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Large c.o.m. energy makes LHC 
a BSM AND QCD machine

• High precision calculations 
for many legs

• Matching procedures 
(CKKW, MLM)

• Improved UE tunes

• IR safe and fast 
  jet-algorithms

Recent technical developments Main New Physics goal at LHC

• Explain ELWS breaking

Plethora of Models!
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‣ SUSY

‣ Extra Dim.

‣ Technicolor

‣ GUT

Probe EW scale physics at multi TeV collider



Boosted signal in New Physics search

SM
BSM

SM
BSM

Jets Jets

high pT high pT

Proton

Proton

• overlapping radiation
• jet-parton matching breaks down
• need big jet cone

BSM
very heavy
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How to construct/define a Jet

Want mapping of hadronic final state to hard-interaction partons 

-> Jet-parton matching

Jet-parton-matching issues:

“Splash in“:

“Splash out“:

• Uncorrelated contributions of rest of collision (UE)

• Uncorrelated contributions of overlapping collisions (PU)

• Showering - LL resumed, soft-coll. emissions 

• Hadronization - nonpert. re-organization into color singlets 

Higher order perturbative contributions - IR safety
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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1. Find smallest of 
2. if     recombine them
3. if      call i a jet and remove from list of particles
4. repeat from 1. until no particles left

Minimum distance between 
jets is R

Only number of jets above pt 
cut is IR safe

Distance 
measure

Cambridge/Aachen alg. - distance measure:
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1. Find smallest of 
2. if     recombine them
3. if      call i a jet and remove from list of particles
4. repeat from 1. until no particles left

Minimum distance between 
jets is R
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Cambridge/Aachen alg. - distance measure:
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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• Sequential recombination, e.g. inclusive kT algorithm   [S.D. Ellis & Soper, ’93] 
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Fig. 7 A sample parton-level event (generated with Herwig [112,
113]), together with many random soft “ghosts”, clustered with four
different jet algorithms, illustrating the “active” catchment areas of the

resulting hard jets (cf. Sect. 4.4). For kt and Cam/Aachen the detailed
shapes are in part determined by the specific set of ghosts used, and
change when the ghosts are modified

Figure 7 illustrates the jets that are produced with the four
“choice” IRC-safe algorithms in a simple, parton-level event
(generated with Herwig), showing among other things, the
degree of regularity (or not) of the boundaries of the result-
ing jets and their extents in the rapidity-azimuth place.

3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to
identify the main regions of energy flow in a calorimetric
event such as Fig. 7. A good few seconds might be needed
to quantify that energy flow, and to come to a conclusion
as to how many jets it contains. Those are timescales that
usefully serve as a reference when considering the speed of
jet finders—if a jet finder takes a few seconds to classify an
event it will seem somewhat tedious, whereas a few millisec-
onds will seem fast. One can reach similar conclusions by

comparing to the time for a Monte Carlo event generator to
produce an event (from tens of milliseconds to a fraction of a
second), or for a fast detector simulation to process it. Or by
considering the number of CPU hours needed to process a
typical event sample, which might consist of O(107) events.

The time taken for jet finding by computer codes de-
pends strongly on the number of input particles (or tow-
ers, etc.), N . We do not yet know the exact average mul-
tiplicities of LHC events, but rough estimates are given in
Table 3. With the kt algorithm’s “standard” N3 timing, as-
suming about 109 computer operations per second, one ex-
pects a time for clustering a low-luminosity LHC event of
1 s (this is also what one finds in practice). So this is close to
being “tedious,” and becomes dissuasive for high-luminosity
LHC and heavy-ion collisions, or if one wishes to try out
many distinct jet definitions (e.g. several different R values
to see which is best). A more extreme example is the exact
seedless cone algorithm following the method in [21], which
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4

most ATLAS and CMS results on top tagging are at best published in internal notes, so we will be very
brief.

II. TOP TAGGING ALGORITHMS

Top tagging algorithms are typically based on two classes of observables. On the one hand, we can
generalize the well established event shapes to jet shapes, i.e. observables defined on calorimeter clusters
of the energy flow inside a geometrically large fat jet. Such jet shapes are directly accessible by the LHC
detectors. For our purpose the most relevant jet shape is the jet mass, on which all top tagging algorithms
are based. The second class of observables is the clustering history of all jet constituents. This history cannot
be observed directly. Instead, we have to rely on our understanding of QCD to simulate it, based on the
energy depositions we observe in the calorimeters (and trackers).

To backwards engineer the splitting history of a jet we can use our picture of collinear quark and gluon
splittings predicted by first principles QCD. The successive splitting of quarks and gluons radiated o↵ an
n-particle hard process (�n) factorizes in the soft or collinear limits into the simple form

�n+1

=

Z
�n

dp2j
p2j

dz
↵s

2⇡
P̂j1 j(z) , (1)

where pj is the momentum of the splitting parton and z is the energy fraction of one of the splitting products

j ! j
1

j
2

. The di↵erent splitting kernels P̂ (z) depend on the partonic quark or gluon process and are known.
They often diverge in the soft limit z ! 0, so we will encounter an overlapping enhancement and eventually
divergence for soft and for collinear radiation [17, 18]. The factorization shown in Eq.(1) describes the
splitting of parton radiation o↵ incoming as well as o↵ outgoing hard partons until the radiated partons
become soft enough to hadronize. The numerical implementation of Eq.(1) is the parton shower, and it
describes the transition from hard partons to a large number of hadrons which eventually decay and appear
in the calorimeters of the LHC experiments.

Inverting this successive splitting and hence extracting a hard parton momentum from a measured jet is
what jet algorithms do. Historically, an important issue is the infrared safety of observables and algorithms;
a soft or collinear splitting of any parton momentum cannot impact the macroscopic observables. While
some cone algorithms are not collinear save, recombination algorithms are. Such recombination algorithms
iteratively determine which of the observed calorimeter towers should be merged into subjets and which of
these subjets should then be merged together step by step, such that finally we arrive at few hard jets per
event. The end of this successive splitting can be defined in terms of a given minimum jet separation or a
given maximum number of jets. Di↵erent recombination algorithms are based on di↵erent subjet distance
measures:

kT dj1j2 =
�R2

j1j2

D2

min
�
p2T,j1 , p

2

T,j2

�
dj1B = p2T,j1

Cambridge/Aachen dj1j2 =
�R2

j1j2

D2

yj1B = 1

anti-kT dj1j2 =
�R2

j1j2

D2

min

 
1

p2T,j1

,
1

p2T,j2

!
dj1B =

1

p2T,j1

. (2)

These measures can be generalized to dj1j2 = �R2

j1j2
/D2 ⇥ min(p2nT,j1

p2nT,j2
) for n = �1, 0, 1. The kT -

algorithm [19] mimics the soft and collinear enhancement of the QCD splitting kernels in Eq.(1). For the
top tagging application it should best reconstruct the QCD splitting history. The Cambridge/Aachen (C/A)
algorithm [20] always combines the two closest (most collinear) subjets. It is sensitive to collinear but not to
soft splittings, but as we will see later it has some advantages in fat jet searches. The anti-kT [21] algorithm
first combines the hardest subjets, to define a particularly stable jet recombination with clean geometric jet
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For jet substructure study reverse cluster history
and analyze internal structure

W-boson jet QCD jet6 Theory Seminar             Berkeley     Michael Spannowsky            12/05/2011                   
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Sequential rec. algorithms

Recombination history

Jet substructure
=

microscope for boosted 
resonance‘s properties

Jet definition not unambiguous: Which particles? How combined?

I. INTRODUCTION

Although the idea of looking inside a jet and study the radiation pattern of its constituents

is not new [1], the large potential for searches of new electroweak scale particles has only

been appreciated recently [2]. At the LHC with its 14 TeV center of mass energy, particles

with masses around the electroweak scale are frequently produced beyond threshold, i.e.

boosted transverse to the beam direction. Either because they recoil against other energetic

objects or because they arise from decays of even heavier particles, e.g. Z’ or KK-gluons.

If the resonance’s transverse momentum is bigger than their mass, their decay products

tend to be collimated in the lab frame. If the resonance decays into hadrons, they can be

contained in a so-called ”fat jet”.

Jets, collinear sprays of hadrons and the hadrons’ decay products, are the most frequent

objects at the LHC. They do not only consist of final state radiation (FSR) but also of

radiation from the Underlying Event (UE) and pileup. Therefore, it is important to be able

to disentangle the rare events with boosted resonances from the large QCD background based

on their di↵erent radiation patterns. Leo, here general discussion of discriminating

features between QCD and decay Many di↵erent approaches have been developed to

exploit these di↵erences.

It is not unambiguous what to call a jet in an event. To be able to compare experimental

results with theoretical predictions, jets have to be defined in an infrared safe way. Therefore,

IR safe sequential jet algorithms became increasingly popular over the last years. These

algorithms sequentially merge (by combining their four-vectors) the pair of particles that

are closest according to some distance measure d
ij

unless there is a distance d
iB

(so-called

beam distance) which is smaller than all d
ij

, in which case particle i is called a jet and the

algorithm proceeds with the remaining particles in the event. The most popular sequential

jet algorithms are the k
T

[3, 4] , the Cambridge/Aachen (CA) [5, 6] and anti-k
T

algorithm

[7]. Their measure d
ij

is defined by

d
ij

= min(p2n
Ti

, p2n
Tj

)
�R2

ij

R2

,

8
>>>><

>>>>:

k
T

: n=1 ,

C/A : n=0 ,

anti�k
T

: n=-1,

(1)

and d
iB

= p2n
T,i

. Here, R is the jet resolution parameter which specifies the size of the jet.

2
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Are we done?

In a perfect world (or an e+e- collider) this 
would be most of the story

However, at the LHC many sources of radiation:

• Pileup

• Underlying Event

• Initial state radiation (ISR)

• Hard radiation from many resonances in event

Need methods to separate final state radiation (FSR) from rest of event

20

III. QCD EFFECTS

Hadronic final states of hard interactions resulting form proton-bunch crossings at the LHC are subject to
many sources of QCD radiation. Final state radiation are soft and collinear jets radiated o↵ the produced
particles, in our case the top quark. It can be described well using the parton shower, and radiation o↵
heavy states is suppressed. Initial state radiation are soft and collinear jets from initial state radiation,
arising because the incoming partons have to bridge the gap in scale between the proton and the hard
process. In the collinear limit they are also well described by the parton shower, in the harder regime they
require matrix element corrections [17].

Underlying event is additional soft QCD activity arising from a given proton-proton interaction and sur-
rounding the hard event. It is caused by semi- or non-perturbative interactions between the proton remnants.
The soft continuous underlying event radiation can have a large e↵ect on the jet mass and critically depends
on the size R of the fat jet [57]
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At the LHC, the amount of transverse momentum of the underlying event radiation per unit rapidity, ⇤
UE

,
is roughly O(10) GeV [58].

Finally, pile-up is the e↵ect of multiple proton-proton collisions in one beam crossing. Its e↵ects are already
observed now and are expected to become even harder to deal with once the LHC runs at design energy and
design luminosity. Pile-up can add up to 100 GeV of soft radiation per unit rapidity [59].

As discussed in Sec. II the kT and C/A algorithms, for a virtuality and an angular ordered shower, aim to
reverse the shower evolution. Approximately, they preserve the physical picture of the jet evolution from the
hard scale to the hadronization scale in the recombination sequence. Initial state radiation, underlying event
and pile-up spoil this picture and add noise to the jet clustering. Jet-mass-based algorithms using subjets
as part of the reverse-engineered cluster history are sensitive to a distortion by uncorrelated soft radiation.

An additional complication in identifying events with hadronically decaying electroweak resonances is that
splittings of quarks and gluons can geometrically induce a large jet mass,
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where Ci = 3 (4/3) are the color factors for gluon (quark) induced jets [60]. For very hard jets this value
can become of the order of the electroweak scale. This makes initial state radiation associated with heavy
particle production dangerous, in particular in events with generically large jet multiplicity. For the top
tagger it also means that while pT,j and R are required to be large to capture all decay products, they should
not become too large.

