

Facility Reports: FERMI@Elettra

Paolo Craievich

on behalf of the Fermi Team

3rd IRUVX-PP Annual Meeting 21 -23 March 2011, HZB, Adlershof, Berlin

□ FERMI FEL project

- Layout
- Specifications
- □ Status of the commissioning
- Day-1 Expected FEL performance
- □ FEL evolution in 2011

FERMI@Elettra Laboratory

FERMI Free Electron Laser Linac energy : 0.9- 1.5 GeV upstream linac extension ~ 40 m long an install Elettra linac tunnel 130 m long undulator hall ~100 m long experimental hall ~50 m long

□ FERMI@Elettra single-pass seeded FEL user-facility.

□ Two separate FEL amplifier will cover the spectral range from 100 nm (12eV) to 4 nm (320 eV).

□ Based on the high gain harmonic generation scheme the two FEL will provide users with photon pulses with following characteristics:

□ high peak power

- 0.3 GW's range
- □ short temporal structure
- tunable wavelength
- □ variable polarization
- □ seeded harmonic cascade

- sub-ps to 10 fs time scale
- APPLE II-type undulators
- horizontal/circular/vertical
- strong longitud. and transv. coherence

		Parameter	FEL1	FEL2	Units
		Output Wavelength	100 – 20	20 – 4	nm
photons A		(fundam.)			
		Output Pulse Length, rms	≤50	≤50	fs
		Peak Power	1 – 5	> 0.3	GW
	Í	Photons per Pulse	> 10 ¹³	> 10 ¹²	
		Power Stability	<30	<50	%
		Transverse Stability	<10%		e-size
		Repetition Rate	10	50	Hz
electrons		Energy	1.2	1.5	GeV
		Charge	0.8		nC
		Slice Norm. Emittance, rms	1.0		mm mrad
		Slice Energy Spread, rms	<0.20	<0.15	MeV
		Total Energy Spread, rms	<1.2	<1.5	MeV
		Peak Current, flat region	800		Α
		Bunch Length, fwhm	0.7		ps
		Energy Jitter, rms	0.	%	
		Timing Jitter, rms	<150		fs

FERMI Layout

Linac Tunnel

Spreader - Fel 1 – MBD – Exp.

Magnetic Bunch Length Compressor

bunch duration (\sim 0.7 – 6 ps fwhm) during compression

MAGNETIC COMPRESSOR ~ 300 MeV

a **high peak current** (500 A over 0.7 ps FWHM) is generated by compressing the bunch length.

Ref. La Civita, Di Mitri, Castronovo, Scafuri

Main Linac & Undulator

LINAC

- Trajectory control and RF phasing are used to maximize the transport efficiency and compensate for the energy loss induced by the linac wake fields
- An emittance growth is measured from BC1 to LINAC end. Probably due to residual dispersion in LINAC the problem is under investigation
- Both energy spread and energy fluctuations in diagnostic beam dump are good (<0.1%).

Undulators

- Before Installing Undulators we had to define a reliable trajectory in the FEL beam-line
- The beam trajectory is kept under control to transport the electron beam core to the MBD with minimal losses (≤ 1%)
- A machine protection system is monitoring the beam losses to prevent damages to the undulators

We agreed with FERMI users on a reasonable set of FEL parameters as a GOAL for the first period of commissioning that could also be used for first user experiments. Based on expected :

- e-beam parameters (1.2GeV, 200A, $\varepsilon_{\rm N}$ <2 mm mrad, time jitter<200fs, energy jitter<0.5%)
- available hardware
- commissioning time
- Wavelength: initially at ~65 nm and then at ~52nm
- Polarization: initially horizontal polarization.
- Power: hundreds of MW
- Pulse length: In the range between 70 fs and 200 fs (rms)
- Energy: ~100 μJ per pulse (~10¹³ photons/pulse)
- Stability: no control on the shot to shot FEL power fluctuations
- Bandwidth: significantly smaller than SASE, <u>fully longitudinal coherence can not be</u> <u>assured</u>
- SASE: The SASE signal is expected to be a <u>few percent</u> of the seeded signal

FEL evolution in 2011

The plans for FEL commissioning have been planned according to the commissioning for the

