NLO effects in off-shell Top-quark pair production

Stefano Pozzorini Zürich University

in collaboration with

A. Denner, S. Dittmaier and S. Kallweit

Standard Model Benchmarks at High-Energy Hadron Colliders DESY Zeuthen, June 16, 2011 Outline of the talk

- 1. Why $pp \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b}$ at NLO?
- 2. Technical aspects of the calculation
- **3. NLO predictions for Tevatron and LHC**

NLO priority list (Les Houches '05): completed $2 \rightarrow 4$ calculations

- Two calculations for $pp \rightarrow t\bar{t}b\bar{b}$ with permille agreement
 - arXiv:0905.0110 and arXiv:1001.4006 by Bredenstein, Denner, Dittmaier and S. P.
 Feynman diagrams and tensor integrals
 - arXiv:0907.4723 by Bevilacqua, Czakon, Papadopoulos, Pittau and Worek OPP reduction and HELAC
- Two calculations for $pp \rightarrow Vjjj$
 - arXiv:0906.1445 by Ellis, Melnikov and Zanderighi
 D-dimensional unitarity (leading colour)
 - arXiv:0907.1984 (Wjjj) and arXiv:1004.1659 (Zjjj) by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower and Maitre generalized unitarity (full colour)
- First result for $pp \rightarrow t\bar{t}jj$
 - arXiv:1002.4009 by Bevilacqua, Czakon, Papadopoulos and Worek OPP reduction and HELAC

- One calculation for $pp \rightarrow WWjj$
 - arXiv:1007.5313 and arXiv:1104.2327 by Melia, Melnikov, Rontsch and Zanderighi D-dimensional unitarity
- First 7-leg result for $pp \rightarrow W + 4j$
 - arXiv:1009.2338 by Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower and Maitre generalized unitarity (leading colour)
- One calculation for $pp \rightarrow b\bar{b}b\bar{b}$
 - arXiv:1105.3624 by Greiner, Guffanti, Reuter and Reiter
 Feynman diagrams and OPP reduction (GOLEM–SAMURAI)
- Two (almost simultaneous) calculations for $pp \rightarrow W^+W^-b\bar{b}$
 - arXiv:1012.3975 by Denner, Dittmaier, Kallweit and S. P.
 Feynman diagrams and tensor integrals
 - arXiv:1012.4230 by Bevilacqua, Czakon, van Hameren, Papadopoulos and Worek OPP reduction and HELAC

Why $W^+W^-b\bar{b}$ production at NLO?

Full description of $t\bar{t}$ prod×decay

- off-shell tops and non-resonant backgr.
- W $\rightarrow l\nu$ decays in spin-correlated NWA

Huge $\mathrm{t}\bar{\mathrm{t}}$ samples at hadron colliders

- Tevatron: few 10^4 events $\Rightarrow \frac{\delta\sigma}{\sigma} < 10\%$
- LHC at 7(14) TeV: $1.5(9) \times 10^5$ events per fb⁻¹ $\Rightarrow \frac{\delta\sigma}{\sigma} = \text{few \%}$

Crucial measurements and tests

- precise studies of rich variety of (differential) observables
- checks and tuning of many theoretical/experimental tools
- $\delta m_{\rm t}^{\rm exp} \sim 1 \,{\rm GeV}$ measurements

Relevance for discoveries

- leptons + jets + missing $E_{\rm T}$ is a typical discovery signature (SUSY, H \rightarrow W⁺W⁻, ...)
- various BSM scenarios predict heavy resonances decaying into tt

Precise predictions for hadronic $t\bar{t}$ production (and decay)

NLO QCD corrections

Beenakker, Dawson, Ellis, Frixione, Kuijf, Meng, Nason, van Neerven, Schuler, Smith

Electroweak NLO corrections

Beenakker, Bernreuther, Denner, Fücker, Hollik, Kao, Kollar, Kühn, Ladinsky, Mertig, Moretti, Nolten, Ross, Sack, Scharf, Si, Uwer, Wackeroth, Yuan

From LL to NNLL resummations

Ahrens, Beneke, Berger, Bonciani, Catani, Contopanagos, Czakon, Falgari, Ferroglia, Frixione, Kidonakis, Kiyo, Laenen, Mangano, Mitov, Moch, Nason, Neubert, Pecjak, Ridolfi, Schwinn, Sterman, Uwer, Vogt, Yang

Towards full NNLO predictions

Anastasiou, Aybat, Bonciani, Czakon, Dittmaier, Ferroglia, Gehrmann, Gerhmann–De Ridder, Kniehl, Körner, Langenfeld, Maitre, Merebashvili, Mitov, Moch, Ritzmann, Rogal, Studerus, von Manteuffel, Uwer, Weinzierl

NLO $t\bar{t}$ production×decay in spin-correlated narrow-width approx.

