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• Operators: order, disorder & defect theories
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1 Lecture One

In these lectures I will talk about recent developments in supersymmetric quantum field
theories—in particular about exact non-perturbative results, such as certain correlators,
expectation values of operators and protected indices of states and operators, which can be
obtained with localization techniques. The latter are powerful techniques to treat the path-
integral, and reduce it to a tractable problem. We will start with some general considerations,
and then we will focus on a specific example to be concrete.
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1.1 Euclidean path-integrals and exact results

The full information about a local quantum field theory is encoded in the Euclidean Feynman
path-integral: ∫

Dϕ e−
S
~ , (1.1)

which is an integral over all possible field configurations in Euclidean spacetime. Unfortu-
nately this is in general too hard to compute, because the integration is over an infinite-
dimensional space of functions. The standard approximation scheme is to expand the action
around free fields and to work perturbatively. This work very well at weak coupling, but
it does not, in general, when the couplings are of order 1—that we call “strong coupling”.
Because even if we were able to compute all perturbative orders, the resulting series would
only be an asymptotic series with zero radius of convergence, and a finite result at strong
coupling would only follow after including all non-perturbative corrections.

Thus, one approach is to study theories for which certain path-integrals can be evaluated.
Until a few years ago, besides Gaussian free theories, the only available examples where some
cohomological and topological field theories on compact manifolds, such as Chern-Simons
theory. However, after the works of Nekrasov and Pestun on 4d supersymmetric theories,
we have considerably enlarged the class of quantum field theories for which we can compute
various path-integrals, to include physical supersymmetric gauge theories.

Let me remark that, even restricting to supersymmetric theories, we cannot compute
generic path-integrals with generic sources: that would mean that we can solve the the-
ory. What we know how to compute is path-integrals that preserve some supersymmetry,
from which we can extract non-trivial information. Besides, notice that there exist other
approaches to strong coupling: for instance the bootstrap method to CFTs (see Rychkov’s
lectures), and integrability to integrable theories (see Göhmann’s and Volin’s lectures) such
as 4d N = 4 SYM in the planar limit.

So, the objective of these lectures is to compute the Euclidean partition functions, i.e.
path-integrals such as

ZM(t) =

∫
Dϕ e−S[ϕ; t] , (1.2)

of supersymmetric gauge theories on compact manifolds M (because this provides a con-
vergent integral), and the expectation values of local and non-local operators that preserve
some supersymmetry. A technique that allows us—in favorable circumstaces—to compute
such path-integrals exactly (in the sense of reducing them to finite-dimensional integrals or
series) is “supersymmetric localization”.

It turns out that it is a profitable exercise to explore in a systematic way on what manifolds
M it is possible to preserve some supersymmetry, and what is the most general SUSY
background on them, for two reasons:

1. On some manifolds and backgrounds, localization reduces the path-integral to a simpler
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problem than on others. In other words, we would like to encounter moduli spaces that
are simple and tractable.

2. Different manifolds and SUSY backgrounds grant access to different sectors of operators
and correlators, including those between holomorphic and anti-holomorphic operators
and conserved currents.

The topological twist, which has been extensively studied in the past, is one example. It
usually gives access to holomorphic correlators between supersymmetric operators, and it
usually reduces the path-integral to interesting but complicated moduli spaces of solutions
to partial differential equations (such as moduli spaces of instatons, or of holomorphic maps,
etc. . . ).

Operator insertions. We will not discuss operators insertions very much, but they are
important and can be included. In fact, one can equally well study both local operators
(located at a point in spacetime) and non-local operators (located along a submanifold, such
as a line as in Wilson and ’t Hooft line operators, or a surface, etc. . . ).

Operator insertions in the path-integral can be defined in different ways:

• Order operators: they are defined as functions of the fundamental fields in the theory.
E.g.: Wilson line operators:

WR[γ] = TrR P exp

∮
γ

A .

In the path-integral, we insert such functions in the integrand.

• Disorder operators: they are defined through (singular) boundary conditions along the
submanifold. E.g.: ’t Hooft line operators in 4d (or monopole operators in 3d):

fix the conjugacy class of

∫
S2

F .

In the path-integral, we integrate over singular field configurations satisfying the con-
ditions.

• Defect operators: they are defined by introducing extra degrees of freedom on the
submanifold, with their own action and coupled to the bulk. E.g.:

SD =

∫
γ

dτ ψ̄(∂τ − iAτ )ψ .

