Higgs couplings after LHC Run I Global fit & presentation of the experimental results

Jérémy Bernon LPSC Grenoble

Based on

« Status of Higgs couplings after run 1 of the LHC with Lilith 1.0 » arXiv:1409.1588

In collaboration with Béranger Dumont and Sabine Kraml

Laboratoire de Physique Subatomique et de Cosmologie Hamburg Workshop on Higgs Physics DESY Hamburg, 23 October 2014

Runl

Signal strengths Global fit

LHC Run I and Higgs physics

- Huge efforts during Run 1; from observation to beginning of precise measurements
- Mass, spin, couplings, cross sections...
- So far, compatible with an elementary \bullet weakly coupled SM-like Higgs

[ATLAS-CONF-2014-009]

± 1σ

Total uncertainty

 $\pm 2\sigma$

-Data

 $-J^{P} = 0^{+}$

 $-- J^{P} = 0^{T}$

ATLAS Preliminary

 $\kappa_{V} = 1.15_{-0.08}^{+0.08}$

 $\kappa_{\rm F}=0.99^{+0.17}_{-0.15}$

 $\lambda_{FV} = 0.86^{+0.14}_{-0.12}$

 $\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$

[-1.24,-0.81] [0.78,1.15]

[-1.48,-0.99] U[0.99,1.50

 $\lambda_{du} \in$

 $\lambda_{la} \in$

-10

-5

0

5

m_H = 125.5 GeV

Model: κ_V, κ_F p_=10%

 $\mathsf{Model}: \lambda_{\mathsf{FV}}, \kappa_{\mathsf{VV}}$ p_=10%

Model: λ_{WZ} , λ_{FZ} , κ_{ZZ} p__=19%

Model: λ_{du} , λ_{Vu} , κ_{u}

Model: $\lambda_{lq}, \lambda_{Va}, \kappa_{qq}$

p___=20%

p_=15%

10

15

Run1

Signal strengths

Global fit

Run 1 & experimental signal strengths

- « Theory space »: total decomposition in terms of production modes and decay modes
- Very useful since production modes are unfolded from experimental categories, correlations within each channels taken in to account
- Results given as $-2\ln\mathcal{L}$ in a $\mu(X,Y)$ vs $\mu(X',Y)$ plane
- Noticeable efforts during Run 1 from ATLAS and CMS to provide information readily usable for re-interpreting Higgs results (next slides)

Contour plots

• Standard way of presenting the results: 68.3% and 95.4% C.L. contours are given

Approach first introduced by G. Cacciapaglia, A. Deandrea, G. D. La Rochelle, J.B. Flament in

[arXiv:1210.8120v2]

- To reconstruct the likelihood shape one has to assume a model and fit the contours. 2D gaussian here.
- Correlation between the 2 dimensions taken into account, but validity of the approximation sometimes poor (*e.g.* ZZ channel)

Temperature plots

- Values of $-2\ln\mathcal{L}$ available : shape of the likelihood numerically accessible
- No assumptions on the model needed
- But still need to be digitized

A great step forward: digital likelihoods

- First digital likelihoods available (and last ones so far)
- Extremely useful, allow for direct reinterpretation of Higgs results
- All three ATLAS diboson analyses have been updated since then, those are unfortunately out of date now

Run1

Signal strengths Global fit

Recent results

 Considerable number of updated analyses released in the past few months

 $VBF + VH, H \rightarrow inv$ [CMS-HIG-13-030]

 $H \rightarrow \gamma \gamma$ [CMS-HIG-13-001]
[ATLAS-HIGG-13-08]

b IZ I & b

 $H \rightarrow WW^*/ZZ^*$ [ATLAS-CONF-14-060] *****[ATLAS-HIGG-13-21]

 $VH, H \rightarrow b\bar{b}$ [ATLAS-HIGG-13-32] *****

Hamburg Workshop on Higgs Physics

* appeared after our analysis 10

Global fit

Based on previous work by **G. Belanger, B. Dumont**, **U. Ellwanger, J.F. Gunion, S. Kraml** in

[arXiv:1212.5244, 1302.5694, 1306.2641]

