Higgs theory at NNLO

Robert Harlander

BU Wuppertal

Standard Model Benchmarks at High-Energy Hadron Colliders DESY Zeuthen, 17 June 2011

Supported by: BMBF, DFG, Helmholtz Alliance "Physics at the Terascale", LHCPhenoNet

R. Harlander (BU Wuppertal)

Higgs theory at NNLO

A B F A B F

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- dominant production mode
- sensitive to heavy particle spectrum

- dominant production mode
- sensitive to heavy particle spectrum

but

- $H
 ightarrow b ar{b}$ decay mode not usable for discovery
- LO is 1-loop \rightarrow radiative corrections difficult

- dominant production mode
- sensitive to heavy particle spectrum

but

- $H
 ightarrow b ar{b}$ decay mode not usable for discovery
- LO is 1-loop → radiative corrections difficult but important!

비로 서로에서로에서 집에서 나다.

《曰》《聞》《臣》《臣》 臣

《曰》《聞》《臣》《臣》 臣

《曰》《聞》《臣》《臣》 臣

- dominant production mode
- sensitive to heavy particle spectrum

but

- $H
 ightarrow b ar{b}$ decay mode not usable for discovery
- LO is 1-loop \rightarrow radiative corrections difficult

- dominant production mode
- sensitive to heavy particle spectrum

but

- $H
 ightarrow b ar{b}$ decay mode not usable for discovery
- LO is 1-loop \rightarrow radiative corrections difficult really?

• effective theory for $m_t \gg M_H$:

• effective theory for $m_t \gg M_H$:

∃ ⊳.

• effective theory for $m_t \gg M_H$:

• effective theory for $m_t \gg M_H$:

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, van Neerven '03]

< 17 ►

A B F A B F

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, van Neerven '03]

NNLL soft resummation

[Catani, de Florian, Grazzini, Nason '03], [Moch, Vogt '05], [Idilbi, Ji, Yuan '06], [Ravindran, Smith, van Neerven '07], [Kidonakis '08], [Ahrens, Becher, Neubert, Yang '09]

ELE SQA

A B M A B M

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, van Neerven '03]

NNLL soft resummation

[Catani, de Florian, Grazzini, Nason '03], [Moch, Vogt '05], [Idilbi, Ji, Yuan '06], [Ravindran, Smith, van Neerven '07], [Kidonakis '08], [Ahrens, Becher, Neubert, Yang '09]

• NLO p_T , y distributions + resummations

[de Florian, Grazzini, Kunszt '99], [de Florian, Grazzini '00], [Ravindran, Smith, van Neerven '02], [Glosser, Schmidt '02], [Berger, Qiu '03], [Bozzi, Catani, de Florian, Grazzini '03], [Anastasiou, Dixon, Melnikov '03], [Kulesza, Sterman, Vogelsang '04], [de Florian, Kulesza, Vogelsang '06]

<<p>(日本)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, van Neerven '03]

NNLL soft resummation

[Catani, de Florian, Grazzini, Nason '03], [Moch, Vogt '05], [Idilbi, Ji, Yuan '06], [Ravindran, Smith, van Neerven '07], [Kidonakis '08], [Ahrens, Becher, Neubert, Yang '09]

NLO p_T, y distributions + resummations

[de Florian, Grazzini, Kunszt '99], [de Florian, Grazzini '00], [Ravindran, Smith, van Neerven '02], [Glosser, Schmidt '02], [Berger, Qiu '03], [Bozzi, Catani, de Florian, Grazzini '03], [Anastasiou, Dixon, Melnikov '03], [Kulesza, Sterman, Vogelsang '04], [de Florian, Kulesza, Vogelsang '06]

NNLO Monte Carlo (partonic)

[Anastasiou, Melnikov, Petriello '05], [Catani, Grazzini '07]

<<p>(日本)

Test: subleading terms in $1/m_t$

$$\hat{\sigma} = \sum_{n} \left(\frac{m_{H}^2}{4m_t^2} \right)^n \hat{\sigma}_n$$

• NLO: [Dawson, Kauffman '93]

-47 ▶

Test: subleading terms in $1/m_t$

$$\hat{\sigma} = \sum_{n} \left(\frac{m_{H}^2}{4m_t^2} \right)^n \hat{\sigma}_n$$

