Production of W/Z bosons and of W/Z+jets at the Tevatron

Standard Model Benchmarks at High-Energy Hadron Colliders 2011

Darren Price,

on behalf of the CDF and DØ collaborations

Introduction

Tevatron results continue to provide rich legacy of precision results for understanding of Standard Model processes. Will remain competitive with LHC in many selected topics

Good understanding of detector performance: uncertainties are such that CDF/DØ can do precision QCD/EW physics

Improve SM background understanding: particularly those with large jet multiplicities and/or heavy flavour components

Interplay between heavy flavour models, MC tunes, PDFs and scale choices needs to be understood to model SM for future precision measurements and searches.

Z/γ* transverse momentum

PHYS. LETT. B 693, 522 (2010), ARXIV:1006.0618

Z/γ* kinematics provides colourless probe of underlying collision process. **Results corrected back to particle-level**

Darren Price – W/Z bosons and W/Z+jets at the Tevatron :: SM Benchmarks – June 15th 2011

Z/γ* transverse momentum

Recent DØ result (7.3 fb⁻¹) uses new variable ϕ^* based on the two lepton directions

Less vulnerable to detector resolution/efficiency limiting precision of $p_T(Z)$ measurement ϕ^* correlated with $Z/\gamma^* p_T$ distribution

(a) |y| < 1

(c) |y| > 2

10⁻¹

 $\chi^2_{(ee,\mu\mu)} = 25/24$

1.1h

0.9

1.2

0.8

 10^{-2}

Ratio to ResBos

(1/σ) (dσ/dφ^{*}_η)

Data broadly described by NLO +NLL but detailed shape poorly described by ResBos

Small-x broadening strongly disfavoured

Darren Price – W/Z bosons and W/Z+jets at the Tevatron :: SM Benchmarks – June 15th 2011

10⁻²

 $\chi^2_{(ee,\mu\mu)}$

DØ 7.3 fb⁻¹

(b) 1 < |y| < 2

= 27/24

μμ data ee data ResBos

ResBos (tuned g₂)

ResBos (small-x)

10⁻¹

Z/γ^* rapidity

Lepton angular distribution in Z/γ^*

Lepton angular distribution in Collins-Soper frame given by:

$$\frac{d\sigma}{d\cos\theta} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_4\cos\theta$$

$$\frac{d\sigma}{d\phi} \propto 1 + \frac{3\pi A_3}{16} \cos \phi + \frac{A_2}{4} \cos 2\phi$$

pQCD predicts specific angular distribution and values/behaviour of coefficients:

 $A_0 \& A_2$ have specific dependence on Z p_T

Different for quark-antiquark annihilation and Compton scattering processes

A₃, A₄ expected relatively flat with p_T A₄ related to A_{FB} and sin² θ_W

Lepton angular distribution in Z/γ^*

 $q\overline{q} : P_T^2/(P_1^2 + M_Z^2)$ $qg : 5P_2^2/(5P_1^2 + M_Z^2)$

Pythia Z+1jet

Madgraph

Pvthia

Dyrad FEWZ(NNLC

Powhee

Data

VBP Resummation ResBos Resummation

CDF Preliminary Result with $I = 2.1 \text{ fb}^{-1}$

66<M(e⁺e⁻)<116

o 0.8⊧ ▼

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Strong p_T dependence observed in A_0 and A_2

Average $A_0 - A_2 = 0.017 \pm 0.023$

Lam-Tung relation $(A_0 \approx A_2)$ implies gluon is spin-1 – validated by data (Relation badly-broken for scalar gluons)

Z/γ* Forward-backward asymmetry

Z-u and Z-d couplings

AFB sensitive to couplings of the light quarks to the Z New phenomena such as neutral gauge bosons or large extra dimensions can alter AFB

Compare unfolded AFB distribution with theoretical predictions with different Z-u and Z-d couplings

2-D fits are made to u, d vector and axial-vector couplings to Z and compared to other experiments – most precise to date!

Z+jets production

Measurement of inclusive Z(ee/ $\mu\mu$)+(n)jet cross-sections (6.1 fb⁻¹)

Test of pQCD calculations; dominant background for SM measurements and new physics Corrected to particle-level, compared to NLO pQCD corrected with parton-to-particle level corrections

Darren Price – W/Z bosons and W/Z+jets at the Tevatron :: SM Benchmarks – June 15th 2011

Z+jets production: jet p_{T}

Inclusive jet differential cross-section (muon/electron channel): study kinematics of hadronic recoil to Z.