To discriminate a hadronically decaying heavy resonance from a QCD jet, e.g. using its invariant mass,
all final state radiation has to be properly recombined. This implies that we can separate it from initial state
radiation, underlying event and pile-up. While underlying event and pile-up tend to be soft compared to the
decay products of a boosted resonance, initial state radiation is not [32]. Its typical transverse momentum
can be of the same order as a W decay jet, in particular for moderately boosted top quarks. Therefore,
di↵erent substructure approaches are needed to cope with underlying event/pile-up and with initial state
radiation.

Jet grooming methods, like filtering (Sec. III A), trimming (III B) and pruning (Sec. III C), remove soft
uncorrelated radiation from a fat jet while retaining final state radiation o↵ the resonance. For QCD jets
grooming methods reduce the upper end of the jet mass distribution, whereas for signal events they yield
a sharper peak near the true resonance mass mj = m

res

. To keep these methods generic it is implicitly
assumed that for boosted heavy particles pT,FSR > pT,(ISR,UE,PU)

. Thus, the transverse momentum of the
subjets is an important criterion to discriminate between final state radiation and other radiation. Using
soft-collinear e↵ective theory it has recently been shown that under certain conditions grooming techniques
factorize [61].

As a matter of fact, the problem of QCD e↵ects inside geometrically large jets was early on noticed by
the authors of Ref. [62]. This is why their ‘top tagger’ is based on narrow kT jets for the top decay products
which are then combined in the spirit of the C/A-algorithm.

with
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Can add up to 100 GeV of soft radiation per unit rapidity
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Jet/Event selection:

UE, ISR, Pile-up, hard interaction

mH [GeV] 300 400 500 600
� [fb] �S �B �S �B �S �B �S �B

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
�

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
�

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb�1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.
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I.Locate hadronic energy 
deposit in detector by 
choosing initial jet 
finding algorithm, e.g. CA, 
R=1.2

II.Possible to impose jet 
selection cuts on fat jet

Jet grooming methods
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Filtering/Trimming

I.Recombine jet 
constituents with new 
algorithm, eg CA, R=0.2

Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.

– 3 –
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the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.

– 3 –

Filtering/Trimming

I.Recombine jet 
constituents with new 
algorithm, eg CA, R=0.2

27LHCD Top Workshop               Berlin      Michael Spannowsky             22.03.2012                   



Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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R=0.2

Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant mass MJet of

the fat jet, expecting to find MJet ⇥ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ⇥ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an e⇥ective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f � � , (2.1)

were the hard scale � is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

�
⇤

i

pi

⇥2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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Pruning

Based on 2 conditions

figure 1. The t̄t signal is clearly visible. We will investigate the statistical significance of

the signal shortly.
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA

figure 1. The t̄t signal is clearly visible. We will investigate the statistical significance of

the signal shortly.
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination
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These can be characterized in terms of the variables z
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pair of protojets is combined by adding their four-momenta, creating a new protojet.
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Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this
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to be combined, we look at the momentum fraction

z =
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the
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Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets
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pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-
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{i, j} for which
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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mH [GeV] 300 400 500 600
� [fb] �S �B �S �B �S �B �S �B

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
�

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
�

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb�1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.

�X,Y =
E[(X � E[X])(Y � E[Y ])]

⇥x⇥y
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

|mjjj � 172.3 GeV| < 25 GeV (195)

⇤ (196)

y (197)

R = M(fat jet)/PT(fat jet) (198)
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the
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z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering
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algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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{i, j} for which
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and �R: recombinations with large �R and small z are
much more likely to arise from systematic e⇥ects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ⇥ p:

z =
min(pTi, pTj)

pTp
< zcut and �Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic e⇥ects that can
be well characterized. Pruning is not the only option,
but o⇥ers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for di⇥erent searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for di⇥erent searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, �R12 � 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. E�ects of Pruning

Having defined the pruning procedure, we can demon-
strate how e⇥ective it is in reducing systematic e⇥ects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic e⇥ects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi � yj)

2 + (�i � �j)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and �i is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an e�ective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|⇥pT,i + ⇥pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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pair of protojets is combined by adding their four-momenta, creating a new protojet.
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(c) dijets, 300–400 GeV
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Fig. 1. Jet invariant mass mj for tt̄ (a,c) and dijet (b,d) events, for three grooming methods. Each groomed analysis begins
with anti-kT jets with R = 1.0. The red curve represents these jets without grooming. The distributions correspond to tt̄ or
di-jet quarks or dijet samples with parton-level pT of 500–600 GeV (a,b) and 300–400 GeV (c,d).

tunes described in section 5. In particular, we establish
the sensitivity of jet mass and related observables to the
parton shower model and to the UE. We also perform a
simulation that mimics a number of important detector
effects. Data collected at the LHC in 2010-2011 should
enable a more thorough understanding than we can hope
to achieve at this stage.

We reconstruct the jet invariant mass distribution for
anti-kT jets with R = 1. The grooming techniques de-
scribed in section 6 select relatively hard events and are
therefore expected to reduce the sensitivity to soft and
diffuse energy deposits. We apply the three grooming pro-
cedures and determine the invariant mass of the result-
ing groomed jet. We present the result of trimming, but
the conclusions hold for all three techniques. We moreover

recluster the jet constituents with the kT algorithm and
unwind the sequence to retrieve the i → j splitting scales
dij . We note that the splitting scales are determined on
the ungroomed cluster sequence.

To establish the impact of different parton shower mod-
els we compare the response to two of the most popu-
lar Monte Carlo tools for jet formation, HERWIG and
PYTHIA. We moreover vary the order of the emissions in
PYTHIA, using two schemes known as pT -ordering (used
in the Perugia0 tune) and Q2 ordering (used in DW and
DWT). In Fig. 2, we compare the jet mass distribution for
these three setups, along with the kT scales correspond-
ing to the 1 → 2 and 2 → 3 splits. For the sake of a clean
comparison we disabled UE activity for these samples.
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Fig. 1. Jet invariant mass mj for tt̄ (a,c) and dijet (b,d) events, for three grooming methods. Each groomed analysis begins
with anti-kT jets with R = 1.0. The red curve represents these jets without grooming. The distributions correspond to tt̄ or
di-jet quarks or dijet samples with parton-level pT of 500–600 GeV (a,b) and 300–400 GeV (c,d).

tunes described in section 5. In particular, we establish
the sensitivity of jet mass and related observables to the
parton shower model and to the UE. We also perform a
simulation that mimics a number of important detector
effects. Data collected at the LHC in 2010-2011 should
enable a more thorough understanding than we can hope
to achieve at this stage.

We reconstruct the jet invariant mass distribution for
anti-kT jets with R = 1. The grooming techniques de-
scribed in section 6 select relatively hard events and are
therefore expected to reduce the sensitivity to soft and
diffuse energy deposits. We apply the three grooming pro-
cedures and determine the invariant mass of the result-
ing groomed jet. We present the result of trimming, but
the conclusions hold for all three techniques. We moreover

recluster the jet constituents with the kT algorithm and
unwind the sequence to retrieve the i → j splitting scales
dij . We note that the splitting scales are determined on
the ungroomed cluster sequence.

To establish the impact of different parton shower mod-
els we compare the response to two of the most popu-
lar Monte Carlo tools for jet formation, HERWIG and
PYTHIA. We moreover vary the order of the emissions in
PYTHIA, using two schemes known as pT -ordering (used
in the Perugia0 tune) and Q2 ordering (used in DW and
DWT). In Fig. 2, we compare the jet mass distribution for
these three setups, along with the kT scales correspond-
ing to the 1 → 2 and 2 → 3 splits. For the sake of a clean
comparison we disabled UE activity for these samples.

see Boost 2010 proceedings [A. Abdesselam et al. EPJ C71 (2011)]
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HV - Higgs discovery channel

p p
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e.g.   pp -> ZH bbar

Z -> l+l-

    H -> b,bbar

Collect FSR

Reject ISR and UE
R=1.2

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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HV - Higgs discovery channel

mass drop:
1)  check for mass drop

mj1 < 0.66 mj

p p

b
bbar

Z -> l+l-

    H -> b,bbar

2)  check “asymmetry”

physics scenario as well as the detector performance. Im-

portant details of the new physics model include the total

cross section of new physics, the fraction of new physics

produced that can be cleanly separated from standard

model backgrounds, the fraction of this sample that has

Higgs bosons resulting from new heavy particle decays,

and the fraction of these Higgs bosons that are boosted.

Important detector performance details include the b-tag

e⇧ciency, which includes tagging a jet as well as subjets,

the jet energy resolution, fake rates, and so on.

II. BOOSTED HIGGS

A boosted Higgs boson has high transverse momenta

pt ⇤ mh. When the Higgs decays to bb̄, this high

transverse momenta causes the b-jets to be highly col-

limated. Conventional search strategies to identify the

Higgs through the reconstruction of two separate singly

b-tagged jets generally fails since it is much more likely

for the b-jets to be merged into a single jet. Going to

smaller cone size would seem prudent, except that this

has been shown to give poor mass resolution [4].

Instead, we exploit the recently developed technique

to identify subjets within a “fat jet” consistent with the

decay of a Higgs to bb̄ [1]. Identifying subjets inside a

fat jet that resulted from the decay of a massive particle

is not straightforward. Jet mass, determined by some

algorithmic prescription applied to the subjets, is one

indicator. However, the distribution that results from

ordinary QCD production still has a long tail into high

jet masses. For a jet with transverse momentum pt, jet

mass mj , and cone size R2
= �⇥2

+ �⌃2
, the leading

order di⇥erential QCD jet mass distribution goes as [5, 6]

d⇧ (R)

dptdmj
⇥ �sCi

⌅m2
j

 
ln

R2p2
t

m2
j

+O (1)

!
. (1)

The challenge is thus to reduce the QCD jet background

without losing significantly in mass resolution. Further,

when a jet with substructure is identified, we also need to

determine the “heavy particle neighborhood” – the region

to which QCD radiation from the Higgs decay products

is expected to be confined.

Analysis of jet substructure has received considerable

attention. Distinct algorithms have been proposed to

identify Higgs decaying to bb̄ [1, 7], fully hadronic decays

of top [7, 8, 9, 10], and even neutralinos decaying to three

quarks [11, 12]. Refs. [13, 14, 15] have also recently in-

troduced a more general “pruning” procedure based on

jet substructure to more easily discover heavy particles.

Our work employs a modified version of the iterative de-

composition algorithm introduced by Ref. [1], which uses

an inclusive, longitudinally invariant Cambridge/Aachen

(C/A) algorithm [16, 17, 18].

III. JET SUBSTRUCTURE ALGORITHM

The starting point to test our algorithm, both for new

physics and SM background processes, is a set of final

(post-showering and hadronization) particles. We gener-

ate signal events using Pythia v6.4 [19], while the back-

ground events are first generated at parton-level using

ALPGENv13 [20]. We use PYTHIA v6.4 for showering

and hadronization of all events. We also use the ATLAS

tune [21] in Pythia to model the underlying event. We do

not perform any detector simulation or smearing of jets.

A realistic ATLAS/CMS specific search in the spirit of

Ref. [2] is beyond the scope of this work. However, since

high pt jets result in a large amount of energy deposited

in the calorimeter cells where energy resolution is excel-

lent, we do not expect smearing to significantly modify

our results.

We group the hadronic output of Pythia into “cells” of

size �⇥��⌃ = 0.1�0.1. We sum the four momentum of

all particles in each cell and rescale the resulting three-

momentum such as to make the cells massless [8]. If the

cell energy is bigger than 1 GeV, the cells become the

inputs to the jet algorithm. We use the inclusive C/A

algorithm as implemented in FastJet [22] to cluster the

input cells in jets with R = 1.2. As we are trying to

identify the Higgs through its decay to bottom quarks,

the b-tag e⇧ciency is paramount. For simplicity we work

with a flat 60% acceptance, with a corresponding fake

rate of 2%. Our algorithm is as follows:

1. The decomposition procedure starts with a b-
tagged jet j. After undoing its last stage of clus-

tering, the two subjets j1 and j2 are labeled such

that mj1 > mj2 .