• NLO: [Dawson, Kauffman '93]

-

< 17 ≥

Test: subleading terms in $1/m_t$

$$\hat{\sigma} = \sum_{n} \left(\frac{m_{H}^{2}}{4m_{t}^{2}} \right)^{n} \hat{\sigma}_{n}$$

- NLO: [Dawson, Kauffman '93]
- NNLO:

[RH, Ozeren '09] [RH, Mantler, Marzani, Ozeren '09] [Pak, Rogal, Steinhauser '09] [Marzani, Ball, Del Duca, Forte, Vicini '08]

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

June 2011 12 / 42

R. Harlander (BU Wuppertal)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, van Neerven '03]

NNLL soft resummation

[Catani, de Florian, Grazzini, Nason '03], [Moch, Vogt '05], [Idilbi, Ji, Yuan '06], [Ravindran, Smith, van Neerven '07], [Kidonakis '08], [Ahrens, Becher, Neubert, Yang '09]

NLO p_T, y distributions + resummations

[de Florian, Grazzini, Kunszt '99], [de Florian, Grazzini '00], [Ravindran, Smith, van Neerven '02], [Glosser, Schmidt '02], [Berger, Qiu '03], [Bozzi, Catani, de Florian, Grazzini '03], [Anastasiou, Dixon, Melnikov '03], [Kulesza, Sterman, Vogelsang '04], [de Florian, Kulesza, Vogelsang '06]

NNLO Monte Carlo (partonic)

[Anastasiou, Melnikov, Petriello '05], [Catani, Grazzini '07]

<<p>(日本)

NNLO differential

FEHiP

[Anastasiou, Melnikov, Petriello '04]

HNNLO Cotoni Grazzini

[Catani, Grazzini '08]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
• NLO \rightarrow +100% of LO

[Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]

¹Very rough numbers.

R. Harlander (BU Wuppertal)

→ Ξ → < Ξ</p>

• NLO \rightarrow +100% of LO

[Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]

• NNLO \rightarrow +60% of LO (30% of NLO)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, v. Neerven '03]

¹Very rough numbers.

R. Harlander (BU Wuppertal)

ELE SQC

A B K A B K

• NLO \rightarrow +100% of LO

[Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]

• NNLO \rightarrow +60% of LO (30% of NLO)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, v. Neerven '03]

• soft gluon resummation (or $\mu_F = \mu_R = m_H/2$) $\rightarrow +13\%$ [Catani, de Florian, Grazzini, Nason '03]

¹Very rough numbers.

R. Harlander (BU Wuppertal)

JI NOR

A B K A B K

• NLO \rightarrow +100% of LO

[Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]

• NNLO \rightarrow +60% of LO (30% of NLO)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, v. Neerven '03]

• soft gluon resummation (or $\mu_F = \mu_R = m_H/2$) $\rightarrow +13\%$ [Catani, de Florian, Grazzini, Nason '03]

• electro-weak \rightarrow +6% of LO

[Actis, Passarino, Sturm, Uccirati '08], [Aglietti, Bonciani, Degrassi, Vicini '04] [Degrassi, Maltoni '04], [Djouadi, Gambino '94]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹Very rough numbers.

• NLO \rightarrow +100% of LO

[Dawson '91], [Spira, Djouadi, Graudenz, Zerwas '91-'95]

• NNLO \rightarrow +60% of LO (30% of NLO)

[RH, Kilgore '02], [Anastasiou, Melnikov '02], [Ravindran, Smith, v. Neerven '03]

• soft gluon resummation (or $\mu_F = \mu_R = m_H/2$) $\rightarrow +13\%$ [Catani, de Florian, Grazzini, Nason '03]

• electro-weak \rightarrow +6% of LO

[Actis, Passarino, Sturm, Uccirati '08], [Aglietti, Bonciani, Degrassi, Vicini '04] [Degrassi, Maltoni '04], [Djouadi, Gambino '94]

• EW/QCD \rightarrow +6% of NNLO

[Anastasiou, Boughezal, Petriello '09]

¹Very rough numbers.