Data well-described by NLO theory

Z+jets angular observables: $\Delta \phi$ (**Z**,j)

First measurement of angular correlations between Z and leading jet $Z \rightarrow \mu\mu$: $|y^{\mu}| < 1.7$, $p_T^Z > 25$ GeV, jet $p_T > 20$ GeV, $|y^{jet}| < 2.8$, $R_{cone} = 0.5$

Darren Price – W/Z bosons and W/Z+jets at the Tevatron :: SM Benchmarks – June 15th 2011

W+jets production

W+jets a fundamental test of pQCD and background for many SM and BSM measurements

Provide integrated cross-sections and differential cross-sections for W+≤4jets

Unfold to particle-level for NLO/LO comparison using Singular Value Decomposition technique (Guru)

Compare to Rocket+MCFM and Blackhat +Sherpa NLO/LO pQCD calculations

Data precision competitive than best pQCD predictions available (in ratio and absolute measurement)

W+jets differential jet spectra normalized to measured inclusive W cross-section

Largest uncertainties: JES (4-16)%, JER (2-10)%, Vertex confirmation (2-8)%

Many uncertainties cancel in ratio: allows for very precise comparison with theory

UE+hadronization particlelevel corrections to theory derived with Sherpa 1.2.3

W+jets production: jet p_T

Third jet shows some disagreement in shape & normalization with NLO

Only LO predictions available for W+4j at Tevatron right now. Good agreement (albeit within large scale uncertainties) **NLO** performs well: some modelling issues at low p_T ?

Second jet p_T shows tension between MCFM and Blackhat predictions Data precise enough to discriminate!

σ(Z+b)/σ(Z+jets) measurement

Displaced Tracks

Secondary

Primary Vertex

Ratio of inclusive Z+b to Z+jets cross-sections

Test of pQCD calculations and b-quark fragmentation, b-quark PDF Z+b important background to single-top, ZH, new phenomena Ratio cancels many systematics: precise comparison with theory predictions

Study both di-electron and di-muon channels: Lepton $p_T > 15$ GeV, jet $p_T > 20{15}$ GeV, jet $|\eta| < 2.5$

Measurement uses neural network based b-tagging algorithm. Inputs include: B-lifetime, secondary vertices, vertex mass, & decay length significance...

Tag efficiency: 58%, mis-tag rate: 2%

σ(Z+b)/σ(Z+jets) measurement

Jet flavour fractions measured in both di-electron and di-muon channels Consistent results in both channels, so combine and re-measure with independent fit Light/charm discrimination not significant, but b-jet fraction insensitive to light/charm correlations

PHYS. REV. D 83, 031105 (2011), ARXIV:1010.6203 Events / 0.07 60 00 00 00 00 4.2 fb⁻¹ Data jets jets С Light jets Total 200 0.2 0.4 0.6 0.8 0

Largest systematics come from discriminant template shape (4.2%) and efficiency uncertainties (3.7%)

Measured (Z+b)/(Z+jet) = 0.0192±0.0022(stat)±0.0015(syst)

Most precise to-date

Consistent with NLO theory (MCFM) = 0.0185±0.0022

W+charm production

Measurement of W+c production: sensitive to s-quark PDF

Darren Price – W/Z bosons and W/Z+jets at the Tevatron :: SM Benchmarks – June 15th 2011

W+beauty production

W+bb is a dominant background in low-mass Higgs search

Diboson production

 1.1 fb^1

WW, WZ, ZZ, Wγ, Zγ production all studied by CDF and DØ

Important backgrounds for high mass Higgs searches; validation of VH search techniques

Place limits on anomalous trilinear gauge couplings – several of best limits at hadron colliders to-date

Events / 10 GeV

Data-BG-Sig stat.⊕ syst.

