W and Z boson production at hadron colliders in different channels

[SM Benchmarks at High-Energy Hadron Colliders – DESY Zeuthen]

Jan Winter ^a

– CERN –

- ➡ Will mainly talk about ...
- V + jets and,
- **b** the various sophisticated ways to get predictions.
- Plus recent puzzles related to it.

http://www.sherpa-mc.de/

^aSherpa authors: S. Höche, H. Hoeth, F. Krauss, M. Schönherr, F. Siegert, S. Schumann, J. Winter and K. Zapp

• We probably do not need higher-order corrections for discoveries.

 \rightarrow If we get smoking-gun signals, we can use data-driven background subtractions.

• Likely, end up in tricky situations requiring us to know multi-jet backgrounds [& signals] precisely.

 \rightarrow Many new-physics signatures have leptons, MET and several jets.

→ E.g. sparticle masses <3TeV @ 14TeV LHC: reduced SM systematics $(50\% \rightarrow 20\%) \Rightarrow$ increases # discovered models $(68\% \rightarrow 81\%)$ in pMSSM study by [CONLEY, GAINER, HEWETT, PHUONG LE, RIZZO].

\Rightarrow SM Higgs situation is good example of such a scenario.

- \rightarrow We run exclusion analyses @ Tevatron (+ LHC) and hope for some excess to build up with more data.
- Largely unexploited @ Run2: $gg \rightarrow h \rightarrow WW \rightarrow \ell \nu jj$.

our approach [Lykken, Martin, Winter, in preparation]

- signal and (dominant) W+2jets background with Sherpa
 ⇒ QCD corrections (shapes) well included
- correct rates with *K*-factors (latest NNLO for signal, MCFM NLO for W+2jets)
- after basic cuts plus combinatorial h selection using mass windows for h and $jj \Rightarrow S/\sqrt{B} \sim 1.9(1.2)$ @ hadron level for $M_h = 165(180)$ GeV.

Recent measurements tell us

 \rightarrow ... a different story. And it is exactly this final state: lepton + MET + 2 jets.

Recent measurements tell us

 \rightarrow ... a different story. And it is exactly this final state: lepton + MET + 2 jets.

Recent measurements tell us

... a different story. And it is exactly this final state: lepton + MET + 2 jets.

Recent measurements tell us

... a different story. And it is exactly this final state: lepton + MET + 2 jets.

- What are the differences in the two analyses. How large of an effect can they make?
- Why do the diboson contributions look pretty different (just binning)?
- Why is the QCD background in DØ roughly twice as large (just looser electron criteria)?

How well do we understand all the backgrounds ...

with the major contribution coming from W+2jets?

Hadronic cross sections for V production

Calculation of the hadronic cross section relying on <u>factorization theorem</u> expected to hold for $A + B \rightarrow V + X$ [Collins, Soper, Sterman, 2004 Review]

$$\sigma_{\text{hadr}} = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu_{\text{F}}) f_j(x_2, \mu_{\text{F}}) \sigma_{\text{part}}(ij \to V \to \ldots)$$

 σ_{part} ... calculable in pQCD; f_i = parton density functions (PDFs) ... extracted from data; separation of perturbative and non-perturbative regimes \rightarrow pQCD used to predict cross sections in complicated hadron collider environment

- E.g. V production @ LO: two initial-state partons fuse to make either $W^{\pm} \rightarrow \ell \nu$ or $Z/\gamma^* \rightarrow \ell^+ \ell^$ vector boson has no transverse momentum
- E.g. V + n-jet production @ LO: vector boson recoils against one or more jets (parton-level jets)
 highly automated ME generators @ tree level
 Alpgen, MadGraph, Helac, Amegic, Comix, Whizard, LO MCFM

Beyond LO

- E.g. V production @ NNLO: fully differential codes:
 - **FEWZ** [Melnikov, Petriello]
- DYNNLO [CATANI, CIERI, FERRERA, DE FLORIAN, GRAZZINI]
- E.g. V + n-jet production @ NLO:

based on generalized unitarity and OPP methods

BlackHat+Sherpa [Bern, Dixon, Maitre, ...]

