

From SPARC to SPARX:

From R & D to experiments

From SPARC to SPARX

2003 - MIUR Funding of SPARC-Test Facility

2005 - MIUR Funding of R&D for a soft X-ray FEL (SPARX R & D)

2007 - Agreement with MIUR & Regione Lazio for the development of soft X-ray FEL (SPARX-FEL)

SPARX Goals

The needs of different user-communities have identified in several workshops

SPARX workshops

- INFN-LNF - INFN-LNF 09.05.2005 19.06.2007

SIMPOSI SPARX

March, June and October 2008

Bio&Medical Sciences workshop - Rome
Bio&Medical Sciences workshop - London

March 2009 March 2010

Wavelength range: 0.6 - 40 nm

- water window
 (~ 2.5 4.5 nm)
- carbon window
 (~ 4.5 5.0 nm)

Funding

National funds:

MIUR FISR 2003 2.5 M€ SPARX-MIUR Part 1+2 ~10.0 M€ Regione Lazio 15.0 M€

EU-Funding (ca. 2 M€)

Obtained:
EuroFEL (FP6)
CARE (JPA PHIN)
IA-SFS
IRUVX-FEL (FP7)
ELISA (JRA FELINS)
EuCARD (WP ANAC)

Foreseen: TIARA CECILIA CRISP

Initial decision adjusted

SPARX-FEL Facility shall be firstly constructed at INFN Frascati National Laboratories

SPARX-750 MeV @ LNF

Puls - Servizio Meccanica ed Impianti (Aula Master, Aula Puls)

- Officine Servizi Ingegneria Meccanicas 5a Laboratorio Servizi Vuoto
- SPARC 6a Sala Controllo 6b Sala Macchine
- Laboratorio Tecnologie 7a & 7b Sala Compressori
- Laboratori Gran Sasso ed Antenna Gravitazionale NAUTILUS
- 53 Capannone deposito materiale
- 54 Sala controllo BTF
- 55 Uffici SPARC
- 56 Laboratorio FLAME in assetto provvisorio
- 57 Ampliamento Laboratorio GRAN SASSO e annessi uffici

SPARX Linac+undulators

SPARX VUV optical line

Scientific Highlights

SPARC FEL Highlights (2010)

- SASE operation at 500 nm (2009 SPARC design wavelength)
- SASE with tapered undulator compensating energy chirp single coherence region from SASE (PRL, L. Giannessi et al., to be published)
- Generation of laser COMB structures (in prep.)
- Generation of high harmonics in a seeded FEL operating at saturation (in prep.)
- Superradiant cascade (400nm-> 200nm + harmonics down to 40nm) (in prep.)
- Direct seeding with HHG of an FEL amplifier at 160nm (in prep.)
- One stage cascaded FEL amplifier seeded with harmonics generated in gas (266nm -> 133nm) (in prep.)

36.18 nm

High harmonics simultaneously generated in a superradiant FEL amplifier

Testing of different seedings

Laser-Comb

M. Boscolo et al. / Nuclear Instruments and Methods in Physics Research A 593 (2008) 106-110

107

Fig. 1. Evolution of a six bunches electron beam train: the columns from left refer, respectively, to (a) the cathode, (b) the end of the drift at 150 cm and (c) the end of linac at 12 m far from cathode. The rows from top refer, respectively, to longitudinal profile and to energy modulation ΔE (MeV).

- P.O.Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.
- M. Ferrario. M. Boscolo et al., Int. J. of Mod. Phys. B, 2006 (Taipei 05 Workshop)

Pulse separation by COMB

Observation of Pulse Separation in Overcompression Regime

After a tuning of the Velocity Bunching injection phase we observed on the screen downstream the RF Deflector two distinct pulses separated by ~1 ps with σ_{t1} = 0.24 ps and σ_{t2} =0.29 ps respectively.

The charge unbalance was ~ 40%.