R. Harlander (BU Wuppertal)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• μ dependence (renormalization/factorization scales)

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \, \sigma = \mathbf{0}$$

A >

• μ dependence (renormalization/factorization scales)

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \sigma = \mathbf{0} + \mathrm{higher \ orders}$$

A >

• μ dependence (renormalization/factorization scales)

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \sigma = \mathbf{0} + \mathbf{higher orders}$$

- estimate higher orders from scale variation
- range of μ variation is (at best) a convention often: M/2 < μ < 2M

ヨトイヨト

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

ъ June 2011 17/42

R. Harlander (BU Wuppertal)

ъ June 2011 17/42

R. Harlander (BU Wuppertal)

· 《 별 ▶ _필| = · ·) Q (June 2011 17 / 42

R. Harlander (BU Wuppertal)

› ▲ 별 ▶ · 텔 ⊫ · · · ○ Q () June 2011 17 / 42

R. Harlander (BU Wuppertal)

= 990

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

= 990

R. Harlander (BU Wuppertal)

R. Harlander (BU Wuppertal)

• μ dependence (renormalization/factorization scales)

- μ dependence (renormalization/factorization scales)
- PDF uncertainties
 - parametrization
 - data
 - heavy quark effects
 - α_s
 - . . .

ELE NOR

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- μ dependence (renormalization/factorization scales)
- PDF uncertainties
 - parametrization
 - data
 - heavy quark effects
 - α_s
 - ...
- $m_b(m_b)$ vs. $m_b(M_H)$ vs. M_b^{pole}

• ...

EL NOR

▲圖▶ ▲臣▶ ▲臣

- μ dependence (renormalization/factorization scales)
- PDF uncertainties
 - parametrization
 - data
 - heavy quark effects
 - a_s
 - ...
- $m_b(m_b)$ vs. $m_b(M_H)$ vs. M_b^{pole}

• . . .

• combining errors: quadratically?

.

ELE NOR

- μ dependence (renormalization/factorization scales)
- PDF uncertainties
 - parametrization
 - data
 - heavy quark effects
 - α_s
 - ...
- $m_b(m_b)$ vs. $m_b(M_H)$ vs. M_b^{pole}

• ...

- combining errors: quadratically?
- how does Tevatron exclusion depend on $\Delta_{th}\sigma$?

5 1 S Q Q

- μ dependence (renormalization/factorization scales)
- PDF uncertainties
 - parametrization
 - data
 - heavy quark effects
 - α_s
 - ...
- $m_b(m_b)$ vs. $m_b(M_H)$ vs. M_b^{pole}

• ...

- combining errors: quadratically?
- how does Tevatron exclusion depend on $\Delta_{th}\sigma$?
- my opinion:
 - provide exclusion for a "central" theory prediction
 - decouple "theory error" from experimental error
 - equivalently: don't normalize to SM

EL NOR

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Higgs cross sections

1

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- used to be
 - main search mode for Tevatron

(4) E > (4) E

- used to be
 - main search mode for Tevatron

★ E ► < E</p>

- used to be
 - main search mode for Tevatron
 - considered useless for Higgs search at LHC

3 1 4 3

used to be

- main search mode for Tevatron
- considered useless for Higgs search at LHC
- use jet sub-structure:

[Butterworth *et al.* 08] promising for $M_H \approx 120 \text{ GeV}$

R. Harlander (BU Wuppertal)

= 990

[Brein, Djouadi, R.H. '03] [Han, Willenbrock '90]

= 990

[Brein, Djouadi, R.H. '03] [Han, Willenbrock '90]

[Ciccolini, Dittmaier, Krämer '03]

R. Harlander (BU Wuppertal)

[Brein, Djouadi, R.H. '03] [Han, Willenbrock '90]

[Ciccolini, Dittmaier, Krämer '03]

update:

[Brein, R.H., Wiesemann, Zirke '11]

Weak Boson Fusion

590

<<p>(日)
Weak Boson Fusion

Weak Boson Fusion

Weak Boson Fusion

NLO QCD: [Figy, Oleari, Zeppenfeld '03] + EW: [Ciccolini, Denner, Dittmaier '08]

R. Harlander (BU Wuppertal)

Higgs theory at NNLO

∃ ⊳

WBF: QCD+EW corrections

[Ciccolini, Denner, Dittmaier '08]

