

SINGLE TOP THEORY

Fabio Maltoni

Center for Particle Physics and Phenomenology (CP3) Université Catholique de Louvain, Belgium

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

* "DIS" production mode.

* Largest cross sections thanks to the t-channel W.

* Sensitive to FCNC involving top. Four-fermion interactions.

* b initiated

* Final State: I or 2 b's, W, forward jet

* Charge asymmetric at LHC

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

* "DIS" production mode.

- * Largest cross sections thanks to the t-channel W.
- * Sensitive to FCNC involving top. Four-fermion interactions.
 * b initiated
- * Final State: I or 2 b's, W, forward jet
- * Charge asymmetric at LHC

* Associated production

- * Sizable cross section at LHC14, but difficult.
- * Template for tH⁺ production.* b initiated
- *Interferes with ttbar at NLO : subtle definition.
- * Final State: Ib, 2W and jet veto

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

"No brainer"

* "DIS" production mode.

- * Largest cross sections thanks to the t-channel W.
- * Sensitive to FCNC involving top. Four-fermion interactions.
 * b initiated
- * Final State: I or 2 b's, W, forward jet
- * Charge asymmetric at LHC

* Associated production

- * Sizable cross section at LHC14, but difficult.
- * Template for tH⁺ production.* b initiated
- *Interferes with ttbar at NLO : subtle definition.
- * Final State: Ib, 2W and jet veto

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

"No brainer"

* "DIS" production mode.

- * Largest cross sections thanks to the t-channel W.
- * Sensitive to FCNC involving top. Four-fermion interactions.
 * b initiated
- * Final State: I or 2 b's, W, forward jet
- * Charge asymmetric at LHC

"Interesting!"

* Associated production

- * Sizable cross section at LHC14, but difficult.
- * Template for tH⁺ production.* b initiated
- *Interferes with ttbar at NLO : subtle definition.
- * Final State: Ib, 2W and jet veto

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

"No brainer"

* "DIS" production mode.

- * Largest cross sections thanks to the t-channel W.
- * Sensitive to FCNC involving top. Four-fermion interactions.
 * b initiated
- * Final State: I or 2 b's, W, forward jet
- * Charge asymmetric at LHC

"Interesting!"

* Associated production

- * Sizable cross section at LHC14, but difficult.
- * Template for tH⁺ production.* b initiated
- *Interferes with ttbar at NLO : subtle definition.
- * Final State: Ib, 2W and jet veto

"Challenging!!"

* "Drell-Yan" production mode.
* Tevatron is sizable (~1pb), quite small at the LHC14 (~10 pb).
* Fully inclusive x-sec known at NNLO.

* Channel to search for new charged resonances (H⁺ or W').
Four-fermion interactions.
* Final State: 2 b's + W
* Charge asymmetric at LHC

"No brainer"

* "DIS" production mode.

- * Largest cross sections thanks to the t-channel W.
- * Sensitive to FCNC involving top. Four-fermion interactions.
 * b initiated
- * Final State: I or 2 b's, W, forward jet
- * Charge asymmetric at LHC

"Interesting!"

* Associated production

- * Sizable cross section at LHC14, but difficult.
- * Template for tH⁺ production.* b initiated
- *Interferes with ttbar at NLO : subtle definition.
- * Final State: Ib, 2W and jet veto

Theorist's comments

Université catholique de Louvain

SINGLE TOP	Tevatron	LHC7	LHC14
s-channel t(tbar)	0.45	2.5 (1.5)	7 (4)
t-channel t(tbar)	1.2	40 (20)	150 (90)
tW	0.15	8	45

(not very precise) numbers but useful to keep in mind

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

MOTIVATIONS FOR PRECISION

Electroweak process : Production = Decay

→ TH high precision attainable

• "Anomalously" high cross section wrt to $pp \rightarrow t$ tbar

→ EXP high precision possible

- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

- Electroweak process : Production = Decay
 - →TH high precision attainable
- "Anomalously" high cross section wrt to $pp \rightarrow t$ tbar
 - EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

FOURTH GENERATION X SECS.

It is interesting to see where the cross over between the QCD and the EW productions are at the LHC.

In these plots all the relevant CKM elements are set to one.

