

Top-antitop production and top properties at CDF

Roman Lysák Institute of Physics, Prague

(on behalf of the CDF collaboration)

SM benchmarks 2011, Zeuthen

Outline

- Introduction
- Top quark exploration
 - Cross-section
 - Mass
 - Properties: production, intrinsic, decay
- Summary and prospects

Introduction

- Top quark finalize 3rd fermion generation
- Determine nature of 'top quark' experimentally
- Try to address some of the questions:
 - Is it the SM top?
 - Is top related to the EWSB mechanism?
 - Decay into new particles?
 - Couple via new interactions?

Top quark production at Tevatron

According Standard Model:

- predominantly pair produced via strong interaction
 - $-\sigma = 7.45^{+0.72}_{-0.63} \text{ pb}$ (m_{TOP}=172.5 GeV)
- EW single top production possible (m_{TOP} =175 GeV)
 - s-channel: $\sigma = 0.88 \pm 0.11~\text{pb}$
 - t-channel: $\sigma = 1.98 \pm 0.25 \ \text{pb}$

Top quark decay

According Standard Model:

- Almost exclusively (>99%) into W and b quark
- tt decay channels:
 - Dilepton (e,µ): *lvlvbb*
 - Lepton+jets : *lvqqbb*
 - All-hadronic: qqqqbb
- Note: hadronic taus (missing E_T+jets signature)

CDF experiment

CDF Run II (2001-2011) : $\sqrt{s} = 1.96 \text{ TeV}$

- Luminosity:
 - Delivered ~ 11 fb⁻¹
 - Recorded ~ 9 fb⁻¹
 - Used in presented analyses: up to 6 fb⁻¹
- Selected tt events in presented dataset:
 - Dilepton: ~250
 - Lepton+jets: ~1200
 - All-hadronic: ~1400

What we can learn about top

What we can learn about top

Top pair production cross-section

- Precise test of QCD in very high Q² regime
- Interest lately because of important background for various searches (Higgs, 4th generation, SUSY)
- Anomalies in the tt rate would indicate:
 - presence of resonances \rightarrow high cross section
 - new top decay channels \rightarrow low cross section
 - \rightarrow measure cross sections in various tt final states

Top pair production: lepton+jets channel

- Most precise result from single channel
- Two complementary methods

Events

- One is using b-jet identification algorithm
- Other is a topological method (no b-tag)
- Normalizing with respect to Z/gamma* cross section
 - \rightarrow reduce uncertainty from luminosity determination

Combined result (m_{top} = 172.5 GeV): $\sigma = 7.70 \pm 0.52$ pb (6.8%)

Top pair production: summary

- Consistent results across channels
- Excellent agreement with the theory

Top quark mass

- Fundamental parameter of SM
- related to SM observables and parameters through loop diagrams
 → consistency checks of SM parameters
- Precise measurement of m_{top} (and m_w) allow prediction of m_{higgs}
- Typically two classes of methods:
 - Template compare sensitive variable
 between data and MC simulations
 - matrix-element (ME) event-by-event probability according production matrix element

Top mass: lepton+jets channel

- Most precise top mass measurements from single channel
- NN to distinguish between signal and background
- event-by-event likelihood based on leading order tt matrix-element
- In-situ jet enery scale (JES) calibration

 $m_{top} = 173.0 + 0.7 \text{ (stat)} + 0.6 \text{ (JES)} + 0.9 \text{ (syst)} \text{ GeV}$ $\Delta m_{top} = 1.2 \text{ GeV}$

Top mass: combination

CDF Win'11: 172.7 ± 1.1 GeV (0.63%) CDF+D0 Sum'10: 173.3 ± 1.1 GeV (0.61%)

Largest systematics: JES	
CDF expectation: Δ i	m _{top} < 1 Ge∖
Source	$\Delta m_{top} (GeV)$
jet energy scale:	0.61
ttbar modeling:	0.59
background:	0.23
lepton energy scale:	0.10
miscellaneous:	0.14
Systematic:	0.89
Statistical:	0.56

Top quark width

- Large mass \rightarrow decay fast
- Known precisely from theory: 1.3 GeV (for m_{top}=172.5 GeV)
- Deviations from SM could indicate unexpected top decays
 - Charged Higgs, FCNC, etc.
- template method with in-situ JES calibration
- Direct measurement:
 - − Γ (top) < 7.6 GeV @ 95 C.L. → τ (top) > 8.7 x10⁻²⁶ s @ 95% C.L.

Top quark charge

- Decide between 2 hypothesis : +2/3 and -4/3 charge
- It requires:
 - W charge: identify with lepton charge
 - Jet charge: p_{T} weighted sum of track charges
 - Jet lepton pairing: top mass constraint
- Data favors very strongly SM over exotic (XM) hypothesis: $p_{SM} = 0.13$ $p_{XM} = 1.4 \times 10^{-4}$
- Exclude top quark with exotic charge -4/3 with 95% C.L

Polarization of W from top decay

Dilepton channel (5.1 fb⁻¹):

• 1D fits:

 $f_0 = 0.60 \pm 0.09(stat) \pm 0.06 (syst)$

f₊ = -0.06 ± 0.04 (stat) ± 0.03 (syst)