LINAC								
	RUN 6		RUN 7		RUN 8			RUN 9
	Feb	March	June	Luly	Sept	Oct	Nov	Dic
λ (nm)	65	65	60-70	60-70	80-60	80-60	80-60	80-60
P (GW)	0.3	0.3	1.5	1.5	2	2	2	2
Energy per pulse (µJ)	100	100	150	150	200	200	200	250
Photons per pulse	3.E+13	3.E+13	4.E+13	4.E+13	8.E+13	8.E+13	8.E+13	8.E+13
Pulse length FWHM (fs)	200	200	100	100	100	100	100	100
Spot size a the source (µm)	600	600	400	400	350	350	350	350
Polarization	Planar	Planar	Planar	Planar-Circular	Planar-Circular	Planar-Circular	Planar-Circular	Planar-Circular
Power fluctuation	50%	50%	50%	50%	50%	50%	50%	50%
Tunability	no	no	yes	yes	yes	scan	scan	scan
λ (nm)	-	32	30-35	30-35	60-40	60-40	60-40	60-40
P (MW)	-	50	100	1.00E+03	1.00E+03	1.50E+03	1.50E+03	1.50E+03
Energy per pulse (µJ)	-	10	10	100	100	150	150	150
Photons per pulse	-	1.E+12	1.E+12	1.E+13	2.E+13	3.E+13	4.E+13	4.E+13
Pulse length FWHM (fs)	-	180	100	100	100	100	100	100
Spot size a the source (µm)	-	400	400	350	350	300	300	300
Polarization	-	Planar	Planar	Planar-Circular	Planar-Circular	Planar-Circular	Planar-Circular	Planar-Circular
Power fluctuation	-	50%	50%	50%	50%	50%	50%	50%
Tunability	-	no	no	yes	yes	yes	scan	scan
λ (nm)	-	-	-	-	30-20	30-20	30-20	30-20
P (MW)	-	-	-	-	400	400	1.00E+03	1.00E+03
Energy per pulse (µJ)	-	-	-	-	50	50	100	100
Photons per pulse	-	-	-	-	6.E+12	6.E+12	1.E+13	1.E+13
Pulse length FWHM (fs)	-	-	-	-	100	100	100	100
Spot size a the source (um)	-	-	-	-	300	300	200	200
Polarization	-	-	-	-	Planar-Circular	Planar-Circular	Planar-Circular	Planar-Circular
Power fluctuation	-	Courtes	V E Atlaria	-	50%	50%	50%	50%
Tunability	-	-		-	yes	yes	scan	scan

FERMI, first seeding signals

Seed laser at 260nm (~100MW) 6 radiators tuned at 6th harmonic (43nm)

- □ First experiment in March
- BC2 installation in April
- □ X-band linearizer installation in August
- □ FEL2 beamline in August
- □ Undulator for FEL 2 in October
- 2 RF deflector at linac end in October
- □ A new RF gun operating at 50Hz

FERMI Commissioning Team, Engineers, Laser group, Diagnostic group, Control group, ELETTRA Operators,

Linac Group, FERMI Commissioning Guests.

Thank you for your attention

BACK SLIDES

ELETTRA SR Status

□ Full energy injection since 2008

- □ Top-up operation since May 2010
- 2 GeV@310 mA & 2.4 GeV@150 mA

ELETTRA SR FEL

□Optical Klystron

2 Apple Undulators (10cm, 2 meters long)

Dispersive section

Seed Laser (Ti:Sapphire)

□ 780,390,260nm – 1-20GW, 0.12-1ps

Two FELs will cover different spectral regions.

FEL-1, based on a single stage high gain harmonic generations scheme initialized by a UV laser

FEL-2, in order to be able to reach the wavelength range from 20 to ~4 nm starting from a seed laser in the UV, will be based on a double cascade of high gain harmonic generation. The nominal layout will use a magnetic electron delay line in order to improve the FEL performance by using the fresh bunch technique. Other FEL configurations are also possible.

In the whole spectral range FERMI is expected to provide FEL pulses with about 10¹³ photons per pulse.

Using the emission at the harmonics of the resonance wavelength the spectral range can be extended toward about 1.5 nm.

Evidence of coherence emission

→ Using 4 radiators allows to produce about 100 more signal than with one undulator in the same conditions

E. Allaria et al.

We agreed with FERMI users on a reasonable set of FEL parameters as a GOAL for the first period of commissioning that could also be used for first user experiments.

- Wavelength: in the range 50-60nm (tunability not required).
- Polarization: horizontal.
- Power: hundreds of MW (peak).
- **Energy**: ~100 µJ.
- Coherence: Transverse and longitudinal (long. not critical)

In the case of HGHG the success depend on the seeding process, putting stronger requirements on the available hardware.

Hardware requirements

- Seed laser available and aligned
 - Screens for spatial overlap;
 - Photodiode for coarse timing overlap.
- Dispersive section chicane and diagnostic available.
- The modulator available and aligned.
- Few undulators are sufficient.
- Timing jitter has to be smaller than 1ps (the smaller the better)

e-beam requirements

- Peak current should be of the order of 200 A
- Emittance should be of the order of 2 mm mrad
- Energy spread should be < 150keV (exp. 100keV)
- Energy fluctuation should be smaller than 0.5%

At the startup the fixed wavelength operation of the seed laser with more energy per pulse is required.