Bernreuther, Brandenburg, Melnikov, Schulze, Si, Uwer

Full $W^+W^-b\bar{b}$ description vs Narrow-Width Approximation in LO

Narrow-Width Approximation

- only doubly-resonant channels
- narrow-with limit of Breit-Wigner top resonances

$$\lim_{\Gamma_{t}\to 0} |\frac{1}{p_{t}^{2} - m_{t}^{2} + i\Gamma_{t}m_{t}}|^{2} = \frac{\pi}{\Gamma_{t}m_{t}}\delta(p_{t}^{2} - m_{t}^{2})$$

Finite-width contributions to $\mathrm{W}^+\mathrm{W}^-\mathrm{b}\bar{\mathrm{b}}$

- Off-shell corrections to doubly-resonant channels
- Singly + non-resonant channels and interferences
- finite-width corrections to *inclusive* observables of order $\Gamma_t/m_t \simeq 1\%$

Full $W^+W^-b\bar{b}$ description vs Narrow-Width Approximation in NLO

Narrow-Width Approximation

- only factorisable corrections
- huge technical simplification

Finite-width contributions to $W^+W^-b\bar{b}$

- pentagons and hexagons
- non-factorisable and non-DR corrections

In *inclusive* observables non-fact. virtual and real $\ln(\Gamma_t/m_t)$ corr. from soft gluons cancel, and finite-width effects remain $\mathcal{O}(\Gamma_t/m_t)$ suppressed [Fadin/Khoze/Martin '94].

Finite-width effects can be important for

- percent-level precision in $\sigma_{\rm incl}$
- Shape of top resonance and related observables (m_t measurement)
- cuts suppressing on-shell $t\bar{t}$ background and enhancing off-shell $W^+W^-b\bar{b}$

(2) Technical aspects of the calculation

Ingredients of $pp \rightarrow W^+W^-b\bar{b}$ at NLO

Partonic channels

14 trees

280 loops

788 loops

222 NLO trees

90 NLO trees

90 NLO trees

Full calculation twice and independently

Generation of Feynman diagrams

• FeynArts 1.0 / 3.2

Algebraic reduction

• MATHEMATICA / FormCalc [Hahn]

Tensor integrals & numerics

• Fortran77 / C++ executables: 0.25-1.2 GB

Real emission & IR Subtraction

- Madgraph & spinors
- Dipoles [Catani/Dittmaier/Seymour/Trócsányi '97/'02] & AutoDipole [Hasegawa/Moch/Uwer '09]

Integration over 11-dim PS

• adaptive multi-channel Monte Carlo with 250–650 mappings per partonic channel

Feynman diagrams and tensor integrals

$$\sum_{\text{col,pol}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\text{col,pol}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c} \sum_{\sigma \in \mathcal{O}} \end{array} \right)^* = \sum_{\sigma \in \mathcal{O}} \left(\begin{array}{c$$

 $\sum d_i + c_j + c_j + b_k + a_l$

Numerical tensor-integral reduction

 $e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier'05] completely general and numerically stable! Very high CPU efficiency

First physical application up to tensor rank P = 5

- CPU cost of colour/helicity summed gg → W⁺W⁻bb loop amplitudes very low (450ms) similarly as for gg → ttbb (180 ms) where P = 4
- σ_{NLO} with statistical accuracy of $\mathcal{O}(10^{-3})$ requires $\mathcal{O}(10^8)$ events obtained within 5–10 days on single CPU
- Total CPU cost at LHC dominated by real and virtual gg-channel corrections

Treatment of unstable particles

Regularisation of unstable-particle propagators via $\text{Im}[\Sigma(M^2)] = M\Gamma$ resummation

$$\frac{1}{p^2 - M^2 + i\epsilon} \rightarrow \frac{1}{p^2 - M^2 + iM\Gamma + i\epsilon}$$

can violate gauge invariance

Complex mass scheme at NLO (introduced for $e^+e^- \rightarrow 4f$ Denner/Dittmaier '05)