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

- Electroweak process : Production = Decay
 - →TH high precision attainable
- "Anomalously" high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

EFFECTIVE FIELD THEORY APPROACH TO T TBAR PRODUCTION

[Aguilar-Saavedra 2010, Willenbrock et al. 2010, Degrande et al 2010]

CP-even

CP-odd

operator	process
$O_{\phi q}^{(3)} = i(\phi^+ \tau^I D_\mu \phi)(\bar{q}\gamma^\mu \tau^I q)$	top decay, single top
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with real coefficient)	top decay, single top
$O_{qq}^{(1,3)} = (\bar{q}^i \gamma_\mu \tau^I q^j) (\bar{q} \gamma^\mu \tau^I q)$	single top
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with real coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$
$O_G = f_{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg \to t\bar{t}$
$O_{\phi G} = \frac{1}{2} (\phi^+ \phi) G^A_{\mu\nu} G^{A\mu\nu}$	$gg \to t\bar{t}$
7 four-quark operators	$q\bar{q} \to t\bar{t}$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{\dim=6}$$

Very few operators of dim-6 affecting top physics.

operator	process
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with imaginary coefficient)	top decay, single top
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with imaginary coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$
$O_{\tilde{G}} = f_{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg ightarrow t \bar{t}$
$O_{\phi\tilde{G}} = \frac{1}{2}(\phi^+\phi)\tilde{G}^A_{\mu\nu}G^{A\mu\nu}$	$gg \to t\bar{t}$

EFFECTIVE FIELD THEORY APPROACH TO T TBAR PRODUCTION

[Aguilar-Saavedra 2010, Willenbrock et al. 2010, Degrande et al 2010]

CP-even

CP-odd

process
top decay, single top
top decay, single top
single top
single top, $q\bar{q}, gg \to t\bar{t}$
$gg \to t\bar{t}$
$gg \to t\bar{t}$
$q\bar{q} \rightarrow t\bar{t}$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{\dim=6}$$

Very few operators of dim-6 affecting top physics.

Even less affecting single top production

operator	process
$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\phi}W^I_{\mu\nu}$ (with imaginary coefficient)	top decay, single top
$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$ (with imaginary coefficient)	single top, $q\bar{q}, gg \to t\bar{t}$
$O_{\tilde{G}} = f_{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$gg \to t\bar{t}$
$O_{\phi\tilde{G}} = \frac{1}{2} (\phi^+ \phi) \tilde{G}^A_{\mu\nu} G^{A\mu\nu}$	$gg \to t\bar{t}$

EXAMPLE: CONSTRAINTS THE CKM MATRIX

[Alwall et al., Eur. Phys, J. C49 791 (2007)]

Remember that R is not so sensitive to V_{tb} as we already know that $V_{tb} > V_{ts}, V_{td}$

$$R = \frac{\Gamma(t \to W\mathbf{b})}{\Gamma(t \to Wq(=d, s, \mathbf{b}))} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Fabio Maltoni

EXAMPLE: CONSTRAINTS THE CKM MATRIX

[Alwall et al., Eur. Phys, J. C49 791 (2007)]

Remember that R is not so sensitive to V_{tb} as we already know that $V_{tb} > V_{ts}, V_{td}$

$$R = \frac{\Gamma(t \to W\mathbf{b})}{\Gamma(t \to Wq(=d, s, \mathbf{b}))} = \frac{|\mathbf{V}_{tb}|^2}{|\mathbf{V}_{td}|^2 + |\mathbf{V}_{ts}|^2 + |\mathbf{V}_{tb}|^2}$$

On the other hand, single top is DIRECTLY sensitive to V_{tb} , V_{ts} , V_{td} :

$$\sim |V_{td}|^2 \sigma_d^{\text{t-ch}} + |V_{ts}|^2 \sigma_s^{\text{t-ch}} + |V_{tb}|^2 \sigma_b^{\text{t-ch}}$$

Enhancement due to large *d* and *s* densities

$$\sim (|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2)\sigma^{\text{s-ch}}$$

Signal becomes similar to t-channel (only 1 *b*-jet)

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

EXAMPLE: CONSTRAINTS THE CKM MATRIX

[Alwall et al., Eur. Phys, J. C49 791 (2007)]

Remember that R is not so sensitive to V_{tb} as we already know that $V_{tb} > V_{ts}, V_{td}$