Socket

[Melnikov, Zanderighi, ...]

established

MCFM

[CAMPBELL, ELLIS, ...]

automated

MadFKS+ MadLoop

[Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]

Multi-jet predictions @ LO+LL and beyond

Traditional approach: parton showers describe additional jet activity. There are limitations:

- shower seeds are LO (QCD) processes only
- Iack of high-energetic large-angle emissions
- semi-classical picture; quantum interferences and correlations only approximate
- \checkmark shower evolution proceeds in the limit of large $N_{\rm C}$ (number of colours)

Possible improvements:

- first few hardest emissions given by tree-level MEs → improved LO+LL predictions
 [called (tree-level/LO) ME+PS merging CKKW, L-CKKW, MLM, ME&TS No NLO xsecs!]

Systematic embedding of higher-order QCD corrections in multi-purpose Monte Carlos like Herwig, Pythia or Sherpa. (enormous progress in last 10 years with two effects)

- \Rightarrow qualitatively better description of QCD jet data at all colliders (LEP, Hera, Tevatron)
- \Rightarrow improved handling and understanding of systematic uncertainties

Tree-level ME+PS merging

Merging procedures have main steps in <u>common</u>:

- (1) calculate n-jet cross sections: use jet criteria to define/regularize the MEs,
- (2) generate hard-parton samples with ME kinematics and $P \propto n$ -jet/total xsecs,
- (3) accept/reject jet configurations based on their (further) PS evolution,
- (4) find suitable starting conditions for the parton showering and veto unwanted jets.

<u>Different</u> methods use <u>different</u> techniques in dealing with (1), (3) and (4):

• CKKW, for example: (1) employ k_T -jet measure; (3) reweight MEs through α_s and analytical Sudakov form factors; (4) evolve each ME parton using k_T cluster scales & veto emissions above Q_{jet}

Examples for ME+PS merging Monte Carlos:

- Alpgen MLM; interfaced to Pythia or Herwig [MANGANO ET AL.]
- \blacksquare MadGraph MLM, cone or k_T jets; interfaced to Pythia [MALTONI ET AL.]
- Sherpa CKKW, ME&TS from vs1.2; truly interconnected with PSs [KRAUSS ET AL.]
- Herwig++ modified CKKW, i.e. truncated showers [RICHARDSON ET AL.]

Tree-level ME+PS merging

Matrix elements and truncated showers: ME&TS

Key feature of Sherpa is tree-level ME+PS merging. Steadily improved over recent years.State-of-the-art: ME&TS[HÖCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

- combine PS pros (resumming soft emissions) + ME pros (hard emissions, quantum interferences, correlations)
 - \Rightarrow Fully populate emission's phase space with either ME or PS avoid dead regions.
 - \Rightarrow ME and PS describe the same final state remove double counting.

Slice multi-jet phase space into two domains: via IR-safe jet criterion Q

- \rightarrow tree-level MEs: jet seed (hard parton) production $Q > Q_{cut}$
 - > parton showers: (intra-)jet evolution $Q_{\rm cut} > Q > Q_{\rm hadr}$

cluster once
find
$$\{k_{\perp}^{2};z;\phi\}$$

Pseudo shower history

$$\mathcal{K}_{ab}^{\mathrm{ME}}(\xi,\bar{t}) = \mathcal{K}_{ab}(\xi,\bar{t}) \Theta \left[Q_{ab}(\xi,\bar{t}) - Q_{\mathrm{cut}} \right] \qquad \mathcal{K}_{ab}^{\mathrm{PS}}(\xi,\bar{t}) = \mathcal{K}_{ab}(\xi,\bar{t}) \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(\xi,\bar{t}) \right]$$

cluster ME final states according to inverse shower formalism

- \bigcirc PS starts at $2 \rightarrow 2$ core and may emit partons off intermediate lines
- ME branchings as resolved must be respected

 \circ preserve evolution, splitting and angular variables.

Ps

Matrix elements and truncated showers: ME&TS

Key feature of Sherpa is tree-level ME+PS merging. Steadily improved over recent years.State-of-the-art: ME&TS[HÖCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

- combine PS pros (resumming soft emissions) + ME pros (hard emissions, quantum interferences, correlations)
 - \Rightarrow Fully populate emission's phase space with either ME or PS avoid dead regions.
 - \Rightarrow ME and PS describe the same final state remove double counting.