2. Following Ref. [1], subjets are checked for the ex-

istence of a significant mass drop (mj1 < µmj) as

well as non-existence of an asymmetry defined by

y =
min

“
p2

tj1
,p2

tj2

”

m2
j

�R2
j1,j2 > ycut. We use µ = 0.68

and ycut = (0.3)
2

identical to Ref. [1]. Both subjets

are required to be b-tagged and the pt of the daugh-

ter jet j greater than 30 GeV. If these conditions

are satisfied, this stage of clustering (say, i-th) is

recorded and then the following is calculated:

Si =

min

⇣
p2

tj1
, p2

tj2

⌘

�
ptj1

+ ptj2

�2 �Rj1j2 . (2)

The quantity Si is an indicator of the similarity of

the two subjets and is weighted by their separation

�Rj1j2 .

3. Replace j by j1 and repeat from step 1 as long as

j has further subjets.

4. Select the stage of clustering for which Si is the

largest. We anticipate that the two b-tagged sub-

jets, at this stage, are most likely to have originated

2

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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Use b-tagging on 2 
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[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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3

on mass resolution and background rejection.

The above results were obtained with HER-
WIG 6.510[17, 18] with Jimmy 4.31 [19] for the under-
yling event, which has been used throughout the sub-
sequent analysis. The signal reconstruction was also
cross-checked using Pythia 6.403[20]. In both cases
the underlying event model was chosen in line with the
tunes currently used by ATLAS and CMS (see for ex-
ample [21] 2). The leading-logarithmic parton shower
approximation used in these programs have been shown
to model jet substructure well in a wide variety of pro-
cesses [23, 24, 25, 26, 27, 28]. For this analysis, sig-
nal samples of WH, ZH were generated, as well as
WW, ZW, ZZ, Z + jet, W + jet, tt̄, single top and dijets
to study backgrounds. All samples correspond to a lu-
minosity ≥ 30 fb−1, except for the lowest p̂min

T dijet sam-
ple, where the cross section makes this impractical. In
this case an assumption was made that the selection ef-
ficiency of a leptonically-decaying boson factorises from
the hadronic Higgs selection. This assumption was tested
and is a good approximation in the signal region of the
mass plot, though correlations are significant at lower
masses.

The leading order (LO) estimates of the cross-section
were checked by comparing to next-to-leading order
(NLO) results. High-pT V H and V bb̄ cross sections were
obtained with MCFM [29, 30] and found to be about 1.5
times the LO values for the two signal and the Z0bb̄ chan-
nels (confirmed with MC@NLO v3.3 for the signal [31]),
while the W±bb̄ channel has a K-factor closer to 2.5 (as
observed also at low-pT in [30]).3 The main other back-
ground, tt̄ production, has a K-factor of about 2 (found
comparing the HERWIG total cross section to [32]). This
suggests that our final LO-based signal/

√
background es-

timates ought not to be too strongly affected by higher
order corrections, though further detailed NLO studies
would be of value.

Let us now turn to the details of the event selection.
The candidate Higgs jet should have a pT greater than
some p̂min

T . The jet R-parameter values commonly used
by the experiments are typically in the range 0.4 - 0.7.
Increasing the R-parameter increases the fraction of con-
tained Higgs decays. Scanning the region 0.6 < R < 1.6
for various values of p̂min

T indicates an optimum value
around R = 1.2 with p̂min

T = 200 GeV.

Three subselections are used for vector bosons: (a) An
e+e− or µ+µ− pair with an invariant mass 80 GeV <
m < 100 GeV and pT > p̂min

T . (b) Missing transverse
momentum > p̂min

T . (c) Missing transverse momentum

2 The non-default parameter setting are: PRSOF=0,
JMRAD(73)=1.8, PTJIM=4.9 GeV, JMUEO=1, with
CTEQ6L [22] PDFs.

3 For the V bb̄ backgrounds these results hold as long as both the
vector boson and bb̄ jet have a high pT ; relaxing the requirement
on pTV leads to enhanced K-factors from electroweak double-
logarithms.
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FIG. 2: Signal and background for a 115 GeV SM Higgs
simulated using HERWIG, C/A MD-F with R = 1.2 and
pT > 200 GeV, for 30 fb−1. The b tag efficiency is assumed
to be 60% and a mistag probability of 2% is used. The qq̄
sample includes dijets and tt̄. The vector boson selections
for (a), (b) and (c) are described in the text, and (d) shows
the sum of all three channels. The errors reflect the statisti-
cal uncertainty on the simulated samples, and correspond to
integrated luminosities > 30 fb−1.

> 30 GeV plus a lepton (e or µ) with pT > 30 GeV,
consistent with a W of nominal mass with pT > p̂min

T . It
may also be possible, by using similar techniques to re-
construct hadronically decaying bosons, to recover signal
from these events. This is a topic left for future study.

To reject backgrounds we require that there be no lep-
tons with |η| < 2.5, pT > 30 GeV apart from those used
to reconstruct the leptonic vector boson, and no b-tagged
jets in the range |η| < 2.5, pT > 50 GeV apart from the
Higgs candidate. For channel (c), where the tt̄ back-
ground is particularly severe, we require that there are
no additional jets with |η| < 3, pT > 30 GeV. The re-
jection might be improved if this cut were replaced by a
specific top veto [5]. However, without applying the sub-
jet mass reconstruction to all jets, the mass resolution
for R = 1.2 is inadequate.

The results for R = 1.2, p̂min
T = 200 GeV are shown

in Fig. 2, for mH = 115 GeV. The Z peak from ZZ and
WZ events is clearly visible in the background, providing
a critical calibration tool. Relaxing the b-tagging selec-
tion would provide greater statistics for this calibration,
and would also make the W peak visible. The major
backgrounds are from W or Z+jets, and (except for the
HZ(Z → l+l−) case), tt̄.

Combining the three sub-channels in Fig. 2d, and sum-
ming signal and background over the two bins in the
range 112-128 GeV, the Higgs is seen with a significance

BDRS Result

• LHC 14 TeV; 30 fb-1

• HERWIG/JIMMY/Fastjet
  cross-checked with PYTHIA
  with “ATLAS tune”

• 60% b-tag; 2% mistag

• Combination of HZ and HW
  channels

Confirmed in ATLAS full detector simulation
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How about Data?

• Jet mass in good agreement with MC
• y-splitter observable in good agreement with MC
• Massdrop + Filtering as predicted by MC
• Pileup under control so far:

(see yesterdays paper 1203.4606) 

All measurements indicate large potential for jet 
substructure techniques and good agreement with MC

10 Mean Mass With Multiple Proton-Proton Interactions

The results presented so far have been for events containing only one pp interaction; how-

ever even in this early period of running, the data contain events with multiple simul-

taneous pp interactions (pile-up) [47]. These additional collisions are uncorrelated with

the hard-scattering process that typically triggers the event. They therefore present a

background of soft, di↵use radiation that o↵sets the energy measurement of jets and will

impact jet-shape and substructure measurements. It is essential that future studies involv-

ing jet-substructure variables, such as those investigated here, be able to understand and

correct for the e↵ects of pile-up. Methods to mitigate these e↵ects will be essential for jet

multiplicity and energy scale measurements.

Substructure observables are expected to be especially sensitive to pile-up [8]. This is

true in particular for the invariant mass of large-size jets. Techniques such as the splitting

and filtering procedure used in this study reduce the e↵ective area of large jets and are

therefore expected to reduce sensitivity to pile-up.

The sensitivity of mean jet mass to pile-up is tested in this dataset. The correlation

of the mean jet mass of anti-k
t

jets with the number of reconstructed primary vertices is

presented in Figure 17 (left). All jets with a p
T

of at least 300 GeV in the rapidity range

|y| < 2 are considered. The mean mass of jets in the absence of pile-up and the variation

with pile-up activity show the expected dependence on the jet size. The mean mass in the
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Figure 17. The mean mass for jets with pT > 300 GeV as a function of the number of primary
vertices identified in the event. Comparisons show the e↵ect for anti-kt jets with di↵erent R-
parameters (left) and Cambridge-Aachen R = 1.2 jets with and without splitting and filtering
procedure (right). Each set of points is fitted with a straight line.
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top tagging at the LHC

• High pT tops come naturally with New Physics

Was initial motivation to study jet substructure

[e.g. Agashe, et al. PRD 77 (2008)]

• Several approaches

Promote event shape to jet shape

Use internal structure of jet recombination history

• Allows for a very rich phenomenological application
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Appendix A: HEPTopTagger: Boosted Tops in the Standard Model

Top taggers are algorithms identifying top quarks inside geometrically large and massive jets. They rely on
the way a jet algorithm combines calorimeter towers into an actual jet. An obvious limitation is the geometrical
size of the jet which for a successful tag has to include all three main decay products of the top quark. At
the parton level we can compute the size of the top quark from the three R distances of its main decay
products: following the Cambridge/Aachen algorithm [24, 25] we first identify the combination (i, j) with the
smallest �R

ij

. The length of the second axis in the top reconstruction we obtain from combining i and j and
computing the R distance of this vector to the third constituent. The maximum of the two R distances gives
the approximate partonic initial size �R

bjj

of a C/A jet covering the main top decay products. In Figure 2 we
first correlate this partonic top size with the transverse momentum of the top quark for a complete tt̄ sample
in the Standard Model. As expected, if for technical reasons we want to limit the size of the C/A fat jet to
values below 1.5 we cannot expect to see top quarks with a partonic transverse momentum of p

T

<⇠ 150 GeV.
In the right panel we show the same correlation, but after tagging the top quark as described below and based
on the reconstructed kinematics. The lower boundaries indeed trace each other, and the main body of tagged
Standard Model top quarks resides in the prec

T,t

= 200 · · · 250 GeV range, correlated with �Rrec

bjj

= 1 · · · 1.5. This
result illustrates that for a Standard Model top tagger it is indeed crucial to start from a large initial jet size.

Therefore, our tagger for Standard Model tops is based on the Cambridge/Aachen [24, 25] jet algorithm with
R = 1.5, combined with a mass-drop criterion [9–11]. Because the generic p

T

range for the tops does not exceed
500 GeV the granularity of the detector does not play a role, and we can optionally apply a b tag to improve
the QCD rejection rate. Since such a subjet b tag [30] will only enter as a probabilistic factor (60%, 10%, 2%)
for (b, c, q/g) jets we do not include it in the following discussion. Note that whenever we require a b tag in our
actual analysis, the numbers do not yet include the (70%, 1%) improvements found for a b tag inside a boosted
Higgs [30].

The algorithm proceeds in the following steps:

1. define a fat jet using the C/A algorithm with R = 1.5

1
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Figure 2: Left: partonic �Rbjj vs pT distribution for a Standard Model tt̄ sample. Right: the same correlation, but
only for tagged top quarks and based on the reconstructed kinematic properties.
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Approach I: Propagate event shape to jet shape:

16

Figure 8: Reconstructed kinematics variables for top jets and QCD jets in the top mass window of Eq.(13) and after
an additional cut of pT > 1200 GeV on the fat jet: original energy ratio z (left), mjj for the W candidate subjets
(center), and the determinant of the transverse sphericity (right). Figures from Ref. [40].

It is constructed out of the transverse momentum components ~p?↵ of all energy depositions ↵, perpendicular
to the jet momentum. To avoid constructing the tensor with explicit coordinates the actual observable is
its determinant. For two-body kinematics detS?kl is zero. For three-body decays it corresponds to two
finite tensor eigenvalues summing to unity and hence ranges within 0...0.25. In the right panel of Fig. 8 we
see that top jets show a clear bias towards large detS?kl values, but that the background uncertainties are
significant. In addition, event shapes will even more than jet masses be a↵ected by pile-up and the way we
remove it [14].

G. N-Subjettiness

N -Jettiness [42] is an event shape which describes the number of isolated jets in an event. It can be
adapted as N -subjettiness to count subjets inside a fat jet [43–45]. Relative to N subjet directions n̂j it is
defined as

⌧N =
1

P
↵2jet

pT,↵R
�
0

X

↵2jet

pT,↵ min
k=1,...,N

(�Rk,↵)
� (15)

with an arbitrary weighting exponent � > 0, to ensure infrared safety. The normalization factor limits ⌧N
to the interval 0...1. In the first version of the tagging algorithm [44] these N axes are defined through a
subjet algorithm. In a modified version [45] they are defined in analogy to the thrust event shape, namely
as a minimization of the numerical value for ⌧N .