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

EXAMPLE: CONSTRAINTS THE CKM MATRIX

[Alwall et al., Eur. Phys, J. C49 791 (2007)]

Remember that R is not so sensitive to V_{tb} as we already know that $V_{tb} > V_{ts}, V_{td}$

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

- Electroweak process : Production = Decay
 - →TH high precision attainable
- "Anomalously" high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

b-initiated processes

Class	Process	Interest	
Тор	qb→tq (t-channel)	SM, top EW couplings and polarization, Vtb. Anomalous couplings. H+ : SUSY,2HDM	
	gb→t(W,H+)		
Vector Bosons	pp→Wb pp→Wbj	SM, bkg to single top	
	bb→Z gb→Zb pp→Zbj	Standard candle: SM BSM bkg, b-pdf	
	gb → gamma+b		
Higgs	bb→ (h,A) gb→(h,A)+b	SUSY discovery/ measurements at large tan(beta)	

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

- Electroweak process : Production = Decay
 - →TH high precision attainable
- ''Anomalously'' high cross section wrt to $pp \rightarrow t$ tbar
 - → EXP high precision possible
- Sensitive to New Physics effects in different ways
 - Anomalous couplings, resonances, fourth generation
- Sensitive to bottom content of the proton
- Single top is a background to other searches...!

For total rates tW much smaller than t tbar, but in this case greatly enhanced by the jet-veto cuts.

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

- Total cross sections at the highest possible order:
 - → NNLO in QCD and NLO in EW
- Fully differential NLO cross sections, possibly in an event generator implementation (to be directly used by exp's).
- Accurate knowledge and assessment of the "usual approximations" that are made starting at LO (narrow-width, factorizable corrections, n-flavor schemes and b-mass, interference)

Université catholique

- Total cross sections at the highest possible order:
 - → NNLO in QCD and NLO in EW
- Fully differential NLO cross sections, possibly in an event generator implementation (to be directly used by exp's).
- Accurate knowledge and assessment of the "usual approximations" that are made starting at LO (narrow-width, factorizable corrections, n-flavor schemes and b-mass, interference)

Thursday 16 June 2011

Université catholique

- Total cross sections at the highest possible order:
 - → NNLO in QCD and NLO in EW
- Fully differential NLO cross sections, possibly in an event generator implementation (to be directly used by exp's).
- Accurate knowledge and assessment of the "usual approximations" that are made starting at LO (narrow-width, factorizable corrections, n-flavor schemes and b-mass, interference)

Université catholique de louvain

- Total cross sections at the highest possible order:
 - → NNLO in QCD and NLO in EW
- Fully differential NLO cross sections, possibly in an event generator implementation (to be directly used by exp's).
- Accurate knowledge and assessment of the "usual approximations" that are made starting at LO (narrow-width, factorizable corrections, n-flavor schemes and b-mass, interference)

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Université catholique de louvain

- Total cross sections at the highest possible order:
 - → NNLO in QCD and NLO in EW
- Fully differential NLO cross sections, possibly in an event generator implementation (to be directly used by exp's).
- Accurate knowledge and assessment of the "usual approximations" that are made starting at LO (narrow-width, factorizable corrections, n-flavor schemes and b-mass, interference)

Beware: no s-t interference at NLO (5F)! It starts at NNLO...

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Université catholique de louvain

FLAVOR SCHEMES

• Both the t-channel as well as the Wt associated production have a (heavy) b quark in the initial state

 There is an equivalent^{*} description with a gluon splitting to b quark pairs

* At all orders. At fixed order differences arise...

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

FLAVOR SCHEMES

- Both t-channel and Wt production are enhanced by a collinear logarithm
- This results from integrating over a t-channel propagator

FLAVOR SCHEMES

- Both t-channel and Wt production are enhanced by a collinear logarithm
- This results from integrating over a t-channel propagator

FLAVOR SCHEMES

- Both t-channel and Wt production are enhanced by a collinear logarithm
- This results from integrating over a t-channel propagator