Slice multi-jet phase space into two domains: via IR-safe jet criterion Q

- \rightarrow tree-level MEs: jet seed (hard parton) production $Q > Q_{cut}$
- \rightarrow parton showers: (intra-)jet evolution $Q_{\text{cut}} > Q > Q_{\text{hadr}}$
 - \circ Sudakov form factor factorizes into ME and PS part.
 - \circ Replace kernel in ME domain by correct ME expression.

Pseudo-shower history for MEs and truncated showering:

- cluster ME final states according to inverse shower formalism
- \bigcirc PS starts at $2 \rightarrow 2$ core and may emit partons off intermediate lines
- ME branchings as resolved must be respected

 \circ preserve evolution, splitting and angular variables.

Matrix elements and truncated showers: ME&TS

Key feature of Sherpa is tree-level ME+PS merging. Steadily improved over recent years.State-of-the-art: ME&TS[HÖCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

- combine PS pros (resumming soft emissions) + ME pros (hard emissions, quantum interferences, correlations)
 - \Rightarrow Fully populate emission's phase space with either ME or PS avoid dead regions.
 - \Rightarrow ME and PS describe the same final state remove double counting.

Slice multi-jet phase space into two domains: via IR-safe jet criterion Q

- → <u>tree-level MEs</u>: jet seed (hard parton) production $Q > Q_{cut}$
- \rightarrow parton showers: (intra-)jet evolution $Q_{\text{cut}} > Q > Q_{\text{hadr}}$
 - \circ Sudakov form factor factorizes into ME and PS part.

Comparison with CDF data: Z+jets production

ME & TS :: COMIX + CSS

[T. AALTONEN ET AL., PRL 100 (2008) 102001]

- Sherpa vs1.1 [CKKW] (left) compared with Sherpa vs1.2 [ME&TS] (right).
- Examples of jet observables: new approach better describes the data.
- \bigcirc Sherpa predictions multiplied by constant K-factor, normalized to first-jet bin xsec.
- Similar plots avail. for Herwig++'s mod. CKKW. [HAMILTON, RICHARDSON, TULLY, JHEP 11 (2009) 038]

Z+jets as measured by DØ

Comparison to Sherpa's CKKW implementation in v1.1.3

Example: DY- p_T in Z/γ^* +jet events DØ Data: Phys. Lett. B 669 (2008) 278

Sherpa v1.1.3

Z+jets as measured by DØ

Comparison to Sherpa's CKKW implementation in v1.1.3

Example: 1st jet- p_T in Z/γ^* +jet events DØ Data: Phys. Lett. B 669 (2008) 278

Sherpa v1.1.3

 $\neg \neg \neg$

Z+jets production @ Tevatron Run2 energies

ME&TS :: COMIX + CSS

[HÖCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

Merging systematics has improved: Q_{cut} variation now within ±10%.
 Differential k_T jet rates in Q_{cut} = Q_{jet} variation @ hadron level. Note N_{max} = 5.
 Note $\mu_{\rm F}^2 = M_{ee}^2$ and 66 GeV < M_{ee} < 116 GeV.

NLO vs. ME&TS: LHC predictions for W+3jets

[HÖCHE, HUSTON, MAITRE, WINTER, ZANDERIGHI; LESHOUCHES09 PROCEED.: ARXIV:1003.1241]

- between BLACKHAT [BERGER ET AL.], ROCKET [ELLIS, MELNIKOV, ZANDERIGHI] and SHERPA [GLEISBERG ET AL.]
- \blacksquare rather different scale choices at NLO yield > 20% deviations ... impact on BSM searches !
- SHERPA's ME&TS merging in good agreement with NLO once rescaled to NLO xsec

NLO vs. ME&TS: LHC predictions for W+3jets

[HÖCHE, HUSTON, MAITRE, WINTER, ZANDERIGHI; LESHOUCHES09 PROCEED.: ARXIV:1003.1241]

- between BLACKHAT [BERGER ET AL.], ROCKET [ELLIS, MELNIKOV, ZANDERIGHI] and SHERPA [GLEISBERG ET AL.]
- $\,$ $\,$ rather different scale choices at NLO yield > 20% deviations \dots impact on BSM searches !
- SHERPA's ME&TS merging in good agreement with NLO once rescaled to NLO xsec

