

WP8 FEL Source - Highlights

Patrick Gessler (WP8 leader deputy)

Overview

- WP8.1: Femtosecond Timing and Synchronization
- WP8.2: Longitudinal Feedback and associated Diagnostics
- WP8.3: High Harmonic Generation (HHG) Laser

Femtosecond Timing and Synchronization

Lead by DESY

Beam based Feedback results

No Beam Based Feedback Learning Feed Forward ON rms = 74 fs

With Beam Based Feedback running in ACC1 and ACC39 rms = 5 fs

- rapid fluctuations averaged out
- resolution of BAM ~ 10 fs for single shot can be reduced to ~ fs for macro pulse

Courtesy: H. Schlarb & Team, DESY

Beam based Feedback results

System overview

Courtesy: S. Schulz, DESY

Overview at FLASH

- 2 Master Laser Oscillators (RF locked to MO)
- Free-space distribution system to 16 ports
- Optical Links: 6 stabilized OXC & 1 passive
- Front-ends
 - 4 Bunch Arrival Time Monitors (BAM)
 - OXC for Injector / TiSA Lasers
 - 3 RF lock for TiSA (EO/HHG/PP)

Courtesy: M.K. Bock, DESY

Installation

Master Laser and distribution

- •Integrated timing jitter < 5 fs in the interval [1 kHz; 10MHz]
- Mechanically robust, easy to maintain

Courtesy: S. Schulz, DESY

Laser to RF conversion

Direct conversion + temp. stab.

Detectors at 1.3GHz & 216MHz

Baseband mixing scheme (no calibration)

VM for remote shift of MLO timing

RF-Lock Box for FLASH MLO Synchronization

Figure 1: Schematic of MLO – MO phase measurements.

Courtesy: K. Hacker, DESY

Test of RF circuit performance

Drift performance:

Temperature stabilization 0.002deg rms PkPK 20 fs due to vibration of 2m cable

Developments

3 generation of opto-mechanics typical in loop jitter ~ 1-2 fs rms (also smaller)

Courtesy: M.K. Bock, DESY

Installation at FERMI

- System integrated and running for seven months
- Master laser running 24/7 w/o big problems and minimal maintenance
- 2 Laser Links, 3 BAM Links, 1 EO Link

Courtesy: M. Ferianis & Team, Elettra

Link Stability

Courtesy: M. Ferianis & Team, Elettra

Direct seeding demonstration

Developed a prototype for direct seeding of regenerative amplifiers of main laser system

Studied applications for seeding the different ultrafast

lasers at the seeded FELs

Main sub-units of the prototype

Courtesy: M. Danailov & Team, Elettra

Installation at ALICE ERL

An 100m optical clock distribution system based on the propagation of ultra-short optical pulses has been installed at Daresbury Laboratory on the ALICE ERL.

Locking of the Injector Laser (PSI)

Two Color Balanced Cross-Correlation between the SwissFEL 250 MeV Test Injector Gun Laser (Ti:Sa) and the Optical Master Oscillator (ErFL)

Courtesy: V. Schlott & Team, PSI

Aging and reliability studies

Instablities of pump laser siodes

Courtesy: S. Ruzin, DESY

Incoupling efficiency due to motor movements of the delay stage

Courtesy: M.K. Bock, DESY

Damage due to metallic contamination

Courtesy: R. Kraehenbuehl (Huber+Suhner)

Industrialization: RF Extraction

<u>Feasibility study</u> including literature survey and optimized prototype design has been done with IRUVX support, Goal: "<10fs drift/jitter"

Industrialization: RF Link

Abbildung 4.10.: Testaufbau der Optik mit eingezeichnetem Strahlverlauf

Abbildung 5.7.: Foto des aufgebauten Detektors

Industrialization: RF Link

Error between in-loop and out of loop ~ 0.8fs rms, 4.8 fs pkpk, (30 m long fiber in laboratory, not stabilized, only monitored)