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

FLAVOR SCHEMES

- Putting it together: $\frac{d\sigma(qg \to q't\bar{b})}{d\log p_{T,\max}^2} \sim \left(\frac{\alpha_s}{2\pi}\right) \left[\int \frac{dx}{x} P_{g \to q\bar{q}} f_g\right] \times \hat{\sigma}(qb \to q't)$
- But the first part resembles the evolution equation for a quark:

$$\frac{df_q}{d\log q^2} \sim \left(\frac{\alpha_s}{2\pi}\right) \int \frac{dx}{x} \left[P_{g \to q\bar{q}} f_g + P_{q \to qg} f_q\right]$$

• So when the logarithms really dominate, we can replace this description by

$$\sigma(qg \to q't\bar{b}) \approx \sigma(qb \to q't)$$

- Scale of the bottom quark PDF should be related pT,max
- At all orders both description should agree; otherwise, differ by:
 - evolution of logarithms in PDF: they are resummed
 - ranges of integration (obscured here)
 - approximation by large logarithm

UCL Université catholique de Louvain

FLAVOR SCHEMES

Two different ways of computing the same quantities:

- I. It does not resum (possibly) large logs (⇒norm.
 uncertainties)
- 2. Going NLO might be difficult.
- 3. Mass effects are there at any order in PT.
- 4. MC implementation with ME/PS merging a bit involved.

I. It resums initial state large logs in the b pdf, leading to more stable predictions

2. Going NLO (and NNLO) "easy".

3. Mass effects are normally corrections and enter at higher orders.

4. Implementation in MC relies on mass effects given by the PS, which are presently not very accurate.

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

Single top	s-channel	t-c	hannel	V	Vt
	5 CHAINEI	2→2	2→3	2→2	2→3

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

Single top	s-channel	t-channel		$\begin{array}{c} \text{Wt} \\ 2 \rightarrow 2 \\ \end{array} 2 \rightarrow 3 \end{array}$	
		2→2	2→3	2→2	2→3
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	_	-	-

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Single top	s-channel	t-channel		Wt	
		2→2	2→3	2→2	2→3
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	_	-	-
NLO diff.	Harris et al., Sullivan et al.	Harris et al., Sullivan et al.	Campbell et al.	Campbell et al.	-

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Single top	s channel	t-chai	nnel	Wt	
	S-Charmer	2→2	2→3	2→2	2→3
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	_	_	-
NLO diff.	Harris et al., Sullivan et al.	Harris et al., Sullivan et al.	Campbell et al.	Campbell et al.	_
NLO w/ decays	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al.	Campbell et al.	X (Denner et al.; Bevilacqua et al.)

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Single top	s channel	t-channel		\sim	Vt	
Single top	S-Charmer	2→2	2→3	2→2	2→3	
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	-	_	_	
NLO diff.	Harris et al., Sullivan et al.	Harris et al., Sullivan et al.	Campbell et al.	Campbell et al.	_	
NLO w/ decays	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al.	Campbell et al.	(Denner et al.; Bevilacqua et al.)	
Higher orders	NNLO : [Chetyrkin, Steinhauser] NNLL [Kidonakis]	NNLL [Kidonakis]	X	X	X	

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Single top	s channel	t-cha	nnel	Wt	
Single top	5-Charmer	2→2	2→3	2→2	2→3
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	-	-	_
NLO diff.	Harris et al., Sullivan et al.	Harris et al., Sullivan et al.	Campbell et al.	Campbell et al.	_
NLO w/ decays	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al.	Campbell et al.	X (Denner et al.; Bevilacqua et al.)
Higher orders	NNLO : [Chetyrkin, Steinhauser] NNLL [Kidonakis]	NNLL [Kidonakis]	X	X	×
NLOwPS	MC@NLO POWHEG [Frixione et al., Aioli et al.]	MC@NLO POWHEG [Frixione et al., Aioli et al.]	aMC@NLO [Frederix et al.]	MC@NLO POWHEG [Frixione et al., Re]	×