Fat jets with large values ⌧N ! 1 have many calorimeter clusters far away from the N main axes, which
means they consist of at least N + 1 well separated subjets. In the ratio ⌧N+1

/⌧N typical QCD e↵ects will
drop out, and the ratio will develop a dip for events which have N + 1 subjets.

Because of the largely unknown QCD e↵ects the value of ⌧
3

, i.e. the quality of the three-subjet hypothesis is
not the best discriminator of top jets as compared to QCD jets. The ⌧N distributions using the minimization
criterion and � = 1 tend to peak in the ⌧

1

= 0.2...0.25, ⌧
2

= 0.07...0.1, or ⌧
3

= 0.04...0.05 regimes, where
the lower values are given for QCD jets and the upper values are reached by top jets [45]. However, the
QCD-induced widths of the distributions are consistently larger than the peak di↵erences.

In Fig. 9 we instead show two ratios of N -subjettiness values. The two constructions of the N reference
directions give very similar results, with a little bias towards smaller ratios for the explicit minimization
condition. For top decays producing three separated subjets the ratio ⌧

3

/⌧
2

is expected to drop, compared
to the QCD case. Indeed, we see a significantly lower signal peak than background peak in ⌧

3

/⌧
2

, even
though this is at least as much due to an increase of the background peak as a decrease of the signal peak
compared to ⌧

2

/⌧
1

.
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Figure 9: N -subjettiness distributions for signal an background. Both methods for extracting the N reference
momenta are shown. Both panels use � = 1 in the definition of ⌧ , which turns out to give the best tagging
performance. Figures from Ref. [45].

The associated top tagging algorithm is based on an anti-kT jet of size R = 1.0 and with pT > 200 GeV.
The choice of jet algorithm reflects the fact that the clustering history will not be part of the top selection
criteria. Instead, it uses two basic jet shape requirements on the top jet mass and on the ratio of subjettiness
values

m
fat jet

= 160...240 GeV
⌧
3

⌧
2

< 0.6 , (16)

Because the fat jet mass is not corrected for soft QCD and pile-up its upper limit is larger than usual. The
e�ciencies obtained for di↵erent methods of reconstructing the N reference directions and for � = 1...2.5
only slightly di↵er, likely within the uncertainties induced by QCD and detector e↵ects.

An obvious extension of the tagging criteria Eq.(16) would be including all ⌧N and ⌧N/⌧N�1

measures for
N = 1, 2, 3 and � = 1, 2. For fixed e�ciencies this reduces the mis-tag rate by roughly 20% [45].

H. Alternative jet shapes

After discussing a set of specialized top tagger which are currently being tested by ATLAS and CMS we
have to add a few more general approaches. For example, the template method based on jet shapes or the
pure counting based tree-less approach are likely not going to be the leading top tagging tools used at the
LHC. However, their ideas might well prove useful when the experimental task at the LHC goes beyond
identifying known Standard Model particles and features.

The template method for top tagging [46] relies on anti-kT -jets of size R = 0.5 and a jet energy in the
1 TeV range. In a similar ansatz [47] this is replaced by a cut on the transverse momentum of the leading
jet of at least pT,j > 1 TeV. In addition, the fat jet mass has to lie in the 160...190 GeV range. Relevant
additional observables are then included as an overlap of measured correlations on the calorimeter level and
di↵erent parton-level templates, weighted by the geometric energy deposition.

Possible additional observables used in this top tagging study are jet shapes. Event shapes like thrust or
the eigenvalues of the sphericity tensor Eq.(14) can be used on the content of geometrically large jets and
their constituents. In that framework they are often referred to as jet shapes. A jet shape which is essential
for all top tagging algorithms is the jet mass. A major theoretical issue is if jet shapes are infrared safe, which
we will skip in this discussion [24]. Obviously, this question also includes the underlying jet algorithms.

An essentially equivalent alternative to the sphericity is the planar flow. It is derived from the tensor Iw
and its two eigenvalues �

1,2 [48]

Iklw =
1

m
jet

X

↵2jet

~p?k
↵ ~p?l

↵

E↵
P =

4det Iw
(trIw)2

=
4�

1

�
2

(�
1

+ �
2

)2
. (17)
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Figure 7: �R between the reconstructed and the parton-level top quark in tt̄ events (left), �pT /p
rec
T for the same

sample (center) and �|~p|/|~p|rec (right). For the solid curves we only apply the default cut precT,t > 200 GeV while the
dashed curves require precT,t > 300 GeV. Figures from Ref. [8].

F. Thaler-Wang Tagger

Around the same time when the Johns Hopkins tagger adopted the BDRS approach for boosted top quarks,
the Thaler-Wang tagger took a di↵erent approach. It describes a subjet splitting in terms of the jet mass mj

of the parent subjet and the subjet energy drop in the splitting. The definition of the jet energy drop is not
unique, so it can be implemented into a tagging algorithm in di↵erent ways, all equivalent in the massless
and collinear limit

z =
minEji

Ej
⇠ dj1j2

dj1j2 +m2

j

⇠ min(pji · pref)
(pj · pref) (12)

where dj1j2 = min(p2T,ji
)�R2

j1j2
is the distance measure in the kT -algorithm introduced in Eq.(2) and p

ref

is a free reference 4-vector, for example the direction of one of the incoming protons. This energy drop is
expected to only be weakly correlated with the jet mass, which simplifies the tagging algorithm.

Because all definitions in Eq.(12) coincide in the collinear limit it is unlikely that we will be able to compare
their performance inside a tagger on Monte-Carlo data, which is generated with a parton shower. For top
jets simple simulations show that the second two definitions are essentially equivalent while the actual energy
ratio has a significantly softer z spectrum. For QCD jets all definitions are equally strongly peaked towards
small z values, but the energy drop has much smaller tails for z > 0.3 [40].

To extract massive splittings the Thaler-Wang tagger starts with an anti-kT jet of size R = 1. Of this
fat jet only the regions with the hardest jets are labelled and re-clustered with a kT -algorithm. To apply
the tagger to LHC data in the presence of underlying event and pile-up it needs to be supplemented with a
trimming stage to remove soft calorimeter activity, as described in Sec. III B.

The numerical values in the tagging criteria are optimized for highly boosted top quarks with pT,t > 800
at least, where we require jet mass windows and large energy ratios for example using the first definition in
Eq.(12):

mjjj = 160...200 GeV mjj = 60...100 GeV , z > 0.1 (13)

where the W mass constraint has to be fulfilled by one subjet combination and the z value is extracted from
the t ! Wb decay step. Both observables are shown in Fig. 8 and show a clear di↵erence for signal and
backgrounds.

To this stage the Thaler-Wang tagger does not yet include a distinctive feature of a three-body decay.
Therefore, it is combined with the classical sphericity event shape. The sphericity tensor [41] defined on the
two-dimensional plane transverse to the boost direction is defined in terms of calorimeter objects

S?kl =
1P

↵2jet

|~p?↵ |
X

↵2jet

~p?k
↵ ~p?l

↵

|~p?↵ |
. (14)
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Figure 8: Reconstructed kinematics variables for top jets and QCD jets in the top mass window of Eq.(13) and after
an additional cut of pT > 1200 GeV on the fat jet: original energy ratio z (left), mjj for the W candidate subjets
(center), and the determinant of the transverse sphericity (right). Figures from Ref. [40].

It is constructed out of the transverse momentum components ~p?↵ of all energy depositions ↵, perpendicular
to the jet momentum. To avoid constructing the tensor with explicit coordinates the actual observable is
its determinant. For two-body kinematics detS?kl is zero. For three-body decays it corresponds to two
finite tensor eigenvalues summing to unity and hence ranges within 0...0.25. In the right panel of Fig. 8 we
see that top jets show a clear bias towards large detS?kl values, but that the background uncertainties are
significant. In addition, event shapes will even more than jet masses be a↵ected by pile-up and the way we
remove it [14].

G. N-Subjettiness

N -Jettiness [42] is an event shape which describes the number of isolated jets in an event. It can be
adapted as N -subjettiness to count subjets inside a fat jet [43–45]. Relative to N subjet directions n̂j it is
defined as

⌧N =
1

P
↵2jet

pT,↵R
�
0

X

↵2jet

pT,↵ min
k=1,...,N

(�Rk,↵)
� (15)

with an arbitrary weighting exponent � > 0, to ensure infrared safety. The normalization factor limits ⌧N
to the interval 0...1. In the first version of the tagging algorithm [44] these N axes are defined through a
subjet algorithm. In a modified version [45] they are defined in analogy to the thrust event shape, namely
as a minimization of the numerical value for ⌧N .

Fat jets with large values ⌧N ! 1 have many calorimeter clusters far away from the N main axes, which
means they consist of at least N + 1 well separated subjets. In the ratio ⌧N+1

/⌧N typical QCD e↵ects will
drop out, and the ratio will develop a dip for events which have N + 1 subjets.

Because of the largely unknown QCD e↵ects the value of ⌧
3

, i.e. the quality of the three-subjet hypothesis is
not the best discriminator of top jets as compared to QCD jets. The ⌧N distributions using the minimization
criterion and � = 1 tend to peak in the ⌧

1

= 0.2...0.25, ⌧
2

= 0.07...0.1, or ⌧
3

= 0.04...0.05 regimes, where
the lower values are given for QCD jets and the upper values are reached by top jets [45]. However, the
QCD-induced widths of the distributions are consistently larger than the peak di↵erences.

In Fig. 9 we instead show two ratios of N -subjettiness values. The two constructions of the N reference
directions give very similar results, with a little bias towards smaller ratios for the explicit minimization
condition. For top decays producing three separated subjets the ratio ⌧

3

/⌧
2

is expected to drop, compared
to the QCD case. Indeed, we see a significantly lower signal peak than background peak in ⌧

3

/⌧
2

, even
though this is at least as much due to an increase of the background peak as a decrease of the signal peak
compared to ⌧

2

/⌧
1

.

‣ sphericity:

‣ N-subjettiness:

‣ treeless approach:
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Figure 10: Peak positions and associated masses for np = 3 and fat jets with pT = 500...600 GeV. Shown are
normalized distributions for the top signal (blue) and QCD backgrounds (red). Figure from Ref. [52].

In addition, the angular correlations have to satisfy

R
1⇤ < 0.81 R

2⇤ < 1.03 R
3⇤ < 2.11 . (22)

While the two taggers discussed above might not give the best e�ciency for the usual signatures, they
have the advantage of being much more general than some of the established taggers. If jet shapes should
indeed turn out powerful QCD analysis tools at the LHC, these approaches will allow us to e�ciently utilize
jet shapes in searches for new physics.

QCD observables which are not linked to traditional event shapes might also help distinguishing massive
electroweak splittings from QCD backgrounds. The radiation of QCD jets possesses characteristic features
which we can use to discriminate a color octet gluon from a decaying color singlet resonance. Angular ordering
of soft gluon radiation implies that most gluons are emitted in between color connected partners [17, 53]. In
the decay of a color singlet, e.g. H ! bb̄, the two decay products are always color connected. In leading
color approximation this is not true for a gluon which splits to bb̄. Its gluon radiation is therefore more likely
to be outside the bb̄ cone.

Two observables might exploit this feature in the top tagging framework. The pull vector [54] can be
defined for each individual jet in an event

~t =
X

↵2jet

pT,↵

pT,jet
|~r↵| ~r↵ . (23)

Here, ~r↵ is the constituent position relative to the jet and pT,↵ is the transverse momentum of this constituent.
The angle between the pull vectors of di↵erent jets can be used to decide if two b-tagged jets come from a
color singlet resonance or a color octet gluon. Pull has been tested on W bosons from top decays by D0 [55].
According to this measurement the fraction of uncolored W bosons is 0.56±0.42 (stat+syst), indicating that
pull is a challenging observable already in the relatively clean Tevatron environment.

As a second observable dipolarity [56] can help selecting the correct W decay products in a boosted top
decay. Compared to the pull angle, its definition is modified such that all radiation o↵ the dipole is captured
in one (sub-)jet. For a jet splitting into two subjets j

1

and j
2

dipolarity is defined on all calorimeter objects
↵ as

D =
1

R2

j1j2

X

↵2jet

pT,↵

pT,jet
R2

↵ , (24)

where R↵ is the distance between the ith constituent and the line segment that runs from j
1

to j
2

. Using the
HEPTopTagger framework is was shown that dipolarity might be able to reduce the mistag rate significantly.