3 1 4 3

• gluon fusion/WBF interference

[Andersen, Binoth, Heinrich, Smillie '07], [Andersen, Smillie '08] [Bredenstein, Hagiwara, Jäger '08]

ELE SQC

A B F A B F

< 47 ▶

WBF: other corrections

gluon fusion/WBF interference

[Andersen, Binoth, Heinrich, Smillie '07], [Andersen, Smillie '08] [Bredenstein, Hagiwara, Jäger '08]

• gluon induced WBF [R.H., Vollinga, Weber '08]

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

WBF: other corrections

gluon fusion/WBF interference

[Andersen, Binoth, Heinrich, Smillie '07], [Andersen, Smillie '08] [Bredenstein, Hagiwara, Jäger '08]

• gluon induced WBF [R.H., Vollinga, Weber '08]

• DIS-like NNLO (inclusive) [Bolzoni, Maltoni, Moch, Zaro '10]

ヨト イヨ

WBF: other corrections

gluon fusion/WBF interference

[Andersen, Binoth, Heinrich, Smillie '07], [Andersen, Smillie '08] [Bredenstein, Hagiwara, Jäger '08]

gluon induced WBF [R.H., Vollinga, Weber '08]

• DIS-like NNLO (inclusive) [Bolzoni, Maltoni, Moch, Zaro '10]

BSM Higgs

1

<ロト < 回ト < 回ト < 回ト < 回

sensitive to heavy particle spectrum

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{y_t}{m_t}\right)^2$$

sensitive to heavy particle spectrum

$$\sigma \xrightarrow{m_t \gg M_H} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{y_t}{m_t} + \frac{y_{t'}}{m_{t'}} + \frac{y_{b'}}{m_{b'}}\right)^2$$

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{m_t}{m_t} + \frac{m_{t'}}{m_{t'}} + \frac{m_{b'}}{m_{b'}}\right)^2 = 9 \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2$$

R. Harlander (BU Wuppertal)

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{m_t}{m_t} + \frac{m_{t'}}{m_{t'}} + \frac{m_{b'}}{m_{b'}}\right)^2 = 9 \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2$$

NNLO: [Anastasiou, Buehler, Furlan, Herzog, Lazopoulos '11]

Higgs with 4th generation

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{y_t}{m_t}\right)^2$$

-

→ Ξ → +

-47 ▶

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{y_t}{m_t} + \frac{\tilde{y}_t^2}{\tilde{M}_t^2}\right)^2 \left(\frac{\cos\alpha}{\sin\beta}\right)^2$$

R. Harlander (BU Wuppertal)

Higgs theory at NNLO

-

.∃. ⊳.

sensitive to heavy particle spectrum

$$\sigma \stackrel{m_t \gg M_H}{\to} \frac{\pi}{256\sqrt{2}} \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{m_t}{m_t} + \frac{m_t^2}{2\tilde{M}_t^2}\right)^2 \left(\frac{\cos\alpha}{\sin\beta}\right)^2$$

R. Harlander (BU Wuppertal)

1

Higgs theory at NNLO

-

[Djouadi 98], [Carena et al. 99]

may interfere destructively!

[Djouadi 98], [Carena et al. 99]

may interfere destructively!

900

[R.H., Steinhauser '04] [Anastasiou et al. '06/'08] [Mühlleitner, Rzehak, Spira '07/'08] [Aglietti, Bonciani, Degrassi, Vicini '06] [Degrassi, Slavich '08]

[Djouadi 98], [Carena et al. 99]

may interfere destructively!

900

[R.H., Steinhauser '04] [Anastasiou et al. '06/'08] [Mühlleitner, Rzehak, Spira '07/'08] [Aglietti, Bonciani, Degrassi, Vicini '06] [Degrassi, Slavich '08]

> . -

-

[Spira, Djouadi, Graudenz, Zerwas '95] [RH, Kant '05]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

1= 200

[Spira, Djouadi, Graudenz, Zerwas '95] [RH, Kant '05]

NNLO

[RH, Kilgore '02] [Anastasiou, Melnikov '02] [Ravindran, Smith, van Neerven '03] [Marzani, Ball, del Duca, Forte, Vicini '08] [RH, Marzani, Mantler, Ozeren '10] [Pak, Rogal, Steinhauser '10]