- Overcomes AM-PM conversion in photo-detectors
- Several advantages compared to OXC link (low opt. power, monitoring possible, simple disp. comp.)
- Low cost version link with still high performance

Tutorial given by leading Experts

Preliminary Agenda for the Tutorial on Optical Synchronization

This tutorial is held in course of the IRUVX-PP project

Monday, October 13th

14:00 - 14:10	Welcome & Tutorial Organization	Dr. Axel Winter (DESY)
14:10 - 16:10	Sources of Timing jitter for SASE	Dr. Josef Frisch (SLAC)
	FEL's	177 187
16:10 - 16:30	Coffee Break	
16:30 – 17:30	Balanced optical and optical- microwave phase detectors Part 1	Prof. Franz X. Kärtner (MIT)
17:30 - 18:30	Discussion	

Tuesday, October 14th

Tuesday, Octo		
08:30 - 10:00	Balanced optical and optical-	Prof. Franz X. Kärtner (MIT)
	microwave phase detectors Part 2	
10:00 - 10:50	Coffee Break	
10:50 - 12:50	Dynamics of fiber lasers	Prof. Omer Ilday (Bilkent
		University)
12:50 - 13:30	Lunch Break	
13:30 - 15:30	Introduction into phase noise and	Mr. Jesse Searls (Poseidon Scientific
	timing jitter	Instruments)
15:30 - 16:00	Coffee Break	
16:00 - 18:00	Cutting edge technology for phase	Mr. Jesse Searls (Poseidon Scientific
	and amplitude noise measurements	Instruments)
18:00 - 18:30	Discussion	
19:00	Workshop Dinner	

Wednesday, October 15th

08:30 - 10:30	Feedback Control & Theory	Dr. Gerwald Lichtenberg (TU	
		Harburg)	
10:30 - 10:50	Coffee break		
10:50 - 11:50	Optical clocks	Prof. Franz X. Kärtner (MIT)	
11:50 - 12:50	RF Frequency standards and	Mr. Jesse Searls (Poseidon Scientific	
100000	oscillators Part 1	Instruments)	
12:50 - 13:30	Lunch break		
13:30 - 14:30	RF Frequency standards and	Mr. Jesse Searls (Poseidon Scientific	
	oscillators Part 2	Instruments)	
14:30 - 15:00	Discussion with all Experts	Searls, Kärtner, Ilday, Frisch,	
		Lichtenberg	
15:00 - 15:15	Closing remarks	Dr. A. Winter	

Workshops

3 Workshops on Timing and Synchronization

Timing and Synchronization Workshop

Trieste, 26 - 28 March, 2008

Wednesday, 26th March

- 08:30 Departure time of the bus from Hotels to Sincrotrone
 09:00 Welcoming Words and Charge to the Participants –
 What do we want to accomplish, S. Milton (ST), L. Palumbo (INFN),
 G. Dattoli (FNFA)
- 09:20 Machine Requirements, P. Craievich (ST)
- 09:50 Beamline synchronization issues and solutions, S. Duesterer (DESY)
- 10:20 Timing and Synchronization State of the Art
 - 10:20 10:50 MIT, F. Kaertner (MIT)

10:50-11:00 Coffee Break

11:00 - 11:30 LBL, R. Wilcox (LBL)

11:30 - 12:00 DESY, H. Schlarb (DESY)

- 12:00 FERMI timing system requirements, status and schedule, M.
- 12:15 SPARX timing system requirements, A. Gallo (INFN)
- 12:30 Visit to the FERMI Optical timing laboratory
- 13:20 Lunch
- 14:30 Sync requirements for PLASMON-X experiments: laser drive and Thomson scattering, L. Gizzi (CNR INFN)
- 15:00 Sub-Nanosecond Machine Timing for the FERMI LLRF Syster T. Rohlev (ST))
- 15:30 Discussion / working session A Reference Generation and
 M. Fortpair chair (CT)