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Single top	s channel	t-chai	t-channel		/t
Single top	S-CHAINEI	2→2	2→3	2→2	2→3
NLO total	Smith & WIllenbrock	Bordes et al. Stelzer et al.	_	-	_
NLO diff.	Harris et al., Sullivan et al.	Harris et al., Sullivan et al.	Campbell et al.	Campbell et al.	-
NLO w/ decays	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al. Swchwienhorst et al. Falgari et al.	Campbell et al.	Campbell et al.	(Denner et al.; Bevilacqua et al.)
Higher orders	NNLO : [Chetyrkin, Steinhauser] NNLL [Kidonakis]	NNLL [Kidonakis]	X	X	×
NLOwPS	MC@NLO POWHEG [Frixione et al., Aioli et al.]	MC@NLO POWHEG [Frixione et al., Aioli et al.]	aMC@NLO [Frederix et al.]	MC@NLO POWHEG [Frixione et al., Re]	X
EWNLO	X	Beccaria, Renard, Mirabella, Verzegnazzi, Macorini et al.	X	Beccaria, Renard, Mirabella, Verzegnazzi, Macorini et al.	X

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

SCALE DEPENDENCE: $2 \rightarrow 2 VS 2 \rightarrow 3$

Thursday 16 June 2011

Fabio Malton

T-CHANNEL BEST CROSS SECTIONS : $2 \rightarrow 2 \text{ vs } 2 \rightarrow 3$

[Campbell, Frederix, FM, Tramontano, 0907.3933]

Uncertainties: scales, PDF, mt (1%), mb(4%)

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

T-CHANNEL BEST CROSS SECTIONS : $2 \rightarrow 2 \text{ vs } 2 \rightarrow 3$

- Conservative combination of scale and PDF uncertainties
- PDF uncertainty dominant at Tevatron, but not at the LHC
- b-mass uncertainties at the same level as t-mass ones [Overseen in previous studies].
- Consistent at the Tevatron: logarithms not so important?
- For the LHC, the minor difference could point to either:
 - large logarithms being resummed
 - b-pdf's might not be accurate...
 - Higher order corrections (NNLO for $2 \rightarrow 2$) important...

TOP AND LIGHT JET DISTRIBUTIONS

Some differences, but typically of the order of $\sim 10\%$ in the regions where the cross section is large

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

SPECTATOR B

- First NLO prediction for this observable
- Slightly softer in 4F (2 \rightarrow 3), particularly at the Tevatron
- Deviations up to ~ 20% : perturbatively quite stable

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

 $\frac{\sigma(|\eta(b)| < 2.5, \, p_T(b) > 20 \text{ GeV})}{\sigma_{\text{inclusive}}}$

- Very large scale dependence for 5F (2 → 2), → effectively a LO quantity
- NLO 4F (2 → 3) much more stable
- Dramatic effect at the Tevatron, important at the LHC.

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

 $\frac{\sigma(|\eta(b)| < 2.5, \, p_T(b) > 20 \text{ GeV})}{\sigma_{\text{inclusive}}}$

- Very large scale dependence for 5F (2 → 2), → effectively a LO quantity
- NLO 4F (2 → 3) much more stable
- Dramatic effect at the Tevatron, important at the LHC.

 $\frac{\sigma(|\eta(b)| < 2.5, \, p_T(b) > 20 \text{ GeV})}{\sigma_{\text{inclusive}}}$

- Very large scale dependence for 5F (2 → 2), → effectively a LO quantity
- NLO 4F (2 → 3) much more stable
- Dramatic effect at the Tevatron, important at the LHC.

 $\frac{\sigma(|\eta(b)| < 2.5, \, p_T(b) > 20 \text{ GeV})}{\sigma_{\text{inclusive}}}$

- Very large scale dependence for 5F (2 → 2), → effectively a LO quantity
- NLO 4F (2 → 3) much more stable
- Dramatic effect at the Tevatron, important at the LHC.

 $\frac{\sigma(|\eta(b)| < 2.5, \, p_T(b) > 20 \text{ GeV})}{\sigma_{\text{inclusive}}}$

- Very large scale dependence for 5F (2 → 2), → effectively a LO quantity
- NLO 4F (2 → 3) much more stable
- Dramatic effect at the Tevatron, important at the LHC.