In the path-integral, we integrate both over the bulk and defect theories.

These classes are not disjoint: for instance, Wilson line operators can also be described as
defect operators (see appendix B).
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1.2 SUSY on curved spacetime

The first step to compute the partition function of a QFT on a compact manifold M is to
define the theory on that manifold. In order to be able to apply localization techniques, we
need to preserve supersymmetry on the curved manifoldM, and this is non-trivial. So, first
of all, let us see how to do that.

On a Lorentzian flat spacetime, a supersymmetry algebra is an algebra of symmetries
that enlarges the Poincaré group of spacetime symmetries with fermionic generators (anti-
commuting with half-integer spin). For instance, in 4d the minimal supersymmetry algebra
adds1

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ , {Qα, Qβ} = {Qα̇, Qβ̇} = 0 . (1.3)

In a local quantum field theory2 the supercharges can be written in terms of the super-
symmetry current Sαµ, and the theory is supersymmetric if the supersymmetry current is
conserved:

Qα =

∫
dd−1xS 0

α , ∂µSαµ = 0 . (1.5)

For theories with a Lagrangian description, the Lagrangian is invariant under the super-
charges, up to total derivatives:3 schematically

δL = ∂µ(. . . )µ , (1.6)

where δ = εαQα is anticommuting scalar.

Starting with an Euclidean theory with Lagrangian LRd on flat space Rd, we want to place
the theory on a smooth curved manifold M. We require that the theory is not modified at
short distances—compared with the characteristic curvature radius of the manifold—because
at short distances the manifold is essentially flat. In other words, we only admit deformations
of the Lagrangian by relevant operators.

This procedure is ambiguous: given a Lagrangian on M, we can always add relevant
deformations whose couplings are written in terms of the curvature tensors or powers of the
“curvature radius” R, since such terms respect our conditions.

1To this algebra one could add 1-brane and 2-brane charges Zµ, Zµν , which commute with the super-
charges but not with the Poincaré generators: {Qα, Qβ̇} = 2σµ

αβ̇
(Pµ + Zµ), {Qα, Qβ} = σµναβZµν .

2Every local quantum field theory has a real, symmetric, conserved energy-momentum tensor Tµν , which
integrates to the momentum:

Pµ =

∫
dd−1xT 0

µ , ∂µTµν = 0 . (1.4)

The existence of a not-necessarily-symmetric T̂µν is guaranteed by Noether’s theorem, and the fact that it
can be improved to a symmetric one is guaranteed by Lorentz invariance. The energy-momentum tensor
is not unique: it can be modified by improvement transformations. The energy-momentum tensor and the
supersymmetry current are the only operators with spin higher than 1.

3In the off-shell formulation of supersymmetry, the algebra closes and the action is invariant. In the
on-shell formulation the algebra only closes up to the equations of motion, while the action is still invariant.
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We also require that the theory on M possesses some supersymmetry. The superalgebra
in the UV must reduce to a subalgebra of the flat-space superalgebra (since we add relevant
deformations), therefore the supercharges on M are a subset of the ones on Rd. However
their algebra can be deformed with respect to the flat-space one. As we will see, given a
manifoldM, it is not always possible to preserve some supersymmetry. On the other hand,
when it is possible, the Lagrangian LM is still ambiguous: requiring some supersymmetry
does not fix all the ambiguities in general.

As a first attempt, we can try to simply substitute the flat with the curved metric:

ηµν → gµν , ∂µ → ∇µ in L and δ . (1.7)

However this does not work, because

δg,∇ Lg,∇ = ∇µ(. . . )µ + . . . , (1.8)

unless it exists on M some covariantly constant spinor ε (then never vanishing): ∇µε = 0.
This, however, imposes drastic constraints on the topology and metric ofM that we do not
want.4

We can follow two strategies.

1. Trial and error, order by order in a characteristic length scale ofM. We can introduce
a length scale R rescaling the metric as

gµν = R2g(0)
µν . (1.9)

Then we can expand5

δ = δ
(0)
g,∇ +

∑
n≥1

1

Rn
δ(n) , L = L(0)

g,∇ +
∑
n≥1

1

Rn
L(n) . (1.10)

Here δ
(0)
g,∇, L(0)

g,∇ are the flat-space supersymmetry variations and Lagrangian with
curved metric, while the correction terms have an extra explicit dependence on R.
Since we restrict ourselves to relevant deformations, there can be only a finite number
of corrections.