300

200

100

2

Рнуз. Rev. Lett. 102, 161801 (2009) WW+WZ production with lepton+jets

+ Data - Background

Diboson Signal

 ± 1 s.d. on Background

 χ^2 Prob = 0.45

Diboson production

Cross-section W γ measured in good agreement with Standard Model Use $E_T(\gamma)$ to set 95% C.L. limits on WW γ aTGC parameters

From measurement of $Z\gamma \rightarrow I^+I^-(vv)\gamma$ can also set limits on aTGC

Diboson production: ZZ production

Large dataset allows us to measure processes with cross-sections of order ~1 pb

ZZ production, smallest of all diboson processes except VH, measured by CDF/DØ

DØ (4I): $1.26 \pm 0.47 - 0.37$ (stat) ± 0.11 (syst) ± 0.08 (lumi) pb CDF(4I): 2.0 ± 0.58 (stat) ± 0.32 (syst) ± 0.12 (lumi) pb CDF(IIvv): $1.45 \pm 0.45 - 0.42$ (stat) $\pm 0.41 - 0.30$ (syst) pb Standard Model prediction: 1.3 ± 0.1 pb

CDF W+jj anomalous production

4.10 excess seen in dijet mass spectrum of W+2jet (exclusive) sample

Main backgrounds: W+jets, Z+jets (Alpgen+Pythia), ttbar/single top (Pythia), QCD multijets (data-driven)

Binned χ^2 fit to M_{jj} distribution consistent with $\sigma(X \rightarrow jj) \sim 4pb$ (300 times higher than $WH \rightarrow lvbb$)

Strong response from theory community Reason for excess not yet clear No significant HF tagged component

Many cross checks performed: various bkg control regions, W+jets modelling, fraction of b-tagged jets, different event selection cuts etc.

PHYS. REV. LETT. 106, 171801 (2011), ARXIV:1104.0699 AND http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html

DØ study of W+jj production

DØ repeated CDF's analysis within same phase space, using diboson analysis as starting point; same assumptions on modelling any excess

Dijet mass distributions after fitting SM process to data (4.3 fb⁻¹):

DØ data consistent with SM prediction!

What if we fit to a resonance like the excess seen by CDF?...

DØ study of W+jj production

Fit $WX \rightarrow Ivjj$ template (derived from diboson width and $WH \rightarrow Wbb$ efficiency studies) to data along with SM processes

Fitted signal consistent with no excess... How large an excess can be accommodated by DØ data?

Use limit setting and frequentist approach:

If the experiment is repeated many times, what fraction would find a more extreme result?

Construct test statistic:

$$LLR = -2\log\left(\frac{P(D;S+B)}{P(D;B)}\right) = \chi^{2}(D|S+B) - \chi^{2}(D|B)$$

D = observed number of events

- S = predicted number of signal events
- B = predicted number of background events

FOR MUCH MORE DETAIL, PLEASE SEE:

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/HIGGS/H11B/JoeHaley_WineCheese10June2011.pdf

DØ study of W+jj production

Have presented just a subset of recent W/Z(+jets) results from the Tevatron on ~I —7 fb⁻¹ of data:

We have >10 fb⁻¹ on tape from each experiment, and plenty more exciting results to come!

Legacy measurements of W/Z and W/Z+jets are being made at the Tevatron now:

- High precision tests of QCD/EW theory: Precise knowledge of CDF/DØ object ID, energy scales and systematics lead to experimental uncertainties comparable or lower than theoretical uncertainties
- World class inputs to PDFs
- Testing and tuning of phenomenological models
- W/Z measurements crucial for understanding backgrounds to new phenomena and SM Higgs searches

Some interesting discrepancies arising...

Additional slides

Lepton angular distribution in Z/γ^*

Z+jets angular observables: $\Delta y(Z,j)$

NLO pQCD and Sherpa do good job of describing shape of $\Delta y(Z,j)$ Pythia also does a reasonable job, unlike in $\Delta \phi(Z,j)$

DØ study of W+jj anomalous production

Alpgen modelling effects

- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

Plots courtesy of Adam Martin

HTTP://WWW-D0.FNAL.GOV/RUN2PHYSICS/WWW/RESULTS/FINAL/HIGGS/H11B/JOEHALEY_WINECHEESE10JUNE2011.PDF

DØ study of W+jj anomalous production

The dijet mass distributions after fitting SM processes to data Without Alpgen modeling corrections applied:

→ 95% CL
exclusion for cross
sections greater
than 1.9 pb
@ m_{ij} = 145 GeV

With Alpgen modeling corrections applied:

→ 95% CL
exclusion for cross
sections greater
than 1.5 pb
@ m_{jj} = 145 GeV