S AND T CHANNEL SEPARATION AT CDF

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

Université catholique de Louvain

NNLO APPROX+NNLL FOR T-CHANNEL

[Kidonakis, 2010]

$$\begin{split} \hat{\sigma}^{res}(N) &= \exp\left[\sum_{i=1,2} E(N_i)\right] \exp\left[E'(N')\right] \exp\left[\sum_{i=1,2} 2 \int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{q/q} \left(\tilde{N}_i, \alpha_s(\mu)\right) \right. \\ &\times \operatorname{Tr}\left\{H\left(\alpha_s(\sqrt{s})\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} \Gamma_S^{\dagger}\left(\alpha_s(\mu)\right)\right] \right. \\ &\left. \times S\left(\alpha_s(\sqrt{s}/\tilde{N}')\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}'} \frac{d\mu}{\mu} \Gamma_S\left(\alpha_s(\mu)\right)\right]\right\}. \end{split}$$

$$\sigma_{\rm t-ch}^{\rm top}(m_t = 173\,{\rm GeV},\,\sqrt{S} = 7\,{\rm TeV}) = 41.7^{+1.6}_{-0.2} \pm 0.8~{\rm pb}$$

$$\sigma_{
m t-ch}^{
m antitop}(m_t=173\,{
m GeV},\,\sqrt{S}=7\,{
m TeV})=22.5\pm0.5^{+0.7}_{-0.9}~{
m pb}$$

 $\sigma_{\rm t-ch}^{\rm top}(m_t=173\,{\rm GeV},\,\sqrt{S}=14\,{\rm TeV})=151^{+4}_{-1}\pm 3~{\rm pb}$

$$\sigma_{
m t-ch}^{
m antitop}(m_t = 173\,{
m GeV},\,\sqrt{S} = 14\,{
m TeV}) = 92^{+2+2}_{-1-3}~{
m pb}$$

Extremely stable results : quite small differences wrt NLO Other effects might be more important than pure NNLO QCD!!!

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

SINGLE TOP BEYOND THE NW APPROX.

[Falgari, Merrol, Signer, 2010]

Non-factorizable term is included keeping a finite width and making a gauge invariant expansion.

SINGLE TOP BEYOND THE NW APPROX.

[Falgari, Merrol, Signer, 2010]

	Ref. [26]	$\sigma^{ m prod}$	σ^t	σ^{t^*}	
LO (pb)	76.6	76.62(1)	76.62(1)	77.36(5)	LHC10
NLO (pb)	84.4	84.41(1)	84.91(2)	86.3(3)	

NLO effects on total cross sections are quite small, but differences arise in the shapes.

For example in the m_{inv} in the resonant and on-shell case (dash).

NLO SINGLE TOP IN MC'S

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

ME+PS COMPARISON AT LHC

pT and **\eta** spectra of the spectator HQ from the 2 \rightarrow 3 prediction are accurate and do not need any dangerous matching...

NLO MC AT THE TEVATRON

[Aioli,Nason,Oleari,Re : 0907.4076]

Shower for initial states HQ not correct in fortran HERWIG.

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

NLO 4 FLAVOR IN AMC@NLO

4-flavor scheme

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

TW IN THE 5F

Interference with tt at NLO⇒ non trivial problem : definition of the process is at stake

[Tim Tait: (2000), A.Belyaev & E. Boos (2001)]. First MC viable solution proposed [Campbell, FM, Willenbrock, LH2005] and implemented in MCFM [Campbell, Tramontano, 2006].

However, interference is tamed with a (b-)jet veto \Rightarrow sensitivity to low pt partons \Rightarrow soft resummation \Rightarrow MC with PS and with NLO needed.

TW IN THE 5F

Interference with tt at NLO⇒ non trivial problem : definition of the process is at stake

[Tim Tait: (2000), A.Belyaev & E. Boos (2001)]. First MC viable solution proposed [Campbell, FM, Willenbrock, LH2005] and implemented in MCFM [Campbell, Tramontano, 2006].

However, interference is tamed with a (b-)jet veto \Rightarrow sensitivity to low pt partons \Rightarrow soft

resummation \Rightarrow MC with PS and with NLO needed. Diagram Removal :

Diagram Subtraction :

$$\left(\mathcal{S}_{\alpha\beta}+\mathcal{I}_{\alpha\beta}+\mathcal{D}_{\alpha\beta}-\widetilde{\mathcal{D}}_{\alpha\beta}
ight)$$

Result: tW can be defined in * a MC-friendly way * (de facto) non-ambiguous way. [Frixione, Laenen, Motylinski, Webber, White,2008] [White, Frixione, Laenen, FM, arXiv:0908.0631] [Re,arXiv:1009.2450]

 $\hat{\mathcal{S}}_{\alpha\beta}$

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

TW IN THE 5F

Interference with tt at NLO⇒ non trivial problem : definition of the process is at stake

[Tim Tait: (2000), A.Belyaev & E. Boos (2001)]. First MC viable solution proposed [Campbell, FM, Willenbrock, LH2005] and implemented in MCFM [Campbell, Tramontano, 2006].