NLO vs. ME&TS: LHC predictions for W+3jets

[HÖCHE, HUSTON, MAITRE, WINTER, ZANDERIGHI; LESHOUCHES09 PROCEED.: ARXIV:1003.1241]

- between BLACKHAT [BERGER ET AL.], ROCKET [ELLIS, MELNIKOV, ZANDERIGHI] and SHERPA [GLEISBERG ET AL.]
- \blacksquare rather different scale choices at NLO yield > 20% deviations ... impact on BSM searches !
- SHERPA's ME&TS merging in good agreement with NLO once rescaled to NLO xsec

Scale uncertainty for multi-leg processes at NLO

- Common agreement: scale dependence defined by varying $\mu_0/2 < \mu < 2\mu_0$.
- Works relatively well for one-scale processes where typical NLO scale uncertainties are O(10%). But multi-leg processes are different for at least 2 reasons:
 - \rightarrow Higher powers of the strong coupling.
 - \rightarrow Many possibly very disparate kinematical scales.
- New insight from recent W+3jets calculations: scales leading to good perturbative behaviour.
 - \rightarrow @ large H_T , properties of W are not important, hence $E_{T,W}$ is not a good scale anymore
 - \rightarrow Alpgen W+3jets (plots from MLM): $\langle O \rangle = \langle O \rangle (E_{T,2} > \min E_{T,2}) / \langle O \rangle (E_{T,2} > 100 \text{GeV})$

Questions:

- ightarrow What sets the natural value of μ_0 ?
- \rightarrow Do we have to modify the simple approach?
- \rightarrow Should we think about local scale setting methods as in CKKW based on relative p_T identification between partons?

Systematic uncertainties of ME+PS predictions

related to ME+PS merging

- ${}_{\circ} Q_{
 m cut}$ magnitude of phase-space separation cut [cancels to log accuracy of shower]
- $N_{
 m ME}^{
 m max}$ maximum number of jets from hard tree-level MEs
- [choice of internal jet separation measure]

related to pQCD :: dynamical and local scale choices

- scale uncertainties from MEs [renormalization and factorization scale settings]
- scale uncertainties from PSs [coupling and PDF scale settings]

related to pQCD-npQCD transition

- \bullet parton-shower IR cut-off / intrinsic transverse momentum [tuned @ LEP & low- p_T DY pair production]
- PDFs plus $lpha_s(M_Z)$ taken from the fit [enter globally, affect ME and PS]

related to npQCD [phenomenological universal(?) models need be tuned to data]

- hadronization parameters [PROFESSOR tune against LEP data]
- underlying event parameters [tuned mainly by hand, partly by PROFESSOR]

Les Houches 2011:				
Step-by-step systematics study.				
Estimate and understand				
uncertainties related				
to each source.				

NLO+PS matching

- match PS to NLO preserving good features of both approaches (Sudakov suppression at small p_T , multiple soft/coll emissions) (NLO rate, high- p_T shape, reduced scale dependence)
- matching is smooth, no phase-space separation cut, final states are ready to be hadronized
- MC@NLO: http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/ [FRIXIONE, WEBBER; ...]
- **aMC@NLO:** automation of MC@NLO = MadFKS + MadLoop [ARXIV:1103.0621] + automation of MC subtraction terms [FREDERIX, FRIXIONE, TORIELLI (+ HIRSCHI, GARZELLI, MALTONI, PITTAU)] ($Wb\bar{b}$, work on V+1jet under way)
- **POWHEG:** http://powhegbox.mib.infn.it
 [ALIOLI, HAMILTON, NASON, OLEARI, RE] (recent achievements: V+1jet, Wbb̄ [ARXIV:1105.4488])
- MENLOPS: combine POWHEG and ME+PS via phase-space slicing [HAMILTON, NASON, JHEP 06 (2010) 039]
 (ME+PS rescaled to correct inclusive norm by global cut-dependent K-factor.)
 (Non-unitarity of ME+PS is no problem as long as is smaller than NLO effects.)