Simultaneous fit of f₀ and f₁:
 f₀ = 0.73 ^{+0.18}/_{-0.17} (stat) ± 0.06 (syst)
 f₁ = -0.08 ± 0.09 (stat) ± 0.03 (syst)

Forward backward asymmetry in top pairs

- caused by interference of amplitudes
- SM prediction (QCD at NLO) : $A_{tt}^{FB} = 0.058 \pm 0.009$
- Significantly enhanced in BSM models:
 - Z'-like with parity violating coupling
 - chiral color theories
- I+jets channel

 $A_{t_{t}}^{FB} = 0.158 \pm 0.074$ (stat + syst)

Found strong dependence on m_{it}:

 $A_{t_{t}}^{FB}$ (m_{tt} > 450 GeV) = 0.48 ± 0.11

- 3.4 σ above the SM prediction (8.8 \pm 1.3) in high $m_{t\bar{t}}$ region

Forward backward asymmetry in top pairs

Dilepton channel:

 $A_{fB}^{FB} = 0.42 \pm 0.15 \text{ (stat)} \pm 0.05 \text{ (syst)}$

- 2.3 σ from the SM (0.06 +- 0.01)
- DIL channel adds evidence
- Twice more data in each Tevatron experiment!

Top – antitop mass difference

- If CPT conserved: $\Delta m_{top} = 0 \text{ GeV}$
- The method same as in top mass measurement but allows for mass difference

Δm_{top} = -3.3 ± 1.4(stat.) ± 1.0 (syst.) GeV = -3.3 ± 1.7 GeV

Summary and prospects

- CDF has a robust program of top quark measurements
 - using different methods \rightarrow confidence
 - measurements in different channels \rightarrow consistency
 - combining channels and methods \rightarrow precision
- tt cross-section and top mass measurement already limited by systematics
- Most of the property measurements limited by statistics
- A few latest results show tension with Standard Model

Top pair production: other channels

Dilepton channel:

- simple counting experiment
- Both pre-tag and b-tag results

 σ (0-tag) = 7.40 ± 0.97 (stat+syst) pb

MET+jets channel:

- Background to Higgs search
- Mostly lepton+jet events
- Use NN to supress QCD and other backgrounds

$$\sigma = 7.12^{+1.20}$$
 (stat + syst) pb

Top mass: other channels

All-hadronic channel

MET+jets channel (for the 1st time!)

Both measurements:

- NN selection and b-tagging
- In-situ JES calibration
- Template method: m(jj) and m_{top} (all-had); M3, M3', m(jj) (MET+jets)

 m_{top} =172.5 ± 1.4(stat.) ± 1.5(syst)

 $m_{top} = 172.3 \pm 1.8(stat.) \pm 1.8(syst)$

Differential cross-section

Top mass: CDF & Tevatron

- CDF Sum'10: $173.13 \pm 1.16 [0.67 \text{ (stat)} \pm 0.95 \text{ (syst)}] \text{ GeV } (0.67\%)$
- Tevatron Sum'10: 173.32 +- 1.06 [0.56 (stat) +- 0.89 (syst)] GeV(0.61%)
- CDF Win '11: $172.70 \pm 1.09 [0.63(stat) \pm 0.89(syst)]$ GeV (0.63%) ²⁶

Top pair production: summary

- DIL channel updated since last combination
- MET+jets channel not in combination
- Combined CDF result: 7.50 +- 0.48 pb (6.4 %)
- Consistent results, excelent agreement with theory

Polarization of W from top decay: results

Dilepton channel (5.1 fb⁻¹):

• 1D fits:

 $f_0 = 0.60 \pm 0.09(\text{stat}) \pm 0.06 \text{ (syst)} \bullet$ $f_1 = -0.06 \pm 0.04(\text{stat}) \pm 0.03 \text{ (syst)}$

• Simultaneous fit of f_0 and f_+ :

 $- f_0 = 0.73^{+0.18}_{-0.17} \text{ (stat) } \pm 0.06 \text{ (syst)}$ $- f_+ = -0.08 \pm 0.09 \text{ (stat) } \pm 0.03 \text{ (syst)}$

lepton+jets channel (2.7 fb⁻¹):

Probabilities according ME

Model independent measurement of f₀ and f₁:

 $f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}$

 $f_{+} = -0.15 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst)}$

‡

What mass we measure?

- Parameter to LL parton shower generators? Moreover, what means the input to the MC generators e.g. Pythia, Herwig?
- Common heavy quark mass definitions
 - Pole mass-p²=m² unphysical top being a free parton

 MS running mass (short distance mass)
 — the divergences are subtracted; It is the most commonly used subtraction scheme

- What is measured experimentally? Pole mass –no, parton shower does not evolve the top perturbatively to infinite long distance, stops at some scale Q₀
- Conclusion: top mass is scheme-dependent MC generator parameter. It is connected to the pole mass:

 $M_{pole} = M_{exp} \pm 1.$ (exp) +(2±1(scheme)) GeV/c²

- More info about this discussion (M. Seymour): http://agenda.hep.manchester.ac.uk/getFile.pv/ access?resId=0&materiaIId=slides&confId=2498
 - A.Hoang et al., PRL 101(2008)151602 [arXiv:0803.4214]

G.Velev, Fermilab

26

MS = m - ôm