This procedure is correct (and is widely used in the literature), however it has a few
drawbacks. 1) It is not guaranteed to succeed because not all manifold M admit
supersymmetry. 2) It is tedious because one has to deform the Lagrangian, the su-
persymmetry variations of fields and the supersymmetry algebra. 3) The underlying
structure is not manifest and it is not clear what manifolds will admit supersymmetry.

4The existence of a parallel spinor ∇µε = 0 implies first of all that the manifold is spin. Then it also
implies that it is Ricci-flat. We have 0 = [∇µ,∇ν ]ε = R ab

µν γabε. Then contract with another gamma and

use γbγcd = γbcd + δbcγd − δbdγc and the first Bianchi identity Ra[bcd] = 0. This gives Rabγ
bε = 0, which

implies Rµν = 0 because γµε are independent. In 2d and 3d, this implies that the metric is flat therefore the
manifolds are T 2 and T 3. In 4d we can have T 4 and K3.

5In this notation all terms are written in terms of g,∇, but the terms of order (n) have an extra explicit
dependence on R.
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2. Use a systematic method, explored initially by Festuccia and Seiberg [3], which consists
in coupling the theory to off-shell supergravity and taking a rigid limit MPl → ∞. I
will now describe this method.

To place a theory on a curved manifold M we can proceed as follows. We couple the
theory to gravity, i.e. we add a field gµν—the metric—coupled in a generally covariant way,
and then we give an expectation value to such a field. The new theory has more EOMs
coming from varying the metric—Einstein’s equations—which limit our choices of M. But
we take a “rigid limit” in which we send Newton constant GN → 0, keeping the metric
fixed to some background gµν . In the limit, gravity becomes non-dynamical and we do not
impose the gravitational equations anymore, therefore we can place the theory on any M.
The procedure gives us an action on the curved background.

Our theory is supersymmetric, though, so we should couple it to supergravity. It turns out
that, to make the method efficient, we should use off-shell supersymmetry which includes
auxiliary fields such that the supersymmetry algebra closes with no need to impose the
EOMs.

How do we couple to off-shell SUGRA? (see Vandoren’s lectures). In a supersymmetric
theory the stress tensor Tµν and the supersymmetry current Sαµ sit in the same supermul-
tiplet, called a “supercurrent multiplet”, together with other operators of spin less or equal
to one. In general they sit in the so-called S-multiplet, which is relatively long.6 However
if the theory has some extra properties, the S-multiplet is decomposable and they sit in a
shorter multiplet. For instance:

• if the theory has a continuous non-anomalous R-symmetry, one can reduce (improve)
to the R-multiplet;

• if, roughly speaking, the target space for scalars does not have 2-cycles and there is no
FI term, one can reduce to the Ferrara-Zumino multiplet;

• if the theory is superconformal, one can reduce to the standard superconformal multi-
plet.

To each off-shell formulation of supergravity corresponds a supercurrent multiplet. The
gravity multiplet contains the metric gµν , the gravitino Ψαµ, as well as other auxiliary fields
of spin less or equal to one. At the linearized level, the supergravity multiplet is coupled to

6In 4d N = 1 the S-multiplet has 16+16 real independent components, in 3d N = 2 it has 12 + 12
components, in 2d N = (2, 2) it has 8+8 components. The components are counted as the number of
independent fields, minus the number of conservation laws. In 4d, the standard FZ multiplet (12+12)

contains (Tµν , Jµ, X, X̃, Sαµ, S̃αµ) where Jµ is not conserved (more generally X is replaced by a closed 1-
form Y , while here Y = dX). The R-multiplet (12+12) contains (Tµν , J

R
µ , Fµν) with 0 = ∂µJRµ = dF . The

superconformal multiplet has 8+8 components: (Tµν , Sαµ, Sα̇µ, J
R
µ ) where they are all conserved, Tµµ = 0

and γµSµ = 0. Recall that a closed n-form in d dimensions has
(
d−1
n−1

)
independent components.
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the supercurrent. Thus there is a paring between fields and operators:

gravity multiplet gµν Ψαµ . . . Vµ ψα H . . .
supercurrent Tµν Sαµ . . . Jµ jα σ . . .