Two pulses from FEL

Genesis 1.3 code

THz-radiation at SPARC

Effect of Bunch Compression

A gain of a factor 25 in intensity with respect to the on crest operation has been detected in the RF compression mode

On crest operation Compression Factor 4

Q = 500 pCEnergy= 167 MeV energy spread = 0.1% energy spread = 1% e_x = 3.5 mm mrad $b_x = 17.73 \text{ m}$ $a_{v} = -1.17$ $e_v = 4.1 \text{ mm mrad}$ $b_{v} = 25 \text{ m}$ $a_v = -2.78$

 $\sigma_t = 2.0 \text{ ps}$

Q = 500 pC**Energy= 94 MeV** e_x = 6.4 mm mrad $b_{\rm v} = 28.4 \, {\rm m}$ $a_x = -2.774$ $e_v = 3.3 \text{ mm mrad}$ $b_v = 33.83 \text{ m}$ $a_v = -2.539$ $\sigma_t = 0.5 \text{ ps}$

N² dependency

Future developments

Energy Up-grade - C-band

main Motivation: to increase the SPARC beam energ from \approx 180 MeV to \approx 250 MeV to lase closer to the UV

and improve the seeding experiment

2nd Motivation: to gain experience with a rather new RF technology, in the light of possible future

developments

PARAMETERS	
Frequency (f _{RF})	5.712 [GHz]
Phase advance per cell $(\Delta\phi)$	2π/3
Number of accelerating cells (N)	86
group velocity (vg):	0.0278*c
Field attenuation (α)	0.22 [1/m]
Filling time (τ)	180 [ns]
Average accelerating field @ t=τ	35 [MV/m]
Average diss. Power @ 10 Hz	46 [W]

SPARC with C-Band

Energy upgrade to 750 MeV

Following the successful result of the prototype power test, an average C-band RF gradient of 40 MV/m can be considered for the SPARC energy upgrade to 750 MeV.

General layout of SPARC-X-750

C-Band for lower wavelength

Cascaded FEL amplifier seeded with harmonics generated in gas (in progress)

Seeding with a 1 stage cascade @ 400 nm & 266 nm

3° harmonic in the cascade

Direct Seeding
with harmonics generated in gas
@ 200nm,
160nm,
133nm,
114nm,
100nm

Plasma WFA by COMB

Coherent plasma Oscillations by Multiple electron Bunches for FEL and Linear Collider applications

- Weak blowout regime (new!) with resonant amplification of plasma wave by a train of high Brightness electron bunches produced by Laser Comb (new!) technique ==> 5 GV/m with a train of 3 bunches, 100 pC/bunch, 50 μ m long, 20 μ m spot size, in a plasma of density 10^{22} e⁻/m³ at λ_p =300 μ m?
- Strong blowout regime (new!) with pC/fs bunches ==> TV/m regime ?
- Acceleration of a train of bunches for high Luminosity Colliders

Promising Simulations

Weak Blowout Regime: operation in the quasi-nonlinear regime, where one uses beam with relatively low charge and longitudinal and transverse beam size smaller than a plasma wavelength $\sigma_z, \sigma_r \ll \lambda_p$ In this case, the beam density may exceed that of the plasma, producing blowout, but due to the small total charge, producing a disturbance that behaves in many ways as linear, having frequency essentially that of linear plasma oscillations.

$$N_b$$
=4
Q=16 pC
 N_e =10⁸
 n_e =3 10²² m⁻³
 λ_p =190 μ m
==> 3 GV/m

SPARX@LNF Future Strategy

SPARX@LNF:

- Compactness: C-X band accelerators shortundulator (7-9 mm)
- Ultra-short radiation bunches (bunch length <10 fs)</p>
- High repetition rate (from 50 Hz multi-100 Hz)
- Integration of novel acceleration technologies (plasma injector)
- Combination of FEL radiation (0.1 10 keV) with Compton scattered photons (100 keV 20 MeV)

Thank you!