

Production of W and Z bosons and of W/Z+jets at ATLAS

Eric Jansen University College London

On behalf of the ATLAS Collaboration

Standard Model Benchmarks at High-Energy Hadron Colliders 15–17 June 2011, DESY (Zeuthen)

Outline

Introduction

- Electroweak physics
- The ATLAS detector

2 W and Z

- Inclusive cross section
- Cross section ratios
- W charge asymmetry
- $Z \to \tau \tau$
- 3 W/Z + jets
 - Z + jets
 - W + jets
- 4 Diboson
 - $W\gamma$ and $Z\gamma$
 - WW
 - WZ

Conclusions

Most analyses presented use the full 2010 dataset: $31-35 \text{ pb}^{-1}$

Luminosity uncertainty: 3.4 %

Outline

Introduction

- Electroweak physics
- The ATLAS detector

2 W and Z

- Inclusive cross section
- Cross section ratios
- W charge asymmetry
- $Z \to \tau \tau$
- 3 W/Z + jets
 - Z + jets
 - W + jets
- 4 Diboson
 - $W\gamma$ and $Z\gamma$
 - WW
 - WZ

Conclusions

Until yesterday ATLAS recorded 933.8 pb^{-1} of data in 2011

Preliminary uncertainty: 4.5 %

Electroweak physics

The ATLAS detector

UC

Electroweak physics

- Important ingredient in theoretical calculations is the parameterization of the momentum distribution of the partons in the proton
- Parton distribution functions (PDFs) have been determined up to NLO (CTEQ, NNPDF) and NNLO (MSTW, ABKM, HERA, JR)
- Production cross sections of W and Z bosons (+ jets) constrain the PDFs and provide an important test for QCD
- Leptonic decays of *W* and *Z* provide clear signatures, these *standard candles* are a valuable tool to understanding the detector
- Processes involving W/Z (+ jets) are important backgrounds to many new physics searches

Electroweak physics The ATLAS detector

The ATLAS detector

Introduction

Geometrical acceptance: inner tracker: $|\eta| < 2.5$, muon system: $|\eta| < 2.7$, calorimeter: $|\eta| < 4.9$

Electroweak physics The ATLAS detector

Electron/muon identification

Three classes of electrons:

- loose
- medium
- tight

Efficiency and fake rate decrease going from loose to tight

Combined muons are used:

- reconstructed in the muon system
- corrected for the energy loss in the calorimeters
- combined with the inner detector momentum measurement

W and Z W/Z + jets Diboson Conclusions Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

W/Z cross section

ATLAS-CONF-2011-041

W and Z W/Z + jets Diboson Conclusions Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

W/Z cross section

ATLAS-CONF-2011-041

Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

UC

Results

W and Z

 $\sigma_W^{tot} \times BR(W \to \ell \nu) \text{ [nb]}$

$W ightarrow { m e} u$	$10.551 \pm 0.032 ({ m sta}) \pm 0.300 ({ m sys}) \pm 0.359 ({ m lum}) \pm 0.316 ({ m acc})$
$W ightarrow \mu u$	$10.322\pm0.030({\rm sta})\pm0.249({\rm sys})\pm0.377({\rm lum})\pm0.310({\rm acc})$

 $\sigma_{Z/\gamma^*}^{tot} \times BR(Z/\gamma^* \to \ell\ell) \text{ [nb]}$

$Z/\gamma^* ightarrow$ ee (central)	$0.972 \pm 0.010~(ext{sta}) \pm 0.034~(ext{sys}) \pm 0.033~(ext{lum}) \pm 0.038~(ext{acc})$
$Z/\gamma^* ightarrow$ ee (forward)	$0.903 \pm 0.022(\text{sta}) \pm 0.087(\text{sys}) \pm 0.031(\text{lum}) \pm 0.035(\text{acc})$
$Z/\gamma^* \to \mu\mu$	$0.941 \pm 0.008(\text{sta}) \pm 0.011(\text{sys}) \pm 0.032(\text{lum}) \pm 0.037(\text{acc})$

- Fiducial cross section is extrapolated to the full phase space, <u>acc</u>eptance uncertainty is the uncertainty in this extrapolation
- Good agreement with theory predictions:

Predictions

	MSTW08	ABKM09	HERA	JR09
$W ightarrow \ell u$	10.46 ± 0.18	10.71 ± 0.15	10.84 ± 0.26	9.94 ± 0.19
$Z/\gamma^* \to \ell \ell$	0.964 ± 0.018	0.987 ± 0.015	0.994 ± 0.029	0.909 ± 0.018

W and Z /Z + jets Diboson

Cross section ratios

Cross section ratios

• Results (uncertainty ~ 5 %) agree with NNLO predictions

W and ZW/Z + jets Diboson Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

W charge asymmetry

$$A_{\mu} = \frac{d\sigma_{W_{\mu^+}}/d\eta_{\mu} - d\sigma_{W_{\mu^-}}/d\eta_{\mu}}{d\sigma_{W_{\mu^+}}/d\eta_{\mu} + d\sigma_{W_{\mu^-}}/d\eta_{\mu}}$$

- $p_T^\mu > 20 \, \mathrm{GeV}$
- More valence *u* in the proton: *W*⁺ is favored over *W*⁻
- Asymmetry measured versus muon rapidity
- Rapidity dependence probes *u* and *d* parton distribution functions

arXiv:1103.2929, submitted to Phys. Lett. B

Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

 $Z\to\tau\tau$

ATLAS-CONF-2011-045

W and Z W/Z + jets Diboson Conclusions Inclusive cross section Cross section ratios W charge asymmetry $Z \rightarrow \tau \tau$

$Z\to\tau\tau$

- *τ* reconstruction is
 performing well
- Important step towards channels such as $H \rightarrow \tau \tau$

 Good agreement with Standard Model expectations

Combined result

σ_Z	×	BR(Z	\rightarrow	$\tau \tau$)	[nb]	

Measured	$0.97 \pm 0.07({\sf stat}) \pm 0.07({\sf syst}) \pm 0.03({\sf lumi})$
Predicted	$0.96\pm0.05({ m syst})$

UCL

W/Z + jets

- Jets reconstructed using the anti- k_T algorithm with R = 0.4
- $p_T^{jet} > 20 \text{ GeV}$ for W + jets and $p_T^{jet} > 30 \text{ GeV}$ for Z + jets analysis
- ullet Jets within $\Delta R < 0.5$ of a selected lepton are rejected
- $\bullet\,$ Pile-up jets are rejected by requiring the jet-vertex-fraction 1 (JVF) > 0.75

Z + jets

- Exactly two opposite sign
 - combined muons
 - medium electrons
- $66 < m_{\ell\ell} < 116 \, {
 m GeV}$

W + jets

- Exactly one
 - combined muon
 - tight electron
- No medium electrons present
- Main backgrounds: top and QCD (electron channel, estimated from data)
- Bin-by-bin unfolding correction is applied to correct back to parton level
- Dominant systematic uncertainty is the jet energy scale: 10-20%

 1 JVF = Scalar $\sum p_{T}$ of tracks in a jet pointing towards the primary vertex divided by the scalar $\sum p_{T}$ of all tracks in the jet

W and Z W/Z + jets Diboson Conclusions

Z + jetsW + jets

Z + jets

Dijet background for $Z \rightarrow ee$ is estimated from data:

• Orthogonal control sample containing two loose electrons

- Use this to determine the shape of the dijet background
- Fit the shape for each jet multiplicity separately

ATLAS-CONF-2011-042

W + jets

W + jets

- Measured as a function of p_T^{jet} , N_{jet} and $H_T\equiv \sum p_T^{jet}+p_T^\ell+E_T^{miss}$
- Main background for W
 ightarrow e
 u is QCD (data-driven determination)
- Main background for $W \to \mu \nu$ is $Z \to \mu \mu$ with one of the muons outside of the detector acceptance

ATLAS-CONF-2011-060

W/Z + jets

10⁴

 10^{3}

10²

σ(W + ≥N_{jet} jets) [pb]

Theory/Data

0

W + jets

W and Z W Z + jets Diboson Conclusions

UC

$W\gamma$ and $Z\gamma$

• Sensitive to triple gauge couplings

 $W\gamma$ and $Z\gamma$

 $\bullet\,$ Probe $ZZ\gamma$ and $Z\gamma\gamma$ vertices which vanish in the SM at tree level

Fric Jansen

• E_T^{iso} : excess transverse energy in a cone of $\Delta R <$ 0.4 around the photon