Tuesday, 22 March 2011 3rd IRUVX-PP Annual Meeting

EuroFl

Satellite meeting

Timing and synchronization mini workshop (room 3303) Chair: P. Gessler (DESY)

- 3:30 Welcom
- P. Gessler (WP8 leader deputy, DESY)
- 08:40 Experiences with different optical synchronization systems at Elettra M. Ferianis (Elettra)
- 08:55 The optical synchronization system at Daresbury S. Jamison (STFC)
- 09:10 Optical synchronization developments and experiences at DESY S. Schulz (DESY)
- 09:30 Ultra-stable direct detection harmonic extraction S. Hunziker (PSI)
- 09:45 Coffee break
- 10:05 RF link
- H. Schlarb (DESY)
- 10:20 Laser to laser synchronization of photo injector laser V. Arsov (PSI)
- 10:35 Laser to laser synchronization at Elettra M. Danailov (Elettra), Paolo Sigalotti (Elettra)
- 10:50 Reliability and stability of laser diodes S. Ruzin (DESY)
- 11:00 End of meeting

II TIMING & SYNCHRONIZATION WORKSHOP

ICTP, Trieste - 9 March 2009

PROGRAMME

Giambiagi Lecture Hall, Adriatico Guesthouse

9	:00	Welcome	A. Gallo - INFN-LNF				
:10		Installation, commissioning and operation of the master laser oscillator at FLASH	P. Gessler - DESY				
	:30	Specifications of the FERMI@Elettra optical hybrid timing system	M. Ferianis - Sincrotrone Trieste				
		Layout and specification of the synchronization system for SPARC-X	M. Bellaveglia - INFN-LNF				
	:10	Layout of the PSI-XFEL synchronization system and latest results	S. Hunziker - PSI				
	:30	Layout of the synchronization system for the NLS (incl. experience with fiber laser system at the ERL)	S. Jamison / G. Hirst - STFC				
	:50	Coffee Break					
1 22	:20	Synchronization of Ti:Sapphire lasers to the optical reference system	V. Arsov - DESY				
	:40	Latest results on laser synchronization at Elettra	M. Danailov / P. Sigalotti Sincrotrone Trieste				
	:00	Options and performance of laser to RF conversion schemes	F. Ludwig / P. Gessler - DESY				
	:20	Precision timing distribution for LCLS laser synchronization	R. Wilcox - LBL				
	:40	Lunch					
	:15	Challenges on a BAM implementation in an accelerator	F. Loehl - DESY				
	:35	Required infrastructure for the implementation of an optical synchronization system	A. Winter - ITER				
	:55	New developments and missing components of an optical synchronization system	H. Schlarb - DESY				
	:15	Coffee Break					
	:45	Discussion: Engineering of main components and global T&S system implementation over large scales issues					
	:45	Conclusions					

Longitudinal feedback and associated diagnostics

Lead by STFC

Compression Control in Frequency Domain

The four-stage single shot grating spectrometer for the wavelength range 4 μm to 400 μm has been developed, commissioned and installed at FLASH

layout of the device

one stage with grating, ring mirror and line detector

Courtesy: S. Wesch, B. Schmidt, DESY

Compression Control in Frequency Domain

test measurements comparing with bunch shapes from TDS show very good agreement with measured spectra

On-line Bunch Profiling in Time Domain

■ Electro-optic prototype on ALICE ERL in use with control room operation

On-line Bunch Profiling in Time Domain

New compact electro-optic monitor installed at FLASH location: after first bunch compressor

Courtesy: J. Breunlin, B. Steffen, L. Wissmann, DESY

Development of an 11GHz X-Band Linearizer

Feedback Software Developments

Courtesy: M. Lonza & Team, Elettra

High Harmonic Generation (HHG) Laser

Lead by MAX Lab

Verification of HHG source performance for FEL seeding radiation

Verification of HHG source performance for FEL seeding radiation

Number of HHG photons

Verification of HHG source performance for FEL seeding radiation

Number of HHG photons

Thank You!

I'm looking forward to continue the collaborations in the future!