(1.11)

and the coupling looks like

Llin
SUGRA ∼ gµνTµν + ΨαµSαµ + . . .+ V µJµ + ψαjα +Hσ + . . . (1.12)

Now we can give an expectation value to all bosonic fields in the gravity multiplet, in-
cluding the auxiliary fields. We take a rigid limit GN → 0 keeping fixed the background for
the metric and the bosonic auxiliary fields. We do not impose the EOMs, nor we integrate
out the auxiliary fields. We only impose supersymmetry, i.e. we impose the vanishing of the
gravitino variation:7

δΨµ = 2∇µε+Mµ(SUGRA fields) ε = 0 . (1.13)

The crucial point is that, in the off-shell formulation, the gravitino variation does not contain
the matter fields! Therefore the conditions for supersymmetry are independent of the par-
ticular matter theory we are discussing (they only depend on which supercurrent multiplets
exist). We call

δΨµ = 0 (1.14)

the “generalized Killing spinor” (GKS) equation. We should solve it for the background
supergravity fields and for the spinors ε. The number of solutions for ε is the number of
preserved supercharges. The equation also lead to integrability conditions onM, which tell
us what manifolds can admit supersymmetry.

We stress that the same supergravity theory can have different off-shell formulations, and
depending on which supercurrent multiplets exist in the matter theory, we can couple the
theory to different off-shell formulations: this can lead to different classes of supersymmetric
backgrounds for the same theory. For instance in 4d, the FZ multiplet can be coupled to
“old minimal SUGRA” while the R-multiplet to the “new minimal SUGRA”.

Finally, from the supergravity transformations of matter fields and the Lagrangian, we
can immediately read off:

• the deformed SUSY algebra on M;

• the deformed matter theory.

In the full non-linear supergravity, the auxiliary fields enter at most linearly in the SUSY
transformations and at most quadratically in the action. In particular L(1) is the linear
coupling between the auxiliary fields and the supercurrent multiplet, schematically

L(1) = . . .+ V µJµ +Hσ + . . . , (1.15)

7If the gravity multiplet contains also spinors, such as gauginos, we set their variation to zero as well.
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while L(2) are seagull terms.

Remark. In Euclidean signature the fields are complexified, and

Q̃α̇ 6= Q†α . (1.16)

It might happen that, to preserve supersymmetry, an auxiliary field which is real in Lorentzian
signature must take a complex background. On spheres, this means that the matter theory
is not reflection positive (the Euclidean version of unitarity). If the theory is superconfor-
mal, the complex auxiliary fields couple to a redundant operator and reflection positivity is
restored (possibly in the IR).

As a final remark, the coupling to external off-shell multiplets works for other types of
multiplets as well. For instance, if the theory has a continuous global symmetry G, the
current jµ sits in a current multiplet.8 We can couple it to an external off-shell vector
multiplet, by first coupling to SYM and then taking a rigid limit e→ 0, keeping a background
value for the vector and the auxiliary scalar fields. In the limit we do not solve the EOMs,
but impose the vanishing of the gaugino variation:

δλ = 0 (1.17)

In the off-shell formulation, this variation does not depend on the matter fields and it gives
theory-independent conditions on the flavor vector bundle.

2 Lecture Two

2.1 The localization argument

Supersymmetric localization is a very powerful tool that, in favorable circumstances, allows
us to exactly compute the partition function and the expectation values of certain operators
in supersymmetric theories. It has been used for a long time in cohomological and topo-
logical field theories, which often can be realized as topological twists of supersymmetric
theories. More recently it has been applied directly to physical theories, for instance to 4d
N = 2 theories in the so-called Ω-background by Nekrasov [1] and on S4 by Pestun [2].
Supersymmetric localization can be thought of as an infinite-dimensional version of the
Duistermaat-Heckman and Atiyah-Bott-Berline-Vergne localization formulæ in equivariant
cohomology. Let me describe how it works.