- Γ is absorbed into the renormalised pole mass $M^2 \to \mu^2 = M^2 iM\Gamma$ without modifying the bare Lagrangian
- Lagrangian symmetries require (in general) complex couplings

Technical aspects

- On-shell renormalisation with complex momenta: $\hat{\Sigma}(p^2) = 0$ at $p^2 = \mu^2$
- Scalar box integrals with complex masses (subtle analytic continuations!)
 - 't Hooft/Veltman approach: $24 \rightarrow 108 \text{ Li}_2$ Nhung/Ninh '09; van Hameren '10
 - Denner/Niertse/Scharf approach: $16 \rightarrow 32$ Li₂

Denner/Dittmaier '10

(3.1) $W^+W^-b\bar{b}$ cross section at the Tevatron (1.96 TeV) and the LHC (7 TeV)

Particle masses and widths $(M_{\rm H} = \infty, m_{\rm b} = 0)$

 $m_{\rm t} = 172.0 \,{\rm GeV}$ $M_{\rm W} = 80.399 \,{\rm GeV}$ $M_{\rm Z} = 91.1876 \,{\rm GeV}$ $\Gamma_{\rm t,LO} = 1.4655 \,{\rm GeV}$ $\Gamma_{\rm t,NLO} = 1.3376 \,{\rm GeV}$ $\Gamma_{\rm W,NLO} = 2.0997 \,{\rm GeV}$

 G_{μ} -scheme couplings $(G_{\mu} = 1.16637 \times 10^{-5} \,\text{GeV}^{-2})$ $\sin^2 \theta_{w} = 1 - M_{W}^2 / M_Z^2, \qquad \alpha = \sqrt{2} G_{\mu} M_{W}^2 \sin^2 \theta_{w} / \pi$

PDFs and $\alpha_{\rm S}$: MSTW2008NLO(LO) with $1/2 \leq \mu_{\rm R,F}/m_{\rm t} \leq 2$ variations

Anti- $k_{\rm T}$ Jet Algorithm

QCD partons with $|\eta| < 5 \implies$ jets with $\sqrt{\Delta \phi^2 + \Delta y^2} > R = 0.4 (0.5)$

Typical Tevatron (LHC) cuts

b-jets: $p_{T,b} > 20 (30) \text{ GeV}$ $|\eta_b| \le 2.5$ leptons: $p_{T,l} > 20 \text{ GeV}$ $|\eta_l| \le 2.5$ $p_{T,miss} > 25 (20) \text{ GeV}$

Integrated $e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b}$ cross section

Predictions for $\mu_{\rm R,F} = m_{\rm t}$ and $m_{\rm t}/2 \leq \mu_{\rm R,F} \leq 2m_{\rm t}$

σ	LO	NLO	NLO/LO
Tevatron	$44.31^{+19.68}_{-12.49}$ fb	$41.75^{+0.00}_{-3.79}$ fb	$0.942^{+0.000}_{-0.085}$
LHC	$662.4^{+263.4}_{-174.1}\mathrm{fb}$	$840^{+27}_{-75}\mathrm{fb}$	$1.27_{-0.11}^{+0.04}$

Scale uncertainty at the Tevatron (LHC)

• 44% (40%) LO uncertainty is mostly due to $\frac{\Delta \sigma_{\rm LO}}{\sigma_{\rm LO}} \simeq \frac{\Delta \alpha_{\rm S}^2(\mu)}{\alpha_{\rm S}^2(\mu)}$ and reduces to 9%(9%) at NLO

Moderate NLO corrections

• $K_{\text{Tevatron}} \simeq 0.94$ and $K_{\text{LHC}} \simeq 1.27$

	Agreemen	t with HE	[Bevilacqua et al.	'10]	
_	$\sigma_{\mathrm{Tevatron}}$	LO	NLO		
_	DDKP	44.310[3] fb	41.75[5] fb		
	BCHPW	$44.32[3]{\rm fb}$	$41.86[6]\mathrm{fb}$		