5

boundaries. Intermediate subjets based on the anti-kT -algorithm have not resemblance with what we would
expect from QCD. All three algorithms are available through the FastJet package [12].

Closely related to the kT and C/A measures is the JADE distance [22] which essentially is a transverse
subjet mass:

dj1j2 = pT,j1pT,j2 �R2

j1j2 ⇠ m2

T,j1j2 . (3)

In this notation we label the splitting partons as well as the reconstructed subjets in the recombination
algorithms as ji. In the remainder of the paper we will only use subjets, so this notation does not pose
any problems. Moreover, we will refer to all intermediate clusterings inside all recombination algorithms as
subjets. More stable objects, like filtered subjets we will introduce in Sec. III.

Independent of the choice of subjets to be merged by the jet algorithm we also have to define a scheme for
the combination of the two 4-momenta. In particular when looking for massive jets we should not assume
anything about the mass of the partons. Instead, we can simply add the two 4-vectors pj = pj1 + pj2 in the
E-scheme. The subjet mass is defined as m2

j = p2j . In most (soft or collinear) QCD splittings it should not
exceed the B meson mass, and even including detector e↵ects we usually find mj

<⇠ 30 GeV in the absence
of massive weak-scale splittings.

In contrast to the dynamic clustering history which we can think of as a time evolution, jet shapes are
observables based on the final jet constituents. A priory, it is not clear that these two approaches include
the same information. Therefore, the comparison of di↵erent top taggers is first of all an interesting QCD
experiment.

Because di↵erent top taggers rely on very di↵erent jet shapes we will not introduce them in general here.
The definitions are often inherited from event shapes, like most noticeably thrust [23]. Unlike jet clustering
histories, which depending on the underlying jet algorithm are either theoretically well defined (i.e. infrared
save) or not, jet shapes have to be classified one by one. Much work has for example gone into appropriate
definitions of the jet mass, introduced above [24].

The kinematics underlying this jet mass, assuming widely separated jets with a good 4-momentum recon-
struction, is fairly simple. Following our QCD picture, it is based on successive (1 ! 2) splittings. If one
of these splittings corresponds to the t ! Wb, W ! jj, or even H ! bb̄ decay, the corresponding jet mass
should be around the electroweak scale. In the leading logarithmic approximation we can describe a massive
jet composed out of two subjets using [25]

m2

j

p2T,j

⇠ z(1� z) �R2

j1j2 with z =
min pT,ji

pT,j
. (4)

As mentioned above, all top taggers include at least one jet shape, namely the jet mass. The early subjet
tools combine the jet mass with a clustering history. This includes the first W and top taggers by Mike
Seymour (Sec. II A), the W predecessor to YSplitter (Sec. II A) and the BDRS Higgs tagger (Sec. II A).

More advanced tools like YSplitter (Sec. II B), the Seattle or pruning tagger (Sec. II C), the Johns Hopkins
tagger (Sec. IID), the HEPTopTagger (Sec. II E), or the Thaler-Wang tagger (Sec. II F) supplement the jet
mass with a detailed analysis of the clustering history. Di↵erences between them arise because of di↵erent
jet algorithms and di↵erent selection criteria to extract the massive t ! Wb and W ! jj splittings.

Following the success of event shapes at LEP, the N -subjettiness tagger (Sec. IIG), the template method
(Sec. II H), or the tree-less algorithm (Sec. IIH) are exclusively based on (sub-)jet shapes. The choice of jet
algorithms in this approach does not play any role, except for removing underlying event and pile-up, as we
will discuss in Sec. III.

Testing which family of taggers is best suited for studies of the inside of jets will shed light on experimental
QCD issues way beyond the identification of top jets. For example at LEP, event shapes became the standard
tools for any kind of precision QCD measurements, like for example the ↵s measurement. At the Tevatron,
simple cone jets were used most of the time because they were deemed to be most stable in the hadron
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For only two constituents P again vanishes, as it does for any kind of linear geometry. For a generic three
body decay it can assume any value between zero and one. For example requiring P > 0.5 enhances the
number of top jets over the QCD background. In practice, the template tagger uses a correlated cut in
the template overlap vs planar flow plane. Given that the overlap measure includes the full kinematic event
information it might be possible to further improve it in the direction of the so-called matrix element method
of log-likelihood ratios.

Yet another class of jet shapes which we can use to describe two-body as well as three-body configurations
are angularities [49, 50]. In the template method they are only included for Higgs tagging, but they can also
be used to improve top tagging. For di↵erent weights a the angularity is defined as

⌧a =
1

m
jet

X

↵2jet

E↵ sina
⇡✓i
2R

✓
1� cos

⇡✓i
2R

◆
1�a

, (18)

in terms of the angle ✓i with respect to the main axis. The correction factor ⇡/(2R) includes the jet size R
and ensures that for the maximum value ✓i = R the argument of the trigonometric functions does not exceed
the hemisphere limit ⇡/2 from earlier e+e� applications. Infrared safety limits the range of angularities
to �1 < a < 2. For a = 0 we find that 1 � ⌧

0

turns into thrust [23], while for a = 1 is becomes jet
broadening [51]. Because for each value a the angularity is a simple number we can correlate it with other
observables, like for example the azimuthal angle between the W decay subjets and search for structures in
such distributions.

A second alternative approach to top tagging, explicitly not based on the clustering history, is the tree-less
substructure analysis [52]. Unlike for example the N -subjettiness it includes angular correlations. From the
JADE distance measure Eq.(3) we know that angular separation can be closely linked to invariant masses of
subjet combinations.

The geometric correlations between all possible pairs of subjets can be analyzed in terms of the angular
structure function and its numerical derivative

G(R) =

P
j1 6=j2

d
(JADE)

j1j2
⇥(R��Rj1j2)

P
j1 6=j2

d
(JADE)

j1j2

�G(R)= R

P
j1 6=j2

d
(JADE)

j1j2
K(R��Rj1j2)

P
j1 6=j2

d
(JADE)

j1j2
⇥(R��Rj1j2)

. (19)

The function K is nothing but a finite delta distribution, e.g. K(x) = e�x2/R2
0/
p

⇡R2

0

with R
0

= 0.6. It
fixes a typical R distance between two subjets. For values R = R⇤ corresponding to observed subjet pairs
inside the fat jet the function G(R) makes a step and �G(R) develops a peak. Top decays with three hard
decay subjets will show three such peak values Rk⇤ with k = 1, 2, 3, each corresponding to one side of the
triangle defined by three subjets. The number of observed peaks we call np. For each of the peaks we define
a mass value

m2

⇤ =
1

R⇤

X

j1 6=j2

d
(JADE)

j1j2

q
⇡R2

0

K(R⇤ ��Rj1j2) (20)

where the JADE distance is defined in Eq.(3). For massive particle decays this mass variable m⇤ scales with
the invariant mass of the parent subjet.

In Fig. 10 we show the peak positions and their associated mass values for three-subjet signal and back-
ground configurations. For QCD backgrounds the R⇤ distributions are broad and essentially scale invariant.
The m⇤ distributions points towards small values, even though their typical values increase typically by a
factor two for increasing points. In contrast, for top jets the R⇤ distributions are peaked. Their mass scales
correspond to the given decay kinematics, as for example discussed in Sec. II E.

The associated tree-less top tagging algorithm starts with a fat C/A jet of size R = 1.5. From the peaks
in the �G spectrum we then extract one, two or three hard subjets. There exist di↵erent sets of cuts,
depending on the transverse momentum of the fat jet and the number of peaks. We quote the cuts applied
to events with three subjet structures and pT = 300...400 GeV. The original uncorrected fat jet mass and
two peak-associated mass values m⇤ have to fulfill

m
fat jet

> 102 GeV m
2⇤ > 26 GeV m

2⇤ > 79 GeV , (21)
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Figure 4: Left: Decay sequences in (a) tt and (c) dijet QCD events. Right: Event displays for
(b) top jets and (d) QCD jets with invariant mass near mtop. The labeling is similar to Fig. 1,
though here we take R = 0.8, and the cells are colored according to how the jet is divided into
three candidate subjets. The open square indicates the total jet direction, the open circles indicate
the two subjet directions, and the crosses indicate the three subjet directions. The discriminating
variable τ3/τ2 measures the relative alignment of the jet energy along the crosses compared to the
open circles.

a b jet and a W boson, and if the W boson decays hadronically into two quarks, the top jet

will have three lobes of energy. Thus, instead of τ2/τ1, one expects τ3/τ2 to be an effective

discriminating variable for top jets. This is indeed the case, as sketched in Figs. 4, 5, 6,

and 7.
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Figure 5: Distributions of (a) τ1, (b) τ2 and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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Figure 6: Distributions of (a) τ2/τ1 and (b) τ3/τ2 for boosted top and QCD jets. The selection
criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
additional information.
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Figure 7: Density plots in the (a) τ1–τ2 plane and (b) τ2–τ3 plane for boosted top and QCD jets.
The selection criteria are the same as in Fig. 5. These plots suggest further improvement in boosted
top identification is possible with a multivariate method.
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Figure 5: Distributions of (a) τ1, (b) τ2 and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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The selection criteria are the same as in Fig. 5. These plots suggest further improvement in boosted
top identification is possible with a multivariate method.
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we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
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we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
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and, no good discriminators:
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N-subjettiness: Degree to which a jet has N subjets
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Figure 5: Distributions of (a) τ1, (b) τ2 and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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Figure 6: Distributions of (a) τ2/τ1 and (b) τ3/τ2 for boosted top and QCD jets. The selection
criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
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top identification is possible with a multivariate method.
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Figure 5: Distributions of (a) τ1, (b) τ2 and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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Figure 6: Distributions of (a) τ2/τ1 and (b) τ3/τ2 for boosted top and QCD jets. The selection
criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
additional information.
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Figure 7: Density plots in the (a) τ1–τ2 plane and (b) τ2–τ3 plane for boosted top and QCD jets.
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Figure 5: Distributions of (a) τ1, (b) τ2 and (c) τ3 for boosted top and QCD jets. For these plots,
we impose an invariant mass window of 145 GeV < mjet < 205 GeV on jets with R = 0.8, pT > 300
GeV and |η| < 1.3.
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Figure 6: Distributions of (a) τ2/τ1 and (b) τ3/τ2 for boosted top and QCD jets. The selection
criteria are the same as in Fig. 5. We see that τ3/τ2 is a good discriminating variable between
top jets and QCD jets. In this paper, we do not explore τ2/τ1 for top jets, though it does contain
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Figure 7: Density plots in the (a) τ1–τ2 plane and (b) τ2–τ3 plane for boosted top and QCD jets.
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•          is best discriminator for boosted tops

• In ratio effects from soft/uncorrelated radiation cancel
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Approach II: Use hard subjets to reconstruct top

‣ Johns Hopkins/CMS Tagger

‣ HEPTopTagger (Heidelberg-Eugene-Paris)

[Kaplan, Reherman, Schwartz, 
Tweedie PRL 101 (2008)]
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FIG. 4: Effect of top jet tag on standard-model tt̄ and dijet
distributions at the LHC. Both the t and t̄ decay hadroni-
cally, and no b-tagging is used. With top-tagging, a strongly-
produced tt̄ resonance (not shown) would stand out clearly
over background in this channel.

the all-hadronic channel. The background rejection effi-
ciency can also be studied by looking in side-bands where
the jet invariant mass is not close to mt.

Top-tagging may be particularly useful in the search
for new physics in tt̄ resonances. In the all-hadronic chan-
nel, the biggest background for tt̄ is dijets, so in Figure 4
we show the dijet and tt̄ invariant mass distributions be-
fore and after top-tagging both jets. It is evident that
after top-tagging, the dijet sample is reduced to the level
of the tt̄ sample. As an example application, in certain
Randall-Sundrum models [17, 18] KK gluons decay dom-
inantly to tt̄. It has been shown that if one can isolate
the tt̄ events, the resonance will stand out as a clean peak

over the standard model tt̄ background [1, 2, 19]. Since
top-tagging can reduce the dijet background to the size
of the tt̄ background, tt̄ resonance searches can be done
in the all-hadronic channel for resonances up to a few
TeV.