- E - - E

[RH, Steinhauser '03] [Anastasiou et al. '07] NLO [Aglietti et al. '07] [Mühlleitner, Spira '07]

< A

→ Ξ → < Ξ</p>

1= 9Q@

[RH, Steinhauser '03] [Anastasiou *et al.* '07] [Aglietti *et al.* '07] [Mühlleitner, Spira '07]

NLO [RH, Steinhauser '03] [Anastasiou, Beerli, Daleo '08] [Degrassi, Slavich '08]

- E - - E

[RH, Steinhauser '03] [Anastasiou *et al.* '07] [Aglietti *et al.* '07] [Mühlleitner, Spira '07]

NLO [RH, Steinhauser '03] [Anastasiou, Beerli, Daleo '08] [Degrassi, Slavich '08]

bottom/sbottom

NLO [Degrassi, Slavich '10] [RH, Hofmann, Mantler '10]

A B M A B M

pp @ 10 TeV

[RH, Hofmann, Mantler '10]

June 2011 34 / 42

三日 のへの

★課 ▶ ★ 注 ▶ ★ 注 ▶

・ロト・(日)・(日)・(日)・(日)

• collinear logarithms: $\sim \alpha_s \ln(m_b/M_H) \sim \alpha_s \ln(5/200)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- collinear logarithms: $\sim \alpha_s \ln(m_b/M_H) \sim \alpha_s \ln(5/200)$
- resummation: bottom quarks as partons

Ή

• $b\bar{b} \rightarrow H$: only total inclusive cross section

э

1= 9Q@

・ 同 ト ・ ヨ ト ・

- $b\bar{b} \rightarrow H$: only total inclusive cross section
- experiments need distributions
 - Higgs transverse momentum
 - *H* + *n* jet
 - ...

EL NOR

・ 同 ト ・ ヨ ト ・ ヨ ト

- $b\bar{b} \rightarrow H$: only total inclusive cross section
- experiments need distributions
 - Higgs transverse momentum
 - *H* + *n* jet
 - ...
- first step: Higgs transverse momentum \Leftrightarrow *H*+jet

- $b\bar{b} \rightarrow H$: only total inclusive cross section
- experiments need distributions

 $\cdots \sim \delta(p_T^2)$

- Higgs transverse momentum
- *H* + *n* jet
- ...
- first step: Higgs transverse momentum \Leftrightarrow *H*+jet

consistent treatment requires NLO

$\sigma_{\rm jet \ veto} = \sigma_{\rm incl} - \sigma_{H+\rm jet}$

・ロト・(日)・(日)・(日)・(日)

$$\sigma_{\text{jet veto}} = \sigma_{\text{incl}} - \sigma_{H+\text{jet}}$$
LO: $\sigma_{\text{jet veto}}^{\text{LO}} = \sigma_{\text{incl}}^{\text{LO}} - 0$

・ロト・(日)・(日)・(日)・(日)

$$\sigma_{\text{jet veto}} = \sigma_{\text{incl}} - \sigma_{H+\text{jet}}$$
LO: $\sigma_{\text{jet veto}}^{\text{LO}} = \sigma_{\text{incl}}^{\text{LO}} - 0$
NLO: $\sigma_{\text{jet veto}}^{\text{NLO}} = \sigma_{\text{incl}}^{\text{NLO}} - \sigma_{H+\text{jet}}^{\text{LO}}$

・ロト・(日)・(日)・(日)・(日)

< □ > < @ > < E > < E > 差目 のへで

三日 のへの

★課 ▶ ★ 注 ▶ ★ 注 ▶

.

1= 990

 p_T veto

June 2011 40 / 42

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...

ELE SQA

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO

JI NOR

伺下 イヨト イヨト

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!

- 4 E F 4 E F

ELE SQC

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!

- 4 E F 4 E F

ELE SQC

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!
- triggered many theory developments

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!
- triggered many theory developments
- control non-perturbative uncertainties! PDFs, underlying event, ...