However, interference is tamed with a (b-)jet veto \Rightarrow sensitivity to low pt partons \Rightarrow soft

resummation \Rightarrow MC with PS and with NLO needed.

Diagram Removal :

Diagram Subtraction :

$$\left(\mathcal{S}_{\alpha\beta}+\mathcal{I}_{\alpha\beta}+\mathcal{D}_{\alpha\beta}-\widetilde{\mathcal{D}}_{\alpha\beta}\right)$$

Result: tW can be defined in

* (de facto) non-ambiguous way.

[Frixione, Laenen, Motylinski, Webber, White,2008] [White, Frixione, Laenen, FM ,arXiv:0908.0631] [Re,arXiv:1009.2450] Upshot: 5F the most convenient choice to move the

 $\hat{\mathcal{S}}_{\alpha\beta}$

interference problem one order higher!

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

TW IN THE 4F

• Calculations beyond LO so far used the narrow width approximation for the top quark pair production: tops are assumed to be stable

Thursday 16 June 2011

TW IN THE 4F

• Calculations beyond LO so far used the narrow width approximation for the top quark pair production: tops are assumed to be stable

TW IN THE 4F

• Calculations beyond LO so far used the narrow width approximation for the top quark pair production: tops are assumed to be stable

• However, top quarks decay, so the true LO diagram is this one

TW IN THE 4F

• Calculations beyond LO so far used the narrow width approximation for the top quark pair production: tops are assumed to be stable

• However, top quarks decay, so the true LO diagram is this one

• In fact, there are quite a few more diagrams of the same order...

TW IN THE 4F

• Calculations beyond LO so far used the narrow width approximation for the top quark pair production: tops are assumed to be stable

• However, top quarks decay, so the true LO diagram is this one

• In fact, there are quite a few more diagrams of the same order...

• Gauge invariance guides us to include also single-resonant and non-resonant production. Note that there is interference between the diagrams above

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

TW IN THE 4F

- Recently, the full NLO computations to the WWbb process were calculated by two independent groups [Denner et al.; Bevilacqua et al. and Pozzorini's talk]
- Consistent description of top pair, single top and non-resonant contributions at NLO
- Particularly important when cuts require tops to be off-shell
- No need to disentangle top pair and Wt and apply separate K-factors when studying the "top" background to e.g. H → WW

Thursday 16 June 2011

TW IN THE 4F

- Recently, the full NLO computations to the WWbb process were calculated by two independent groups
 [Denner et al.; Bevilacqua et al. and Pozzorini's talk]
- Consistent description of top pair, single top and non-resonant contributions at NLO
- Particularly important when cuts require tops to be off-shell
- No need to disentangle top pair and Wt and apply separate K-factors when studying the "top" background to e.g. H → WW

However, $mb \neq 0$ is needed to be used for tW!

TH+

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Malton

Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.

Standard Model Benchmarks at High Energy Hadron Colliders , DESY Zeuthen

Thursday 16 June 2011

Fabio Maltoni

Thursday 16 June 2011

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.
 - Single top can be certainly considered as a Standard Candle.

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.
 - Single top can be certainly considered as a Standard Candle.

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.
 - Single top can be certainly considered as a Standard Candle.
- 🎇 To do:
 - Exact NNLO corrections for t-channel production still unknown, but small effects expected.

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.
 - Single top can be certainly considered as a Standard Candle.
- 🎇 To do:
 - Exact NNLO corrections for t-channel production still unknown, but small effects expected.
 - Make 4F calculations available NLOwPS (with decays).

- Single top offers unique and exciting opportunities for testing the SM and probing New Physics at the Tevatron and even more at the LHC.
- Single top cross sections are known from TH with a very competitive accuracy with many effects studied and under control.
 - Single top can be certainly considered as a Standard Candle.
- **₩** To do:
 - Exact NNLO corrections for t-channel production still unknown, but small effects expected.
 - Make 4F calculations available NLOwPS (with decays).
- We are ready to go...