POWHEG and ME+PS: MENLOPS in Sherpa

[HÖCHE, KRAUSS, SCHÖNHERR, SIEGERT, JHEP 04 (2011) 024, ARXIV:1009.1127] [SLIDE FROM MAREK SCHÖNHERR]

- POWHEG domain restricted to soft emissions Q < Q_{cut}
 ⇒ NLO accuracy preserved for inclusive observables
- ME⊗PS used for hard emission & higher order emissions
 ⇒ preserves LO accuracy of every ME emission & LL accuracy of PS
- higher order emissions receive local K-factor $\frac{B(\Phi_B)}{B(\Phi_B)}$
- developed in parallel by JHEP06(2010)039, but using global K-factor

MENLOPS in Sherpa – Results

[HÖCHE, KRAUSS, SCHÖNHERR, SIEGERT, JHEP 04 (2011) 024, ARXIV:1009.1127]

[SLIDE FROM MAREK SCHÖNHERR]

 $p\bar{p} \to \ell^+\ell^- + X$

Data from DØ : Phys.Lett.B658(2008)112-119 Phys.Lett.B678(2009)45-54

POWHEG and MENLOPS agree well on p_{\perp} of hardest jet

MENLOPS superior for 2nd and 3rd jet

Other channels: W+b-jet example

- Solution Web is important background for Tevatron low-mass Higgs search: $W + h(\rightarrow b\bar{b})$ [sanity check for low-mass Higgs search: $W + Z(\rightarrow b\bar{b})$]
- first calculation of Wbb with massive b-quarks including correlations in W decay

[BADGER, CAMPBELL, ELLIS, ARXIV:1011.6647]

included in current version of MCFM (v6.0, May 2011, http://mcfm.fnal.gov)

# of jets	1 jet		2 jets		
jet identities	Q	(bb)	bj	(bb)j	bb
LO	0.430	0.105	-	_	0.162
NLO	0.582	0.130	0.090	0.030	0.150

- sum of NLO line: $\sigma_{evt}(Wb) = 0.982 \text{ pb}$; include bb twice, per CDF: $\sigma_{b-jet}(Wb) = 1.132 \text{ pb}$;
- setimate uncertainties: $0.913 < \sigma_{b-jet}(Wb) < 1.389$ pb;
- Alpgen: 0.78 pb; Pythia: 1.10 pb;
- Solution CDF [arXiv:0909.1505]: 2.74 \pm 0.27(stat) \pm 0.42(syst) pb. Puzzle not solved!

Other channels: back to the Wjj bump

Mismodelled backgrounds ?

- single top [Sullivan, Menon, arXiv:1104.3790], top pairs [Plehn, Takeuchi, arXiv:1104.4087]

NLO effects ?

- [CAMPBELL, MARTIN, WILLIAMS, ARXIV:1105.4594] checked excl. and incl. W+2jet cross sections
- no inconsistencies / surprises in K-factors
- Only 3 publications deal with the backgrounds while >20 supply us with BSM explanations. But we have a ...

Multitude of tools.

- Solution How well do they compare? How well do we know their systematics?
- Solution Can a cocktail of SM effects resolve the issue?
- Les Houches 2011 study [Krauss, Winter]
 - Effect of different ways to compute diboson production.
 - Contribution of $Z \rightarrow \tau \tau + jet$ to the CDF analysis' final state.

preliminary

preliminary

Summary

- Higher-order calculations are needed to meet the requirements on the precision of theoretical predictions in the LHC era.
 - Or is it the era of puzzles to be solved.
- Parton showers are improved by merging them with real-emission MEs for hard radiation.

 \Rightarrow ME+PS: CKKW(L), MLM, ...

Comparison with data: differences are on 20-40% level if an overall K-factor is used to correct for the total inclusive cross section as measured in the experiment.

 \Rightarrow Sherpa's new scheme is ME&TS. (Also in Herwig++.) Reduced systematics.

Beyond ME+PS/ME&TS: combine NLO+PS consistently ⇒ MC@NLO and POWHEG with a number of processes available. New automated approach aMC@NLO. Moreover, MENLOPS is a first successful attempt to combine NLO with tree-level higher-order MEs.

 \Rightarrow Very active field of research.

- Need for good understanding of how NLO, NLO+PS, ME+PS and shower models compare to each other and data. What are reliable estimates for their theoretical uncertainties?
 - This is crucial for assessing the reported anomalies.
- Apologies for being selective, could have well mentioned your tool.
 - MatchBox to automate POWHEG in Herwig++, or VBF@NLO for multi-V final states.