Off-shell and non-resonant contributions to $\sigma_{\rm int.}$

Assessment of finite-width effects $\sigma(\Gamma_t) - \sigma(0)$

• numerical extrapolation to $\Gamma \to 0$ using five rescaled values $\Gamma_t \to \xi \Gamma_t$ with $0.1 \lesssim \xi \leq 1$

Cancellation of soft-gluon $\ln(\Gamma_t/m_t)$ singularities

- dipole-subtracted virtual and real parts diverge logarithmically when $\Gamma \to 0$
- linear convergence of $\sigma(\Gamma_t) \rightarrow \sigma(0)$ provides nontrivial consistency and stability check

Finite-width effects comparable to $\Gamma_{\rm t}/m_{\rm t}\simeq 0.8\%$

	$\sigma_{ m LO}(\Gamma_{ m t})/\sigma_{ m LO}(0)-1$	$\sigma_{\rm NLO}(\Gamma_{\rm t})/\sigma_{\rm NLO}(0) - 1$
Tevatron	-0.8%	-0.9%
LHC	+0.4%	+0.2%

quantifies precision of NWA for $\sigma_{\rm incl}$

(3.2) Differential $W^+W^-b\bar{b}$ distributions at the Tevatron (1.96 TeV) and the LHC (7 TeV)

b-jet $p_{\rm T}$ at the Tevatron

Soft b-jet (upper)

- $\bullet\,$ saturates cut at 20 GeV
- +20% to -40% corrections
- strong shape distortions (relevant for acceptance)

Hard b-jet (lower)

- peaked around 80 ${\rm GeV}$
- +50% to -30% corrections
- strong shape distortions

b-jet $p_{\rm T}$ at the LHC

Soft b-jet (upper)

- $\bullet\,$ saturates cut at 30 GeV
- +30% to -10% corrections
- strong shape distortions (relevant for acceptance)

Hard b-jet (lower)

- $\bullet\,$ peaked around 80 GeV
- +40% to +20% corrections
- moderate shape distortions

Lepton $p_{\rm T}$ at the Tevatron

- e^+ (μ^-) from W^+ (W^-) decay
 - have typically $p_{\rm T} \lesssim 100 \,{\rm GeV}$ and tend to saturate the cut at 20 $\,{\rm GeV}$
 - corrections range from 0% to -40%

Shape distortion

- mild in the vicinity of the cut but fairly strong at high $p_{\rm T}$
- relevant for boosted tops and NP searches
- when $p_{\rm T} \gtrsim 100 \,\text{GeV}$ fixed $\mu = m_{\rm t}$ should be replaced by dynamical QCD scale

Lepton $p_{\rm T}$ at the LHC

- e^+ (μ^-) from W^+ (W^-) decay
 - have typically $p_{\rm T} \lesssim 100 \,{\rm GeV}$ and tend to saturate the cut at 20 $\,{\rm GeV}$
 - corrections range from +30% to 0%

Shape distortion

- mild in the vicinity of the cut but fairly strong at high $p_{\rm T}$
- relevant for boosted tops and NP searches
- when $p_{\rm T} \gtrsim 100 \,\text{GeV}$ fixed $\mu = m_{\rm t}$ should be replaced by dynamical QCD scale

Charged-lepton rapidity at the Tevatron

LO y_{e^+} distribution

- e⁺ populates central region
- almost exactly symmetric due to t $\leftrightarrow \bar{t}$ invariance of $q\bar{q}/gg \rightarrow t\bar{t}$

NLO charge and FB asymmetry

- IS–FS gluon exchange induces tt charge asymmetry
- reflected in y_{e^+} shape distortion (-15% to +10% corrections) and FB asymmetry

$$A_{\rm FB} = \frac{\sigma(y_{\rm e^+} > 0) - \sigma(y_{\rm e^+} < 0)}{\sigma(y_{\rm e^+} > 0) + \sigma(y_{\rm e^+} < 0)} = 0.035(2)$$

consistent with NWA [$_{\rm Bernreuther/Si\ '10}$]

Top-quark invariant mass at the Tevatron

Although not observable $M_t = M_{be^+\nu_e}$ reflects off-shell nature of $2 \rightarrow 4$ calculation

- Breit–Wigner shape in the resonance region
- $\delta \Gamma_{\rm NLO} / \Gamma_{\rm LO} \simeq -9\%$ crucial for consistent normalisation of $\sigma_{\rm incl.} \sim 1/\Gamma_{\rm t}^2$
- Pole of top-quark progagator not shifted in on-shell scheme, but QCD radiation leads to invariant-mass shift $\lesssim 1 \,\text{GeV}$
- $m_{\rm t}$ -shift depends on jet algorithm