There are many applications for top-tagging besides tt̄
resonances searches. For example, a common new physics
signal is tt̄ pairs in association with missing energy [20].
This may happen, for instance, in supersymmetry when
heavy top squark pairs decay to highly boosted tops and
neutralinos. Top-tagging can not only reduce the stan-
dard model backgrounds in this context, but it can also
help distinguish top jets from light quark jets in any sig-
nal event, which may be helpful in studying the flavor
structure of the new physics. In addition, top-tagging
could potentially be applied in searches for single top
events where exactly one top jet is required. Finally,
our technique could be used as a handle for measuring
b-tagging efficiency at high pT .

In conclusion, we have demonstrated that it is possi-
ble to distinguish highly energetic top quarks from stan-
dard model backgrounds at the LHC. With efficiencies
εt ∼ 40% and εq ∼ εg ∼ 1%, top-tagging is better than
b-tagging at high pT . Top jets can now be considered
standard objects for event analysis at the LHC, as b jets
are at the Tevatron.
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ATLAS-PHYS-PUB-2006-002.
[4] G. Brooijmans, ATL-COM-PHYS-2008-001, (2008).
[5] J. Thaler and L. T. Wang, arXiv:0806.0023 [hep-ph].
[6] J. M. Butterworth, A. R. Davison, M. Rubin and

G. P. Salam, arXiv:0802.2470 [hep-ph].
[7] J. M. Butterworth, B. E. Cox and J. R. Forshaw, Phys.

Rev. D 65, 096014 (2002) [arXiv:hep-ph/0201098].
[8]

[8] J. M. Butterworth, J. R. Ellis and A. R. Raklev, JHEP
0705, 033 (2007) [arXiv:hep-ph/0702150].

[9] Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Web-
ber, JHEP 9708, 001 (1997) [arXiv:hep-ph/9707323].

[10] M. Wobisch and T. Wengler, arXiv:hep-ph/9907280.
[11] T. Sjostrand, S. Mrenna and P. Skands, JHEP 0605, 026

(2006) [arXiv:hep-ph/0603175].
[12] M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57

(2006) [arXiv:hep-ph/0512210].

[13] T. Chwalek [CDF Collaboration and D0 Collaboration],
arXiv:0705.2966 [hep-ex].

[14] G. Corcella et al., JHEP 0101, 010 (2001)
[arXiv:hep-ph/0011363].

[15] See, for example, E. Norrbin and T. Sjostrand, Nucl.
Phys. B 603, 297 (2001) [arXiv:hep-ph/0010012].

[16] J. Alwall et al., JHEP 0709, 028 (2007) [arXiv:0706.2334
[hep-ph]].

[17] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999) [arXiv:hep-ph/9905221].

[18] See for example, K. Agashe, R. Contino and A. Pomarol,
Nucl. Phys. B 719, 165 (2005) [arXiv:hep-ph/0412089].

[19] B. Lillie, L. Randall and L. T. Wang, JHEP 0709, 074
(2007) [arXiv:hep-ph/0701166].

[20] T. Han, R. Mahbubani, D. G. E. Walker and
L. T. E. Wang, arXiv:0803.3820 [hep-ph].

[21] While this paper was in preparation, Ref. [5] appeared.
They use soft singularities of the parton shower to dis-
tinguish tops from background. The resulting efficiencies
are similar to those of [4].

QCD
backgroundsignal

23

)2 Invariant Mass (TeV/ctt
1 1.5 2 2.5 3

) (
pb

)
t t

→
 B

R
(Z

' 
× 

Z'
σ

U
pp

er
 L

im
it 

0

1

2

3

4

5

6

7  = 7 TeVs at -1CMS Preliminary, 886 pb

Combined type 1+1 & 1+2
Observed (95% CL)
Expected (95% CL)

 Expectedσ 1±

 Expectedσ 2±

KK Gluon, Agashe et al
Topcolor Z', 3.0% width, Harris et al
Topcolor Z', 1.2% width, Harris et al

)2 Invariant Mass (TeV/ctt
1 1.5 2 2.5 3

) (
pb

)
t t

→
 B

R
(Z

' 
× 

Z'
σ

U
pp

er
 L

im
it 

-110

1

10

210  = 7 TeVs at -1CMS Preliminary, 886 pb
Combined type 1+1 & 1+2

Observed (95% CL)
Expected (95% CL)

 Expectedσ 1±

 Expectedσ 2±

KK Gluon, Agashe et al
Topcolor Z', 3.0% width, Harris et al
Topcolor Z', 1.2% width, Harris et al

Figure 11: The 95% C.L. upper limit on a product of the production cross section of Z0 and a
branching fraction for its decay into tt̄ pair, as a function of assumed Z0 mass, for a combination
of “1+2” and “1+1” channels. The limits are evaluated using a Bayesian procedure, integrated
with Markov Chain MC. Three theoretical models are examined in shades of purple. From top
to bottom: a Kaluza-Klein gluon from Ref. [10], updated to 7 TeV via private communication
with the authors (Note: the KK gluon model has a width larger than that of the signal Monte
Carlo); a topcolor Z0 model from Ref. [25] with width 3%; and a topcolor Z0 model from Ref. [25]
with width 1.2%. (a) linear scale (b) log scale.[Plehn, Salam, MS PRL 104 (2010) and Plehn, MS, Takeuchi, Zerwas JHEP (1010)] 

(low pT tagger)
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I. Find fat jets (C/A, R=1.5, pT>200 GeV) 

II. Find hard substructure using mass drop criterion

How does the HEPTopTagger work?

Undo clustering,

�U < 0.02 (64)

U = 0 (65)

BR(H ⇤ ⌅v⌅̄4 ⇤ 4l)

BR(H ⇤ ZZ ⇤ 4l)
⌅ 1 (66)

mH = 200 GeV (67)

BR(H ⇤ ⌅4⌅̄4) ⌅ 0.1 (68)

|Ui⇥4 | (69)

BR(u4 ⇤ q +W) ⌅ 1 (70)

⇤u4b (71)

Vu4b (72)

p̄ (73)
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p
v 10�4 (74)

⇥ =
nB � nB̄

n�
(75)

JGen4 = 30⇥ JSM (76)

⇥bh
2 ⌅ 0.0224 (77)

⇥ = (5.14± 0.25)⇥ 10�10 (78)

W�Jet (79)

das ist sch�n wei§

⇧(pp ⇤ jet ⌅ll
+) ⌅ 496 fb (80)

⇧(pp ⇤ b ⌅ll
+) ⌅ 4.4 fb (81)

⇧(pp ⇤ t ⇤ b ⌅ll
+) ⌅ 13.2 fb (82)

mdaughter1 < 0.8 mmother (83)

S/
⇧
B10 fb�1 ⌅ 6 (84)

5

to keep both daughters

fat jet
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I. Find fat jets (C/A, R=1.5, pT>200 GeV) 

II. Find hard substructure using mass drop criterion

How does the HEPTopTagger work?
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I. Find fat jets (C/A, R=1.5, pT>200 GeV) 

II. Find hard substructure using mass drop criterion

IV. Choose pairing based on kinematic correlation, e.g. top mass,                             
     W mass and invariant subjet masses
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IV. check mass ratios
Cluster top candidate into 3 subjets
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:
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with Rmin = 85%⇥mW /mt and Rmax = 115%⇥mW /mt. The numerical soft cuto⇥ at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest �mt +AW �mW +Ah� cosh. In that case, the tagging e⇤ciency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply e⇤cient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ⌅ 0 give

m2
t ⇤ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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IV. check mass ratios
Cluster top candidate into 3 subjets
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,�Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:
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Comparison of top taggers

Jet Substructure at the Tevatron and LHC 37

(a) herwig (b) herwig, fractional di↵erence

(c) herwig++ (d) herwig++, fractional di↵erence

(e) sherpa (f) sherpa, fractional di↵erence

Figure 17. Mis-tag vs. e�ciency for several top tagging methods, as tested on
herwig 6.5 and herwig++ tt̄ and dijet samples as well as sherpa matched
tt̄ + jets and multijet samples, all with pT 500–600 GeV. Events have been
run through a simple detector simulation. In the right-hand plots, results after
detector simulation are compared with results before simulation; the y axis
is (✏B(detector) � ✏B(no detector))/✏B(no detector). All plots use the input
parameters in Table 2.
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(c) herwig++ (d) herwig++, fractional di↵erence

(e) sherpa (f) sherpa, fractional di↵erence

Figure 17. Mis-tag vs. e�ciency for several top tagging methods, as tested on
herwig 6.5 and herwig++ tt̄ and dijet samples as well as sherpa matched
tt̄ + jets and multijet samples, all with pT 500–600 GeV. Events have been
run through a simple detector simulation. In the right-hand plots, results after
detector simulation are compared with results before simulation; the y axis
is (✏B(detector) � ✏B(no detector))/✏B(no detector). All plots use the input
parameters in Table 2.
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(a) all pT , optimised (b) pT 500–600 GeV, optimised

(c) all pT (d) pT 500–600 GeV

Figure 16. Mis-tag vs. e�ciency for several top tagging methods, as tested on
sherpa matched tt̄+ jets and multijet samples. For Figures (a) and (b), the
input parameters are optimised for each e�ciency point. The input parameters
for the unoptimised scans are taken from the 35% e�ciency point in Figure (b).

would be needed to definitively say that some are better than others. In these studies,

the N-subjettiness tagger does particularly well when compared to other taggers with

fixed input parameters, but when optimisation is included performances are extremely

similar. N-subjettiness also appears to be particularly susceptible to degradation due

to detector resolution.

Beyond the limited comparisons given in this section, we hope that the software

tools we have developed to make them will facilitate further study. Such study is clearly

warranted to seriously answer the questions posed at the beginning of this section.

Further phenomenological exploration of the broad space of substructure techniques

will help lead to a more holistic understanding of substructure physics. Monte Carlo

Jet Substructure at the Tevatron and LHC 35

(a) all pT , optimised (b) pT 500–600 GeV, optimised

(c) all pT (d) pT 500–600 GeV

Figure 15. Mis-tag vs. e�ciency for several top tagging methods, as tested
on herwig++ tt̄ and dijet samples. For Figures (a) and (b), the input
parameters are optimised for each e�ciency point. The input parameters for
the unoptimised scans are taken from the 35% e�ciency point in Figure (b).

and Thaler and Wang taggers still being outperformed. Considering the right-hand

plots in Figure 17, we can see that in some cases taggers appear to do better after

detector simulation, especially at low signal e�ciency. This e↵ect is at least partly due

to statistical noise in the e�ciency scans, but warrants further study.