Suppose we have a fermionic symmetry Q of the action:

QS = 0 . (2.1)

8In 4d N = 1, the current multiplet is a linear multiplet J = (j, ψ, ψ, jµ) with 4+4 independent compo-
nents.
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Since Q is fermionic, its square is either zero or a bosonic symmetry δB of the action (a
composition of translations with Lorentz, R-symmetry and flavor symmetry rotations). We
are interested in the path-integral Z =

∫
Dϕ e−S[ϕ], where we have set ~ = 1. Consider,

instead, the following path-integral

Z(t) =

∫
Dϕ e−S[ϕ]−tQV [ϕ] with δBV = 0 , (2.2)

which depends on a parameter t and where V is some functional. The dependence on t is

∂Z

∂t
= −

∫
Dϕ QV e−S−tQV = −

∫
Dϕ Q

(
V e−S−tQV

)
. (2.3)

If the measure is Q-invariant, i.e. that the fermionic symmetry is non-anomalous (this
requires that also δB is non-anomalous), by a field redefinition this is zero:

∂Z

∂t
= 0 . (2.4)

More precisely, Q is the generator of shifts along a fermionic direction on the supermanifold
of fields, in other words it is a derivative. If there are no boundary terms at infinity in field
space, the integral of a total derivative is zero. In some cases there are boundary terms,9

however if e−QV falls-off fast enough at infinity in field space, such boundary terms are
absent.

Then the partition function is independent of t. Clearly the argument still holds if we
insert Q-invariant operators, QO[ϕ] = 0. The argument also shows three things:

• the partition function or VEV does not depend on coupling constants in front of Q-
exact terms in the action;

• VEVs only depend on the Q-cohomology class of the operators;

• the partition function or VEV is not modified by the deformation term QV .

We can use the last fact at our advantage.

Before proceeding, let me remind you that, when going to Euclidean signature, all fields
get complexified. This means that real fields such as Aµ become complex, and complex

conjugate fields such as ψ, ψ̃ become independent.10 However, when studying the path-
integral, we want to compute an analytic continuation of the Lorentzian path-integral (since
ultimately we want to learn about the physical theory), therefore we do not want to integrate

9One example is in section 11.3 of [8]. Another example is in the cigar SCFT of [9], see section 6.1.
10One reason is that that spinor representations are different in Lorentzian and Euclidean signature,

therefore if we want both local rotation symmetry and supersymmetry, the fields have to be complexified. If
we do that, all supersymmetry variations look the same in Euclidean signature. Another reason is that, to
preserve SUSY on a curved space, in general we have to allow for complexified backgrounds.
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over complexified fields, which means twice as many fields compared with the Lorentzian
path-integral. Moreover the path-integral would not be convergent. Instead, we need to
specify a contour in field space on which the path-integral is performed, and the contour
must be such that the path-integral is convergent for all values of t.11

At t = 0, Z(0) is the original path-integral we want to compute. Suppose we can find some
V such that the bosonic part of QV is ≥ 0 along the contour. Then, in the limit t → +∞
all field configurations for which QV [ϕ] > 0 are infinitely suppressed!

ϕ
ϕ0

Therefore the path-integral localizes to the bosonic zeros ϕ0 of QV (which are also sta-
tionary points). Let us parametrize the fields around ϕ0 as12

ϕ = ϕ0 + t−1/2ϕ̂ . (2.5)

We can then Taylor expand the action around ϕ0:

S + tQV = S[ϕ0] +
(
QV

)(2)
[ϕ̂] +O(t−1/2) , (2.6)

therefore only the on-shell action S0 and the quadratic expansion of QV around the fixed
points matters. We obtain the localization formula:

Z =

∫
BPS

Dϕ0 e
−S[ϕ0] 1

SDet′(QV )
(2)
ϕ0

(2.7)

by Gaussian integration. The superdeterminant is the ratio of the bosonic and fermionic
determinants, and is called “one-loop determinant”; it can be thought of as a measure on
the subspace of fixed points. If {ϕ0} is a bosonic moduli space, SDet has zeros: we remove
them and integrate over the bosonic zero-modes. If {ϕ0} has fermion zero-modes, one has
to absorb them—either inserting operators or expanding S in the fermions.

We stress that this formula is exact. If the space of fixed points {ϕ0} is finite-dimensional,
then we have reduced the path-integral to an ordinary integral and we may be able to solve
it!

11If more than one contour makes the path-integral convergent, than they correspond to different quanti-
zations of the theory.