NLO and Γ_t effects will improve description of observables used for m_t determination

Top-quark invariant mass at the LHC

Although not observable $M_t = M_{be^+\nu_e}$ reflects off-shell nature of $2 \rightarrow 4$ calculation

- Breit–Wigner shape in the resonance region
- $\delta \Gamma_{\rm NLO} / \Gamma_{\rm LO} \simeq -9\%$ crucial for consistent normalisation of $\sigma_{\rm incl.} \sim 1/\Gamma_{\rm t}^2$
- Pole of top-quark progagator not shifted in on-shell scheme, but QCD radiation leads to invariant-mass shift $\lesssim 1 \,\text{GeV}$
- $m_{\rm t}$ -shift depends on jet algorithm

NLO and Γ_t effects will improve description of observables used for m_t determination

Invariant mass of b-jet $-e^+$ pair at the LHC

Observable related to m_t measurement

- visible decay products in $t \to bW^+ \to be^+\nu_e$ retain significant fraction of m_t
- good sensitivity to m_t via kinematic bound

$$M_{\rm be^+}^2 \le m_{\rm t}^2 - M_{\rm W}^2 \simeq (152 \,{\rm GeV})^2$$

in LO and narrow-width approximation

Off-shell and NLO corrections

- $M_{\rm be^+}$ bound violated by LO off-shell effects
- additional violation from NLO radiation
- strong NLO shape distortion below the bound: from +40% to +5% corrections

Large off-shell effects in $WWb\bar{b}$ backg.

$\mathrm{pp} \to \mathrm{WH} \to \mathrm{Wb}\bar{\mathrm{b}}$ search at the LHC

- huge QCD background suppressed with boosted-Higgs strategy
- $p_{\mathrm{T,b\bar{b}}} > 200 \,\mathrm{GeV}$ and $p_{\mathrm{T},j}^{\mathrm{veto}} = 30 \,\mathrm{GeV}$ yield $S/B \sim 1$ and $S/\sqrt{B} \sim 3\sigma$ with $30 \,\mathrm{fb}^{-1}$

Butterworth et. al. (2008)

Corrections to dominant $WWb\bar{b}$ background

- 0.4% off-shell effects increase to $\gtrsim~30\%$
- strong WWbbj NLO emission very sensitive to jet veto
- **NLO unstable for** $p_{T,j}^{\text{veto}} < 60 \,\text{GeV}$

Full $2 \rightarrow 4$ NLO crucial to control WWbb !

Large off-shell effects in WWb \bar{b} backg.

$\mathrm{pp} \to \mathrm{WH} \to \mathrm{Wb}\bar{\mathrm{b}}$ search at the LHC

- huge QCD background suppressed with boosted-Higgs strategy
- $p_{\mathrm{T,b\bar{b}}} > 200 \,\mathrm{GeV}$ and $p_{\mathrm{T},j}^{\mathrm{veto}} = 30 \,\mathrm{GeV}$ yield $S/B \sim 1$ and $S/\sqrt{B} \sim 3\sigma$ with $30 \,\mathrm{fb}^{-1}$

Butterworth et. al. (2008)

Corrections to dominant $WWb\bar{b}$ background

- 0.4% off-shell effects increase to $\gtrsim~30\%$
- strong WWbbj NLO emission very sensitive to jet veto
- **NLO unstable for** $p_{T,j}^{\text{veto}} < 60 \,\text{GeV}$

Full $2 \rightarrow 4$ NLO crucial to control WWbb !