The results we have presented in this report, while certainly not providing the last

word in boosted object tagging, suggest some conclusions. By any metric, methods

that use only subjet kinematic information, like the ATLAS and Thaler and Wang

taggers, are outperformed by groomed, hybrid, and jet shape taggers. Di↵erences

between the rest of the taggers are largely of similar magnitude to di↵erences between

Monte Carlo samples and before and after detector simulation: more careful study

all pT, optimized, sherpa all pT, optimized, herwig++

500-600 GeV, sherpa + smearing

500-600 GeV, 
sherpa + smearing

relative change

(BOOST 2012 proceedings)

better

worse
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Selected Applications 
(motivated by recent measurements)

• ATLAS, CMS and CDF indicate existence of lighte (125 GeV) Higgs

‣ Want to measure couplings, e.g tth

In SM, tth only accessible if Higgs is light

‣ 125 GeV heavy for Minimal Supersymmetric Standard Model

To ameliorate hierarchy problem and generate 
‘heavy’ Higgs mass need light stop1 and heavy stop2

• CDF and D0 measure Afb consistently

‣ Needs to be confirmed at the LHC
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Figure 19-i ATLAS sensitivity for the discovery of a Standard Model Higgs boson. The statistical significances

are plotted for individual channels, as well as for the combination of all channels, assuming integrated luminosi-

ties of 30 fb-1 (top) and 100 fb-1 (bottom). Depending on the numbers of signal and background events, the sta-

tistical significance has been computed as S/ or using Poisson statistics. In the case of the H ! WW*

channel, a systematic uncertainty of #5% on the total number of background events has been assumed (this

uncertainty has been included in this case, since no mass peak can be reconstructed and the Higgs boson sig-

nal has therefore to be extracted from an excess of events).
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tth - using boosted jets
[T. Plehn, G. Salam, MS]

Motivation: • sizable cross-section
• Higgs discovery contribution in low mass range
• access to t- and b-Yukawa couplings

High expectations:

[ATLAS TDR 1999]

tth major channel

given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a
3 to 4! discovery). At present it is not practical to verify directly that the chi-square formula remains
valid to the 5! level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest
on the assumption that the asymptotic distribution is a valid approximation to at least the 5! level.
The validation exercises carried here out indicate that the methods used should be valid, or in some

cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions
of the test statistic qµ at different values of µ can be determined with a manageably small number of
events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discovery likelihood ratio for all channels combined, "s+b(0), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, "s+b,i(0), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the "s+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to
agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ⇥

√

�2ln" (0),
where " (0) is the combined median likelihood ratio.
The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated

luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discovery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for very low luminosities (where the expected number of events is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating
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Figure 19-i ATLAS sensitivity for the discovery of a Standard Model Higgs boson. The statistical significances

are plotted for individual channels, as well as for the combination of all channels, assuming integrated luminosi-

ties of 30 fb-1 (top) and 100 fb-1 (bottom). Depending on the numbers of signal and background events, the sta-

tistical significance has been computed as S/ or using Poisson statistics. In the case of the H ! WW*

channel, a systematic uncertainty of #5% on the total number of background events has been assumed (this

uncertainty has been included in this case, since no mass peak can be reconstructed and the Higgs boson sig-

nal has therefore to be extracted from an excess of events).
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tth - using boosted jets
[T. Plehn, G. Salam, MS]

Motivation: • sizable cross-section
• Higgs discovery contribution in low mass range
• access to t- and b-Yukawa couplings

High expectations:

[ATLAS TDR 1999]

tth major channel

given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a
3 to 4! discovery). At present it is not practical to verify directly that the chi-square formula remains
valid to the 5! level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest
on the assumption that the asymptotic distribution is a valid approximation to at least the 5! level.
The validation exercises carried here out indicate that the methods used should be valid, or in some

cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions
of the test statistic qµ at different values of µ can be determined with a manageably small number of
events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discovery likelihood ratio for all channels combined, "s+b(0), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, "s+b,i(0), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the "s+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to
agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ⇥

√

�2ln" (0),
where " (0) is the combined median likelihood ratio.
The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated

luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discovery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for very low luminosities (where the expected number of events is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating
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2

Signal and backgrounds — We consider associated top
and Higgs production with one hadronic and one leptonic
top decay. The latter allows the events to pass the Atlas
and CMS triggers. The main backgrounds are

pp → tt̄bb̄ irreducible QCD background

pp → tt̄Z irreducible Z-peak background

pp → tt̄ + jets include fake bottoms (2)

To account for higher-order effects we normalize our to-
tal signal rate to the next-to-leading order prediction of
702 fb for mH = 120 GeV [21]. The tt̄bb̄ continuum back-
ground we normalize to 2.6 pb after the acceptance cuts
|yb| < 2.5, pT,b > 20 GeV and Rbb > 0.8 of Ref. [22]. This
conservative rate estimate for very hard events implies a
K factor of σNLO/σLO = 2.3 which we need to attach
to our leading-order background simulation — compared
to K = 1.57 for the signal. Finally, the tt̄Z background
at NLO is normalized to 1.1 pb [23]. For tt̄ plus jets
production we do not apply a higher-order correction be-
cause the background rejection cuts drives it into kine-
matic configuration in which a constant K factor cannot
be used. Throughout this analysis we use an on-shell top
mass of 172.3 GeV. All hard processes we generate using
MadEvent [24], shower and hadronize via Herwig++ [25]
(without g → bb̄ splitting) and analyze with FastJet [26].
We have verified that we obtain consistent results for sig-
nal and background using Alpgen [27] and Herwig 6.5 [28]

An additional background is W+jets production. The
Wjj rate starts from roughly 15 nb with pT,j > 20 GeV.
Asking for two very hard jets, mimicking the boosted
Higgs and top jets, and a leptonic W decay reduces this
rate by roughly three orders of magnitude. Our top
tagger described below gives a mis-tagging probability
around 5% including underlying event, the Higgs mass
window another reduction by a factor 1/10, i.e. the final
Wjj rate without flavor tags ranges around 100 fb.

Adding two bottom tags we expect a purely fake-
bottom contribution around 0.01 fb. To test the gen-
eral reliability of bottom tags in QCD background re-
jection we also simulate the Wjj background including
bottom quarks from the parton shower and find a re-
maining background of O(0.1 fb), well below 10% of the
tt̄+jets background already for two bottom tags. For
three bottom tags it is essentially zero, so we neglect it
in the following.

The charm-flavored Wcj rate starts off with 1/6 of
the purely mis-tagged Wjj rate. A tenfold mis-tagging
probability still leaves this background well below the
effect of bottoms from the parton shower. Finally, a
lower limit mrec

bb > 110 GeV keeps us safely away from
CKM-suppressed W → bc̄ decays where the charm is
mis-identified as a bottom jet.

Search strategy — The motivation for a tt̄H search
with boosted heavy states can be seen in Fig. 1: the
leading top quark and the Higgs boson both carry size-
able transverse momentum. We therefore first cluster

10
-4

10
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10
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-1

0 100 200 300 400 500 600 700

1/σtot dσ/dpT

pT[GeV]

ttH: pT,t

ttH: pT,H

WH: pT,HWjj: pT,j

FIG. 1: Normalized top and Higgs transverse momentum
spectra in tt̄H production (solid). We also show pT,H in
W−H production (dashed) and the pT of the harder jet in
W−jj production with pT,j > 20 GeV (dotted).

the event with the Cambridge/Aachen (C/A) jet algo-
rithm [29] using R = 1.5 and require two or more hard
jets and a lepton satisfying:

pT,j > 200 GeV |y(H)
j | < 2.5 |y(t)

j | < 4

pT,! > 15 GeV |y!| < 2.5 . (3)

The maximum Higgs jet rapidity y(H)
J is limited by the

requirement that it be possible to tag its b-content. For
lepton identification and isolation we assume an 80% ef-
ficiency, in agreement with what we expect from a fast
Atlas detector simulation. The outline of our analysis is
then as follows (cross sections at various stages are sum-
marized in Tab. I):

(1) one of the two jets should pass the top tagger (de-
scribed below). If two jets pass we choose the one whose
top candidate is closer to the top mass.
(2) the Higgs tagger (also described below) runs over all
remaining jets with |y| < 2.5. It includes a double bottom
tag.
(2’) a third b tag can be applied in a separate jet analysis
after removing the constituents associated with the top
and Higgs.
(3) to compute the statistical significance we require
mrec

bb = mH ± 10 GeV.

In this analysis, QCD tt̄ plus jets production can fake
the signal assuming three distinct topologies: first, the
Higgs candidate jet can arise from two mis-tagged QCD
jets. The total rate without flavored jets exceeds tt̄bb̄
production by a factor of 200. This ratio can be balanced
by the two b tags inside the Higgs resonance. Secondly,
there is an O(10%) probability for the bottom from the
leptonic top decay to leak into the Higgs jet and combine
with a QCD jet, to fake a Higgs candidate. This topology
is the most dangerous and can be essentially removed by
a third b tag outside the Higgs and top substructures.
Finally, the bottom from the hadronic top can also leak

pT distributions relevant for tth

background

signal
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Problems in event reconstruction:

- (b-)jet multiplicity
- reconstruction efficiency

Boost should help
but

need tagger for this 
environment

Problems in event reconstruction:

- (b-)jet multiplicity
- reconstruction efficiency

Boost should help
but

need tagger for this 
environment
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Cambridge/Aachen

jet algorithm

R=1.5

[Plehn, Salam, MS PRL 104 (2010)]
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Applications: Asymmetry at the LHC

‣ If CP conserved FB becomes Charge asymmetry
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u u
_

tt
_ • gg dominant prod. 

mode but symmetric

• need qq and qg 
initial state

For a given y0, we define both a forward charge asymmetry,

AF (y0) =
Nt(y0 < |y| < 2.5)�Nt̄(y0 < |y| < 2.5)

Nt(y0 < |y| < 2.5) +Nt̄(y0 < |y| < 2.5)
, (1)

and a central charge asymmetry,

AC(y0) =
Nt(|y| < y0)�Nt̄(|y| < y0)

Nt(|y| < y0) +Nt̄(|y| < y0)
. (2)

Both definitions exploit the fact that the quark parton distribution functions (PDF) have

more support at large parton x than either the gluon or anti-quark PDFs, resulting in

an event-by-event correlation between the rapidity of the tt̄ pair and the incoming quark

direction. As a result, a positive forward-backward asymmetry implies that the number of

anti-top quarks in the central region is larger than the the number of top quarks, while the

total number of top and anti-top quarks integrated over the whole rapidity region is the

same (up to finite ⌘ acceptance, which we find to be a negligibly small e↵ect). Thus, AF

and AC will have opposite signs. Note that in a given event both the top and the anti-top

can be either central or forward; with the definitions of Eq.(1) and Eq.(2), a single event can

thus contribute to both AF and AC , and the two observables are not independent. Since the

central region contains a larger proportion of symmetric gg initiated tt̄ events, the forward

charge asymmetry AF (y0) is a more sensitive probe of the underlying asymmetry in the tt̄

cross-section.

To estimate the potential to measure a charge asymmetry with a specific significance we

define the significance of an asymmetry observable as,

�A(y) =
|A(y)|
�A(y)

, (3)

where �A(y) is the statistical uncertainty on A(y)

�A(y) =

q
[�Nt]2 + [�Nt̄]2

Nt +Nt̄
. (4)

In this study we confine ourselves to estimates including statistical uncertainties. Systemat-

ics may prove important as well, but require detailed detector simulations which are beyond

the scope of this work.

A. Simulations

To generate the Standard Model signal we use MC@NLO [30] and shower those events

with Herwig. We normalize the tt̄ production cross section for
p
s = 14 TeV to its SM NNLO

4
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Study for charge asymmetry @ LHC 

Event reconstruction: Consider moderately boosted 
semileptonic tops

‣ require isolated lepton with pT > 15 GeV, y  = y
‣ require jet with pT>200 GeV, use HEPTopTagger

‣ demand b-tag in hadronic top
W+jets negligible

SM BSM25 ifb 25 ifb

[Hewett, Shelton, MS, Tait, Takeuchi PRD 84 (2011)]

‣    for SM after 60 ifb
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t̃1t̃
⇤
1 tt̄ QCD W+jets Z+jets S/B S/

⇥
B10 fb�1

mt̃[GeV] 340 390 440 490 540 640 340
pT,j > 200 GeV, � veto 728 447 292 187 124 46 87850 2.4 · 107 1.6 · 105 n/a 3.0 · 10�5

/pT > 150 GeV 283 234 184 133 93 35 2245 2.4 · 105 1710 2240 1.2 · 10�3

first top tag 100 91 75 57 42 15 743 7590 90 114 1.2 · 10�2

second top tag 15 12.4 11 8.4 6.3 2.3 32 129 5.7 1.4 8.3 · 10�2

b tag 8.7 7.4 6.3 5.0 3.8 1.4 19 2.6 <� 0.2 <� 0.05 0.40 5.9
mT2 > 250 GeV 4.3 5.0 4.9 4.2 3.2 1.2 4.2 <� 0.6 <� 0.1 <� 0.03 0.88 6.1

Table II: Signal (for di�erent stop masses) and backgrounds for the hadronic fat-jet analysis. All numbers given in fb,
the significance is computed for 10 fb�1. The t̃1t̃

⇤
1 and tt̄ rates are normalized to their higher-order values [12, 13].

Z+jets we simulate with the neutrino decay specified.

Moreover, it is clear that from the endpoints of the mT2 distributions we should be able to measure the stop
mass (or better the stop–neutralino mass di�erence) in this process. While making this quantitative statement
does not require any further work, actually estimating the experimental error on stop mass measurements using
fat jets goes far beyond what we can do in this paper. We therefore refrain from quoting any number for the
stop mass measurements and leave it at this statement and the encouragement for a detailed experimental
analysis including full detector simulation. For supersymmetric parameter analyses such a measurement would
of course be hugely beneficial [31, 32].