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!
- triggered many theory developments
- control non-perturbative uncertainties! PDFs, underlying event, ...
- ggh@nnlo, bbh@nnlo, vh@nnlo http://www.robert-harlander.de/software

- Higgs cross sections under very good theoretical control: e.g. gluon fusion:
 - inclusive: NNLO QCD + NNLL + EW (+ EW/QCD) + ... + SUSY + ...
 - exclusive NNLO
 - heavy top limit tested for inclusive NNLO cross section
 - \rightarrow validation of higher order results!
- triggered many theory developments
- control non-perturbative uncertainties! PDFs, underlying event, ...
- ggh@nnlo, bbh@nnlo, vh@nnlo http://www.robert-harlander.de/software
- vbf@nnlo, HNNLO, FEHiP, ...

(4) E (4) E (4) E

[Anastasiou, Boughezal, Petriello '09]

- [de Florian, Grazzini '09]
- [Ahrens, Becher, Neubert, Yang '10]
- [Baglio, Djouadi '10]
- [Demartin, Forte, Mariani, Rojo, Vicini '10]
- [C.F. Berger, Marcantonini, Stewart, Tackmann, Waalewijn '10]
- [Alekhin, Blümlein, Jimenez-Delgado, Moch, Reya '10]
- [Baglio, Djouadi, Ferrag, Godbole '11]

• [...]

三日 のへの

< 回 ト < 三 ト < 三

Backup Slides

・ 戸 ト ・ ヨ ト ・ ヨ ト

Santander matching

[R.H., Krämer, Schumacher '11]

э

Soft gluon resummation

ヨトイヨト

Gluon fusion: theory prediction

∃ ► 4 Ξ

Gluon fusion: theory prediction

Gluon fusion: theory prediction

Higgs Cross Section

M_H (GeV)	ABM10 [8]	ABKM09 [9]	JR [10]	MSTW08 [11]	HERAPDF [12]
100	1.438 ± 0.066	1.380 ± 0.076	1.593 ± 0.091	1.682 ± 0.046	1.417
110	1.051 ± 0.052	1.022 ± 0.061	1.209 ± 0.078	1.265 ± 0.038	1.055
115	0.904 ± 0.047	0.885 ± 0.055	1.060 ± 0.072	1.104 ± 0.034	0.917
120	0.781 ± 0.042	0.770 ± 0.050	0.933 ± 0.067	0.968 ± 0.031	0.800
125	0.677 ± 0.038	0.672 ± 0.045	0.823 ± 0.062	0.851 ± 0.029	0.700
130	0.588 ± 0.034	0.589 ± 0.041	0.729 ± 0.058	0.752 ± 0.026	0.615
135	0.513 ± 0.031	0.518 ± 0.037	0.647 ± 0.054	0.666 ± 0.024	0.541
140	0.449 ± 0.028	0.456 ± 0.034	0.576 ± 0.050	0.591 ± 0.022	0.479
145	0.394 ± 0.025	0.403 ± 0.031	0.514 ± 0.047	0.527 ± 0.020	0.424
150	0.347 ± 0.023	0.358 ± 0.028	0.461 ± 0.044	0.471 ± 0.018	0.377
155	0.306 ± 0.020	0.318 ± 0.026	0.413 ± 0.041	0.421 ± 0.017	0.336
160	0.271 ± 0.019	0.283 ± 0.024	0.371 ± 0.039	0.378 ± 0.016	0.300
165	0.240 ± 0.017	0.253 ± 0.022	0.335 ± 0.036	0.341 ± 0.014	0.269
170	0.213 ± 0.015	0.226 ± 0.020	0.302 ± 0.034	0.307 ± 0.013	0.241
175	0.190 ± 0.014	0.203 ± 0.019	0.274 ± 0.032	0.278 ± 0.012	0.217
180	0.169 ± 0.013	0.182 ± 0.017	0.248 ± 0.030	0.251 ± 0.012	0.195
185	0.151 ± 0.012	0.164 ± 0.016	0.225 ± 0.028	0.228 ± 0.011	0.176
190	0.136 ± 0.011	0.148 ± 0.015	0.205 ± 0.027	0.207 ± 0.010	0.159
200	0.109 ± 0.009	0.121 ± 0.013	0.170 ± 0.024	0.172 ± 0.009	0.131

Higgs Cross Section

R. Harlander (BU Wuppertal)

June 2011 6 / 6