Conclusions

NLO QCD calculation for $\mathrm{W}^+\mathrm{W}^-\mathrm{b}\bar{\mathrm{b}}$ production

- precise description of $t\bar{t}$ production and decay
- including off-shell effects, non-resonant backgrounds and interferences

Inclusive cross section at the Tevatron (LHC)

- moderate corrections K=0.94~(1.27) and stable NLO predictions $(\delta\sigma/\sigma \simeq 9\%)$
- quantitative assessment of finite-width effects $\lesssim \Gamma_{\rm t}/m_{\rm t} = 0.8\%$

NLO corrections to differential distributions

- rich and non-trivial kinematic dependence
- potentially large impact on acceptances and shape-dependent precision measurements (like $m_{\rm t}$)
- large off-shell effects in $t\bar{t}$ background to $pp \rightarrow WH$ boosted-Higgs search

BACKUP SLIDES

Reduction of tensor integrals – *collection* of $e^+e^- \rightarrow 4f$ methods [Denner/Dittmaier '05]

(A) **Space-time 4-dim** $(N \ge 5 \text{ prop.})$ simultaneous prop. & rank reduction

Melrose '65; Denner/Dittmaier '02&'05; Binoth et. al. '05

(B) Lorentz invariance ($N \leq 4$ prop.)

reduction of rank (P)

Passarino/Veltman '79; Denner '93

$$2(D+P-N-1) T_{00i_3...i_P}^{(P)} = \sum_{k=1}^{N-1} f_k T_{ki_3...i_P}^{(P-1)} + 2m_0^2 T_{i_3...i_P}^{(P-2)} + \text{lower-point}$$

$$\sum_{n=1}^{N-1} Z_{mn} T_{ni_2...i_P}^{(P)} = -2 \sum_{r=2}^{P} \delta_{mi_r} T_{00i_2...\hat{i_r}...i_P}^{(P)} - f_m T_{i_2...i_P}^{(P-1)} + \text{lower-point}$$

inversion of Gram matrix $Z_{mn} = 2p_m p_n$ unstable when $det(Z) \to 0$

(C) General and robust solution of instability problems iterative det(Z)-expansion (and various alternative methods)

$$\begin{split} \tilde{X}_{0j}T_{i_{1}\dots i_{P}}^{(P)} &= \det(Z) \ T_{ji_{1}\dots i_{P}}^{(P+1)} + 2\sum_{n=1}^{N-1} \tilde{Z}_{jn} \sum_{r=1}^{P} \delta_{ni_{r}} T_{00i_{1}\dots \hat{i}_{r}\dots i_{P}}^{(P+1)} + \text{lower-point} \\ 2\tilde{Z}_{kl}T_{00i_{2}\dots i_{P}}^{(P+1)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \left[f_{n}f_{m}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right] \\ \times T_{00i_{2}\dots \hat{i}_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \left[f_{n}f_{m}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right] \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \left[f_{n}f_{m}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right] \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + \sum_{n,m=1}^{N-1} \left[f_{n}f_{m}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right] \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right\} \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right\} \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + 2\sum_{r=2}^{P} (f_{n}\delta_{mi_{r}} + f_{m}\delta_{ni_{r}}) \right\} \\ \times T_{00i_{2}\dots i_{P}}^{(P)} &= \left\{ -\det(Z) \ T_{kli_{2}\dots i_{P}}^{(P+1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{2}\dots i_{P}}^{(P-1)} + 2m_{0}\tilde{Z}_{kl}T_{i_{$$

$$\times T^{(P)}_{00i_{2}...\hat{i}_{r}...i_{P}} + 4 \sum_{\substack{r,s=2\\r\neq s}} \delta_{ni_{r}} \delta_{mi_{s}} T^{(P+1)}_{0000i_{2}...\hat{i}_{r}...\hat{i}_{s}...i_{P}} \Big] \tilde{\tilde{Z}}_{(kn)(lm)} + \text{ lower-point} \Big\} (D+1+P-N+\sum_{r=2} \bar{\delta}_{i_{r}0})^{-1}$$

Boosted-Higgs search in $pp \rightarrow VH(H \rightarrow b\bar{b})$

ATLAS note ATL-PHYS-PUB-2009-088 (cut-based analysis)

- $M_{\rm H} = 120 \,{\rm GeV}, \,\sqrt{s} = 14 \,{\rm TeV}, \,L = 30 \,{\rm fb}^{-1}$
- $p_{b\bar{b}}^{T}, p_{V}^{T} > 200 \,\text{GeV} \Rightarrow 5\% \text{ signal}$
- $p_{\text{jet veto}}^{\text{T}} = 20 \,\text{GeV}$ in (a)

- $t\bar{t}$ simulated with HERWIG
- $(S/\sqrt{B})_a = 3.0, (S/B)_a \simeq 2/3$

•
$$(S/\sqrt{B})_{a+b+c} = 3.7$$