Measure σ_{s} and σ_{t} separately
- Interesting because s- and t-channels have different sensitivity to BSM models
- Train dedicated s-channel and t-channel discriminants and fit 2D

t-Channel Cross Section at ATLAS

SM prediction

C normalized to

Better S/B (= 10.1%) after event 40 Candidate Events single-top t-channel 156 pb⁻¹@ 7 TeV ATLAS Preliminary 2 jets tag single-top Wt-channel selection than at Tevatron (6.9%). single-top s-channel 300 Very good acceptance for forward tŦ W+heavy flavour jets: $|\eta_{det}| < 4.5$. W+light jets 200 Neural network analysis + cut Diboson Z+jets based as cross check. **Multijets** 100 ATLAS data Event Fraction **ATLAS** Preliminary $\sqrt{s} = 7 \text{ TeV}$ 0.15 simulation - 2 jets tag 300 100 400 500 200 'n normalized to unit area $M_{\rm hvb}$ [GeV/c²] 0.1 Candidate Events 156 pb⁻¹@ 7 TeV ATLAS Preliminary SM prediction 400-2 jets tag 0.05 ATLAS-CONF-2011-088 300 0, 2 3 4 normalized to |η (I-jet)| 200 Observed significance: 6.2 s.d. 100 Expected: 5.7 s.d. ЯО σ (t-ch.) = 76 ⁺⁴¹₋₂₁ pb 0.2 0.4 0.6 0.8 NN output

t-Channel Cross Section at CMS

- Boosted decision tree analysis
- 2D-analysis: η(light jet), polarisation angle cos θ (light jet, lepton)_{top r.f.}
- χ² combination of results
- CMS PAS TOP-10-008

 σ (t-ch.) = 84 ± 30 pb

• Extraction of |V_{tb}|:

$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22(exp) \pm 0.02(th)$$

using $\sigma^{th} = 62.3^{+2.3}_{-2.4}$ pb

NLO prediction in the 5-flavour scheme, Campbell, Frederix, Maltoni, JHEP 10 (2009) 042.

W. Wagner, Single 7

Search for Wt Production

- ATLAS-CONF-2011-027
- Dilepton channel more sensitive than lepton+jets channel.
- σ (Wt) < 158 pb at the 95% C.L.

Results and Prospects

3 Prospects – Single Top as a Benchmark

Theory:

- 1) To extract V_{tb} we need the theory cross section as input.
- Assume unitarity in 3 generations →V_{tb} known, test other theory aspects

Two issues of recent discussion:

a) 5 flavour vs. 4 flavour scheme

See calculations: Campbell, Frederix, Maltoni, JHEP 10 (2009) 042.

b) Influence of soft gluon effects: resummation at NNLL level

 N. Kidonakis, Phys. Rev. D 83 (2011) 091503 (arXiv 1103.2792), Phys. Rev. D 82 (2010) 054018 (arXiv 1005.4451), Phys. Rev. D 81 (2010) 054028 (arXiv 1001.5034).

$m_t({ m GeV})$	171	172	173	174	175
$\sigma_{\rm LO}({\rm pb})$	$44.9^{-3.1}_{+2.2}$	$44.4_{+2.1}^{-3.1}$	$43.9^{-3.0}_{+2.1}$	$43.5_{+2.1}^{-3.0}$	$43.0^{-2.9}_{+2.0}$
$\sigma_{ m NLO}(m pb)$	$42.6_{\pm 1.0}^{-0.8}$	$42.2_{\pm 1.2}^{-0.7}$	$41.9_{\pm 0.9}^{-0.6}$	$41.6_{\pm 0.8}^{-0.8}$	$41.1_{\pm 0.9}^{-0.7}$
$\sigma_{\rm RES}({\rm pb})$	$41.7_{\pm 0.2}^{-0.1}$	$41.3_{\pm 0.3}^{-0.1}$	$40.9^{-0.1}_{+0.1}$	$40.7_{\pm 0.1}^{-0.1}$	$40.2^{-0.1}_{+0.1}$

 H.X. Zhu, C.S. Li, J. Wang, J.J. Zhang, JHEP 1102 (2011) 099 (arXiv:1006.0681), arXiv:1010.4509.

Modeling of Single-Top Events: Example 2nd b Quark

W. Wagner, Single Top Results and Prospects

Single-Top: Test Bench for Object ID

- Single-top events feature all important objects of high- p_{T} physics:
 - electrons

missing ET

> muons

- \succ jets, especially forward jets
- b-tagging
- Backgrounds much more severe for single top than top-pairs
 - → a much better understanding is needed

 \rightarrow driving force for new developments, for example: multijet veto, electron fake event model (CDF, ATLAS), neural network b-tagger (CDF and DØ), forward electron id (CDF), MET+jet trigger for untriggered muons (CDF), forward jet calibrations (ATLAS), ...

Uncertainties due to instrumental sources of ATLAS (PLHC) analysis (ATLAS-CONF-2011-088):

Source of Uncertainty	Δσ /σ
statistical only	+17% / -16%
JES	+18% / -3%
JER	+4% / -3%
jet reconstruction	3%
lepton SF	1%
b-taggging SF	+12% / -9%
light-jet mistagging SF	2%

Estimation and Modeling of Multijet Background

- fit discriminant distribution (e.g. MET) to estimate rate of multijets background
- model misidentified multijet background with jet-triggered events (jet-electron model)
- full event model to facilitate multivariate analyses

17

W. Wagner, Single Top Results and Liospects

W + Heavy Flavour Jets

- Observe more W + heavy flavour events after b-tagging than expected from ALPGEN + tagging efficiency.
- True even after normalizing jet-bin-by-jet-bin in the pretag data set.
- Unknown higher orders.
- Pragmatic resolution: measure HF scale factors in data
- Problem: extrapolation from sideband
- Better: simultaneous fit in signal region.
- Recently a lot of activity in theory, for example new version of MCFM.
 Jet k factor from theory

Can we learn about V_{ts} and V_{td} ?

- So far consider only production via V_{tb}.
- How about production via V_{ts} and V_{td}?

- Need samples of simulated events to compute efficiencies.
- Need also to consider different top decay modes (t → sW, t → dW), but low sensitivity due to missing option to flavour-tag.
- Limits on $|V_{ts}|$ and $|V_{td}|$ at the 10% level may be possible in the long run.

Summary

Tevatron measurements of V_{tb} are still world's best.

 $|V_{tb}|$ = 0.88 ± 0.07 (stat+syst) ± 0.07 (theory)

- At LHC, ATLAS (6.2σ) and CMS (3.7σ) have observed t-channel production.
- Single top is an important SM benchmark.
 - Theory: 4 flavour / 5 flavour scheme
 - b-quark PDF
 - MC generators: 2nd b quark
 - Experimentally: Object ID lepton fakes, forward jets, b-tagging
 - W+jets: heavy flavour fractions

Search for $W' \rightarrow tb$ Events

- Investigate different left- and righthanded couplings to fermions.
- Limits vary based on assumptions of couplings: m(W') > 863 .. 916 GeV