- W + jets background estimated from data
- Sidebands in two dimensions: photon quality and isolation
- Statistics currently insufficient to do the same for *Z* + jets
- Purity of the resulting $W\gamma$ ($Z\gamma$) sample is ~ 80 % (~ 85 %)

 $\begin{array}{c} \text{Introduction} \\ W \text{ and } Z \\ W/Z + \text{ jets } \\ WW \\ \hline \text{Diboson} \\ \text{Conclusions} \end{array} WZ \\ \end{array}$

$W\gamma$ and $Z\gamma$

Results

	$\sigma^{\it tot}$ [pb] (measured)	σ [pb] (predicted)
$pp ightarrow { m e}^{\pm} u \gamma$	$48.9\pm 6.6(ext{stat})\pm 8.3(ext{syst})\pm 1.7(ext{lumi})$	$42.1\pm2.7(ext{syst})$
$pp ightarrow \mu^{\pm}_{\mu} u \gamma$	$38.7\pm5.3(ext{stat})\pm6.4(ext{syst})\pm1.3(ext{lumi})$	$42.1\pm2.7(ext{syst})$
$pp ightarrow \ell^{\pm} u \gamma$	$42.5\pm4.2(ext{stat})\pm7.2(ext{syst})\pm1.4(ext{lumi})$	$42.1\pm2.7(ext{syst})$
$pp ightarrow e^+ e^- \gamma$	$9.0\pm2.5(ext{stat})\pm2.1(ext{syst})\pm0.3(ext{lumi})$	$6.9\pm0.5(ext{syst})$
$pp ightarrow \mu^+ \mu^- \gamma$	$5.6\pm1.4(ext{stat})\pm1.2(ext{syst})\pm0.2(ext{lumi})$	$6.9\pm0.5(ext{syst})$
$pp ightarrow \ell^+ \ell^- \gamma$	$6.4\pm1.2(ext{stat})\pm1.6(ext{syst})\pm0.2(ext{lumi})$	$6.9\pm0.5({ m syst})$

 $\begin{array}{c} \text{Introduction} \\ W \text{ and } Z & W \gamma \text{ and } Z \gamma \\ W / Z + \text{ jets} & W W \\ \hline \text{Diboson} & W Z \\ \hline \text{Conclusions} \end{array}$

$W\gamma/Z\gamma$ cross section ratio

- $\bullet\,$ Vertical band indicates $1\,\sigma$ uncertainty on the Standard Model prediction
- $\bullet\,$ Cross section ratio is a direct test of the $WW\gamma$ triple gauge coupling
- Measured values are in good agreement with the SM prediction

W and Z //Z + jets Diboson

Wγa **WW** WZ

WW

Select events with:

• Opposite sign leptons of $p_T^\ell > 20 \, {\rm GeV}$

•
$$E_{T,rel}^{miss} \left\{ \begin{array}{ll} > 40 \, {
m GeV} & ee/\mu\mu \\ > 20 \, {
m GeV} & e\mu \end{array} \right.$$

UCL

• Veto
$$|m_{\ell\ell}-m_Z| < 10 \, {
m GeV}$$

• Veto jets with
$$p_T^{jet} > 20 \, {
m GeV}$$

and $|\eta| < 3$

arXiv:1104.5225, submitted to Phys. Rev. Lett.

W and Z W/Z + jets Diboson

Wγ and WW **WZ**

WZ

Conclusions and outlook

ATLAS W and Z results with the 2010 dataset $(31-35 \text{ pb}^{-1})$

- Important tests of pQCD, constraints for PDFs
- *W* and *Z* bosons have been observed using electron, muon and tau channels
- Demonstrates good performance and understanding of detector
- Results show good agreement with Standard Model expectations
- The 2011 data will dramatically improve statistics, especially for channels such as *WW* and *WZ*

Backup slides

Event displays

$Z \rightarrow ee$ $Z(\rightarrow \mu \mu) + jet$

UCL

25

Event displays

$egin{array}{ccc} Z ightarrow ee \ Z(ightarrow \mu \mu) + {\sf jet} \end{array}$

$$Z \to \mu^- \mu^+ + 3$$
 jets

Run Number 158466, Event Number 4174272 Date: 2010-07-02 17:49:13 CEST