SM particles

contribution

• Define reduced couplings (« κ framework »):

$$\mathcal{L} = \left[C_W m_W W^\mu W_\mu + C_Z \frac{m_Z}{\cos \theta_W} Z^\mu Z_\mu - C_U \frac{m_t}{2m_W} \bar{t}t - C_D \frac{m_b}{2m_W} \bar{b}b - C_D \frac{m_\tau}{2m_W} \bar{\tau}\tau \right] H$$

+ possible width extra-contribution (*e.g.* invisible BR)

• Effective loop-induced vertex: $C_{g,\gamma} = \overline{C}_{g,\gamma} + \Delta C_{g,\gamma}$

Signal strengths predictions in terms of reduced couplings following LHC HXSWG recommendations [LHCHXSWG-2012-001]

- Construction of a combined likelihood
- If likelihood shape is available: no assumptions needed
- Otherwise: use the gaussian approximation
- Profile likelihood analysis

Our framework: Lilith

 Python public code: obtain Higgs likelihood from the latest experimental signal strengths in terms of production modes

http://lpsc.in2p3.fr/projects-th/lilith/ • All kind of signal strengths experimental formats are handled: full grid, 2D contour, 1D profile, single point measurement

- All experimental data are stored in a flexible XML database; easy to update and add/modify results
- Two user input modes:

Reduced couplings as inputs

Signal strengths as inputs

• Returns $-2\ln\mathcal{L}$ for each input points

Light Likelihood fit for the Higgs

[JB, B. Dumont]

Information, Download:

The following results are based on an updated analysis of arXiv:1409.1588

taken into account the latest ATLAS results

Signal strengths combination: LHC+Tevatron

Perfectly well compatible with the SM

Reduced coupling fits

• Fit I: CU, CD, CV, assuming no extra BSM loop or width contributions

- $C_U = 1.02 \pm 0.10$ $C_V = 1.04 \pm 0.07$ $C_{\gamma} = 1.04 \pm 0.11$
 $C_D = 0.98 \pm 0.14$ $C_V = 1.04 \pm 0.07$ $C_g = 1.02 \pm 0.11$
- **Fit II:** C_U , C_D , C_Z , $C_{WZ}=C_W/C_Z$, under the previous assumptions:

(Custodial symmetry test) $C_{WZ} = 0.94 \pm 0.10$

Loop-induced vertices fits: ΔC_{δ} , ΔC_{g}

Fit: ΔC_γ, ΔC_g, assuming C_U, C_D, C_V fixed at their SM or best-fit values & no extra width contribution

✓Loop-induced processes well compatible with SM particle contributions only

SM+invisible $\mathcal{B}_{inv} < 0.11$ at 95.4% C.L.

SM+invisible $\mathcal{B}_{inv} < 0.11$ at 95.4% C.L.

 $\begin{array}{l} C_{\rm U}, \ C_{\rm D}, \ C_{\rm V} < 1 \\ {\rm SM} + \Delta C_{\gamma}, \ \Delta C_{\rm g} \ + invisible \\ \mathcal{B}_{inv} \lesssim 0.24 \ {\rm at} \ 95.4\% \ {\rm C.L.} \end{array}$

SM+invisible $\mathcal{B}_{inv} < 0.11$ at 95.4% C.L.

C_U, C_D, C_V <1 SM+ ΔC_{γ} , ΔC_{g} +invisible $\mathcal{B}_{inv} \lesssim 0.24$ at 95.4% C.L.

 $\begin{array}{ll} \mathsf{C}_{\mathsf{U}}, \, \mathsf{C}_{\mathsf{D}}, \, \mathsf{C}_{\mathsf{V}} & +\text{invisible} \\ \mathsf{C}_{\mathsf{U}}, \, \mathsf{C}_{\mathsf{D}}, \, \mathsf{C}_{\mathsf{V}}, \, \Delta \mathsf{C}_{\mathsf{Y}}, \, \Delta \mathsf{C}_{\mathsf{g}} \\ \mathcal{B}_{inv} \lesssim 0.34 \text{ at } 95.4\% \text{ C.L.} \end{array}$

After Run I

Pursuing the Run 1 efforts

- Possible and desirable to go beyond the K framework in Run 2 to reinterpret Higgs results in more complex cases (*e.g.* non SM-like tensor structure), nevertheless it is still valid for most cases of interest.
- Pursuing the ATLAS and CMS efforts during Run 1, signal strengths results should systematically come in numerical form
- This is necessary to the community to make the most out of the Higgs results by re-interpreting them in various models without need to make crude assumptions
- ATLAS showed that it is possible

Going forward

- Total breakdown of the production modes is highly desirable and will become necessary as more data is collected
- Introduce mass dependence
 - Publication of a 6D likelihood function for each decay mode, center of mass energy

 $\mathcal{L}(m_H, \mu_{ggH}, \mu_{ttH}, \mu_{VBF}, \mu_{ZH}, \mu_{WH})$

Digital grid ? Simplified likelihood ? Full model ?