IV. OUTLOOK

We have shown that while semi-leptonically decaying stops are unlikely to be observed at the LHC, a fat-jet
analysis should be able to discover purely hadronically decaying stops with typical integrated luminosities of
10 fb�1 at 14 TeV. This is true for stop masses above 340 GeV (for mLSP = 98 GeV) and extends to stop masses
well above this range. The stop mass reach based on hadronic decays can be extended more by scaling the
di�erent cuts with the stop-neutralino mass di�erence. Moreover, our limiting factor is somewhat ine⇥cient
cuts to improve S/B, so we expect this result to improve significantly once modern statistical methods are
applied.

The dominant background after cuts and reconstruction is exclusively tt̄ production, which we can reduce
to the S/B � 1 level. QCD jet production is suppressed to a small fraction of the tt̄ background, and V+jets
backgrounds are negligible. This promising result relies on two tagged and reconstructed top quarks, which in
turn allow us to use mT2 constructed from the top momenta and the missing energy vector. Combinatorics are
automatically resolved by the top tagging algorithm.

The fact that we can reconstruct the top momenta should allow the LHC to analyze in detail the nature
of a top partner decaying to a top quark and a dark matter agent. Moreover, because of the large signal-to-
background ratio S/B = O(1) we will be able to use the endpoints of the mT2 distribution to measure the stop
mass once we know the LSP mass. Determining the experimental uncertainties for this mass measurement we
have to leave to an experimental study including a full detector simulation.

As shown in detail in the Appendix our HEPTopTagger algorithm is not only well suited to detect stop pairs
at the LHC. It can be tested in Standard Model top pair production and it can be applied to a large variety
of problems where standard methods fail, for example due to jet combinatorics. In one such application, high
multiplicities of final states from longer decay chains will be automatically resolved. In the current form the
top tagger relies on a Cambridge/Aachen algorithm with a mass drop criterion and a set of invariant mass
constraints. Once we require a fat jet with pT > 200 GeV our top tagging e⇥ciency can reach the 40% to 50%
range for reasonably boosted tops with mis-tagging probabilities around a few per-cent.

�U < 0.02 (64)

U = 0 (65)

BR(H ⇤ ⌅v⌅̄4 ⇤ 4l)

BR(H ⇤ ZZ ⇤ 4l)
⌅ 1 (66)

mH = 200 GeV (67)

BR(H ⇤ ⌅4⌅̄4) ⌅ 0.1 (68)

|Ui⇥4 | (69)

BR(u4 ⇤ q +W) ⌅ 1 (70)

⇤u4b (71)

Vu4b (72)

p̄ (73)

p̄

p
v 10�4 (74)

⇥ =
nB � nB̄

n�
(75)

JGen4 = 30⇥ JSM (76)

⇥bh
2 ⌅ 0.0224 (77)

⇥ = (5.14± 0.25)⇥ 10�10 (78)

W�Jet (79)
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⇧(pp ⇤ jet ⌅ll
+) ⌅ 496 fb (80)

⇧(pp ⇤ b ⌅ll
+) ⌅ 4.4 fb (81)

⇧(pp ⇤ t ⇤ b ⌅ll
+) ⌅ 13.2 fb (82)

S/
⇧
B10 fb�1 ⌅ 6 (83)
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‣ Use purely hadronic top decay 
mode
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Figure 1: Normalized mT2 distributions for the stop signal (mt̃ = 340 GeV) and the tt̄ background, after reconstructing
two (real of fake) hadronic top quarks. The hypothetical LSP mass we set to m�̃0

1
= 0 GeV (left) or to the correct value

of m�̃0
1

= 98 GeV (right).

without any physical missing energy [19], which we apply in the following. Next, we veto isolated leptons with
pT,⇥ > 15 GeV, |�⇥| < 2.5, requiring Ehad

T < 0.1Elep
T within R < 0.3 around the lepton.

At this level we apply the top tagger described later and in the Appendix and require two tops to be identified
and reconstructed. Finally, after requiring one b tag inside the first tagged top we construct mT2 [26]. Assuming
we do not know the LSP mass, i.e. setting it to zero in the mT2 construction, we require

mT2 > 250 GeV . (7)

While in Table II we will see that this cut has hardly any impact on the signal significance S/
⇥

B, at least for
small stop masses, we apply it to increase the signal-to-background ratio S/B and hence become less sensitive
to systematic and theory errors.

Constructing the mT2 distributions has two motivations, of which the background rejection cut might even
be the lesser. From the two panels of Figure 1 we see that mT2 with an assumed massless LSP is better suited
to distinguish the stop signal from the top background. As expected, Figure 1 also shows that for larger stop
masses this cut becomes increasingly e�ective. More importantly, once we know the correct value of m�̃0

1
we

can determine the stop mass from the endpoint of the mT2 distribution. Determining the uncertainties of such
a mass measurement, however, is beyond the scope of our phenomenological analysis. Obviously, due to the
wrong decay topology the endpoint of the tt̄ background has nothing to do with the physical top mass, so we
cannot use it to gauge the stop mass measurement.

For a double Standard Model top tag the mis-tagging probability when applied to a pure QCD or W+jets
sample after our process specific cuts turns out to be (not much) below 0.1%, comparable to the numbers
quoted in the Appendix, Table III. From the first column of Table II it is clear that such a reduction rate is
not su⇥cient. Therefore, we follow the example of the Higgs tagger [9, 11] and apply an additional b tag inside
the main constituents of the first tagged top. Limiting this b tag to the three main constituents of one specific
tagged top reduces the fake rate in particular from charm jets or gluons splitting into bb̄ pairs. Assuming a
60% tagging e⇥ciency and a light-flavor rejection around 1/50 this will give the first top tag a mistag rate
well below 0.1%. As it will turn out, this is su⇥cient to render the QCD and W+jets backgrounds negligible
compared to the tt̄ background. Charm jets in the QCD jets sample we do not expect to be a problem. On the
one hand, they have a 10% mis-tagging probability for our b tag, but on the other hand the will appear much
less frequently, based for example on the reduced probability of gluon jets splitting into quarks — a factor 1/4
from counting quark flavors in g � qq̄ alone. Last but not least, given the moderate boost of the top quarks
we check that including a (0.1, 0.1) granularity of the detector in a lego plot has no impact on our analysis.

The large transverse momentum of the two candidate fat jets in Eq.(6) allows us not to worry about triggering
on the one hand and to generate events with a sizeable e⇥ciency — for the actual analysis this cut has little
e�ect, because inside the top tagger we apply a lower cut on the transverse momentum of the reconstructed
top prec

T,t > 200 GeV. We explicitly check this by lowering the acceptance cuts to pT,j > 100 GeV and find no
e�ect on the final numbers of the analysis.
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1 and tt̄ rates are normalized to their higher-order values [12, 13].

Z+jets we simulate with the neutrino decay specified.

Moreover, it is clear that from the endpoints of the mT2 distributions we should be able to measure the stop
mass (or better the stop–neutralino mass di�erence) in this process. While making this quantitative statement
does not require any further work, actually estimating the experimental error on stop mass measurements using
fat jets goes far beyond what we can do in this paper. We therefore refrain from quoting any number for the
stop mass measurements and leave it at this statement and the encouragement for a detailed experimental
analysis including full detector simulation. For supersymmetric parameter analyses such a measurement would
of course be hugely beneficial [31, 32].

IV. OUTLOOK

We have shown that while semi-leptonically decaying stops are unlikely to be observed at the LHC, a fat-jet
analysis should be able to discover purely hadronically decaying stops with typical integrated luminosities of
10 fb�1 at 14 TeV. This is true for stop masses above 340 GeV (for mLSP = 98 GeV) and extends to stop masses
well above this range. The stop mass reach based on hadronic decays can be extended more by scaling the
di�erent cuts with the stop-neutralino mass di�erence. Moreover, our limiting factor is somewhat ine⇥cient
cuts to improve S/B, so we expect this result to improve significantly once modern statistical methods are
applied.

The dominant background after cuts and reconstruction is exclusively tt̄ production, which we can reduce
to the S/B � 1 level. QCD jet production is suppressed to a small fraction of the tt̄ background, and V +jets
backgrounds are negligible. This promising result relies on two tagged and reconstructed top quarks, which in
turn allow us to use mT2 constructed from the top momenta and the missing energy vector. Combinatorics are
automatically resolved by the top tagging algorithm.

The fact that we can reconstruct the top momenta should allow the LHC to analyze in detail the nature
of a top partner decaying to a top quark and a dark matter agent. Moreover, because of the large signal-to-
background ratio S/B = O(1) we will be able to use the endpoints of the mT2 distribution to measure the stop
mass once we know the LSP mass. Determining the experimental uncertainties for this mass measurement we
have to leave to an experimental study including a full detector simulation.

As shown in detail in the Appendix our HEPTopTagger algorithm is not only well suited to detect stop pairs
at the LHC. It can be tested in Standard Model top pair production and it can be applied to a large variety
of problems where standard methods fail, for example due to jet combinatorics. In one such application, high
multiplicities of final states from longer decay chains will be automatically resolved. In the current form the
top tagger relies on a Cambridge/Aachen algorithm with a mass drop criterion and a set of invariant mass
constraints. Once we require a fat jet with pT > 200 GeV our top tagging e⇥ciency can reach the 40% to 50%
range for reasonably boosted tops with mis-tagging probabilities around a few per-cent.

Tagger + mT2 go well together

All hadronic stop analysis

in the measurement of the W± mass.
In events considered in this example, however, there are expected to be

two unseen lightest supersymmetric particles (LSPs).2 Since only the sum of
the missing transverse momentum of the two neutralinos is known, the best
that can be done is to evaluate the quantity

min
/q(1)

T
+/q(2)

T
=/p

T

[

max
{

m2
T (pπ(1)

T , /q(1)
T ; mχ0

1
), m2

T (pπ(2)

T , /q(2)
T ; mχ0

1
)
}]

(7)

which is thus a lower bound on the square of the transverse mass, mT , for
events where two decays of the type (1) occur. Note that this minimisation

has forced us to introduce a pair of dummy two-vectors /q(1)
T and /q(2)

T which,
constrained by the minimisation condition, parametrise our lack of knowledge
about the two true neutralino momenta. Finally, we must recognise that
under most circumstances, the value of mχ0

1
is unlikely to be known, or may

only be known with limited precision. In order to make our ignorance of mχ0
1

explicit, we thus define a new free parameter, χ, calling it the ‘neutralino
mass parameter’, intending it to denote any guess we might have as to the
true neutralino mass mχ0

1
. Using it in place of mχ, we convert (7) into the

following definition of a new kinematic variable:

m2
T2(χ) ≡ min

/q(1)
T

+/q(2)
T

=/p
T

[

max
{

m2
T (pπ(1)

T , /q(1)
T ; χ), m2

T (pπ(2)

T , /q(2)
T ; χ)

}]

. (8)

The quantity defined in (8) is the Cambridge mT2 variable which is the
subject of this document.

Staying within the framework of this example, we can now go on to
describe some of the the desirable model-independent properties which mT2

possesses.

2.1 Properties of mT 2(χ).

Firstly, is worth noting that the mT2 variable is not strictly a ‘variable’, and
would more correctly be termed a ‘function’, as it retains a dependence on
the unknown parameter χ. Ideally, χ would ideally be set equal to the mass
of the missing heavy particle, but in most of the situations in which the
variable is likely to be used, the mass of the invisible object is unlikely to be
known, or may only be known with a large uncertainty. The χ dependence
remains, therefore. A more detailed discussion of how this can affects the
use of mT2 takes place in section 2.2.2.

2Though there may also be other unseen particles – see section 2.2.1.
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‣ Jet substructure allows to access more information

Conclusions

‣ Many tools are presently tested on data with good success

‣ Reconstruction of boosted top quarks is major application

‣ Jet substructure is an active field of research and will be 
relevant for a long time to come

‣ Can be superior way to look for new physics
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Past Present Future

• IR-safe jet algorithm
• Impact of soft radiation
• Grooming techniques

• New reconst. ideas
• Better theoretical 

underst. of jet obs.
• Evaluation on data

• Application on data in 
large variety of new 
physics searches