See « On the presentation of the LHC Higgs results » F. Boudjema et al [arXiv:1307.5865v2]

 Treatment of systematic uncertainties, in particular theoretical, will be crucial during Run 2: possibility to decouple them

See « A novel approach to Higgs Coupling Measurements $\ensuremath{\mathsf{*}}$

K. Cranmer et al [arXiv:1401.0080v1]

Conclusions

Conclusions

- Run 1 showed impressive performance; large amount of data collected, lot of results available
- The observed state looks really SM-like, but there is still room for deviations
- Better understanding of the data if more information is given in a systematical way
- First steps have been initiated by both ATLAS and CMS collaborations
- Necessity to pursue in that direction and go beyond
- This is the only way to fully make sense of the data

Before/after the recent ATLAS updates

Before

$$\mu_{b\bar{b}}^{\rm VH} = 0.2^{+0.7}_{-0.6}$$

	$\hat{\mu}^{ m ggF}$	$\hat{\mu}^{ ext{VBF}}$	ρ	$- \mu_{\tau\tau}^{\rm ggF+ttH} \simeq 1.20 \pm 1.19$
γγ	1.25 ± 0.24	1.09 ± 0.46	-0.30	$\mu_{\tau\tau}^{\rm VH+VBF} \simeq 1.66 \pm 0.76$
VV^*	1.03 ± 0.17	1.12 ± 0.41	-0.29	. , ,
$bar{b}/ au au$	0.83 ± 0.41	1.14 ± 0.27	-0.27	$\mu^{\rm ggF+ttH} \sim 0.82 \pm 0.35$
$b\bar{b}$	1.02 ± 0.85	0.92 ± 0.38	0	$\mu_{WW*} = 0.02 \pm 0.00$
ττ	0.64 ± 0.50	1.40 ± 0.40	-0.42	$\mu_{WW^*}^{\rm VH+VBF} \simeq 1.67 \pm 0.76$

After

/ (10)	$\hat{\mu}^{ m ggF+ttH}$	$\hat{\mu}^{\mathrm{VBF+VH}}$	ho	$\mu_{b\bar{b}}^{\rm VH} = 0.51^{+0.40}_{-0.37}$
$\gamma\gamma$	1.25 ± 0.24	1.09 ± 0.46	-0.30	σσΓι+++Ψ
VV^*	1.07 ± 0.15	1.12 ± 0.36	-0.26	$\mu_{\tau\tau}^{\rm ggr+ttm} \simeq 2.17 \pm 1.35$
$b ar{b} / au au$	0.93 ± 0.42	1.04 ± 0.23	-0.24	$\mu_{\tau\tau}^{\rm VBF+VH} \simeq 1.28 \pm 0.56$
$b\overline{b}$	1.02 ± 0.85	0.83 ± 0.30	0	~~~F ++U
au au	0.73 ± 0.50	1.35 ± 0.35	-0.40	$\mu_{WW^*}^{\text{ggr} + \text{ttn}} \simeq 1.02 \pm 0.26$
				$\mu_{WW^*}^{\rm VBF} \simeq 1.36 \pm 0.49$

2HDM of Type I & II fit

(Do not include the latest ATLAS updates)

Experimental data

Data: CMS

Hamburg Workshop on Higgs Physics

Data: ATLAS

Jérémy Bernon

Data: Tevatron

Validation

[ATLAS-HIGG-2013-02]

ATLAS: Diboson

[ATLAS-CONF-2014-009]

ATLAS: Moriondl4 fit

CMS

• Dataset: Data from the analysis note

[CMS-HIG-2013-005]

[CMS-HIG-2013-005]

CMS

Hamburg Workshop on Higgs Physics

2.0

2.5

 C_{τ}

2.5

2.0

[CMS-HIG-2013-005] CMS

 $(C_V, C_b, C_\tau, C_t, C_\gamma, C_g, BR_{BSM})$ fit