12We choose the specific power t−1/2 because when the deformation term dominates at large t, the kinetic
term should be canonically normalized with no powers of t.
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It turns out that one localizes on some BPS configurations. We can make a canonical
choice for V :

V =
∑

fermions ψ

(Qψ)‡ψ , (2.8)

where ‡ is some anti-linear operator. If we can make a choice for ‡ such that the bosonic part
of QV is non-negative along the contour and δBV = 0, then the fixed points are essentially

Qψ = 0 , (2.9)

which are the BPS equations.13

Notice that the computation of SDet in general might seem exceedingly hard: we don’t
know how to compute the spectrum of the Laplace and Dirac operators on a generic compact
manifold. However there is supersymmetry, and so we expect huge cancellations among the
eigenvalues in SDdet. In fact in most cases the computation reduces to a much simpler
cohomological problem, and sometimes index theorems can be applied.

2.2 Example: S2 partition function of 2d N = (2, 2) gauge theories

As a concrete example, we consider two-dimensional theories withN = (2, 2) supersymmetry
(4 supercharges). This is the dimensional reduction of 4d N = 1. The dimensionality is low
enough that we can easily do the computation, at yet it contains all the key ingredients that
one finds in higher-dimensional theories. We want to study those theories on S2.

2.2.1 The untwisted background on S2

In Lorentzian signature, there are two complex supercharges, one left-moving and one right-
moving. The biggest R-symmetry that these theories can have is

U(1)left × U(1)right ' U(1)R × U(1)A ,

a vector-like and an axial R-symmetry. This is an outer automorphism of the algebra, so
a supersymmetric theory does not need to possess R-symmetry. But we require that the
vector-like U(1)R is present. In this case, the algebra admits a complex central charge.14

On Euclidean flat space, the supersymmetry algebra is

{Qα, Q̃β} =
[
2γµPµ + 2iP+Z + 2iP−Z̃

]
αβ
, {Qα, Qβ} = {Q̃α, Q̃β} = 0 , (2.10)

13Here we are assuming that the supersymmetric configurations have ψ0 = 0, i.e. that there are no
fermion zero-modes. When there are, the localization formula includes an integral over the fermion zero-
modes, which is the same as a derivative and extra care has to be used. One example is the elliptic genus,
and the treatment of zero-modes in that case is done in [10–12]. Another example is the Coulomb-branch
localization formula for the two-dimensional A-twist in [13,14].

14With no R-symmetries, two complex central charges are possible. They break the corresponding R-
symmetry, because they are charged. A superconformal theory cannot have central charges.
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where P± are the projectors on positive/negative chirality spinors.15 Here Z, Z̃ are complex
central charges, which are complex conjugate in Lorentzian signature. All tilded quantities
we will use are complex conjugate in Lorentzian signature, but are independent complexified
fields in Euclidean signature. To Q±, Q̃± we assign R-charges −1 and +1 respectively.

Because of U(1)R, the class of theories we look at have an R-multiplet with 4 + 4 inde-
pendent components.16 It contains the following operators:

Rµ :
(
Tµν , Sαµ, S̃αµ, j

R
µ , j

Z
µ , j

Z̃
µ

)
. (2.12)

They are: the stress tensor, the supersymmetry currents, and the currents for the R-
symmetry and the central charges; they are all conserved. Correspondingly, there exist
an off-shell 2d supergravity, which is the dimensional reduction of the new minimal SUGRA
in 4d discussed in [5] (found in [6, 7]), whose gravity multiplet couples to the R-multiplet.
In a Wess-Zumino gauge it contains

Gµ :
(
gµν , Ψαµ, Ψ̃αµ, Vµ, Cµ, C̃µ

)
. (2.13)

The gauge fields Vµ, Cµ, C̃µ appear in the covariant derivatives

Dµ = ∇µ − irVµ +
1

2
zC̃µ −

1

2
z̃Cµ , (2.14)

as well as through their field strengths. It is convenient to introduce the dual field strengths

H = −iεµν∂µCν , H̃ = −iεµν∂µC̃ν . (2.15)

In the full non-linear supergravity theory, the gravitino variation—which is our generalized

15In components:

{Q+, Q̃+} = 4Pz , {Q+, Q̃−} = −2iZ

{Q−, Q̃−} = −4Pz̄ , {Q−, Q̃+} = 2iZ̃
(2.11)

and all other vanishing.
16The bottom component is jRµ . Taking into account the conservation equations, there are 4+4 independent

components. This has been studied in [4]. More in details. The S-multiplet has Tµν , jRµ , jZµ , jZ̃µ , Yµ, Ỹµ, A,

Sαµ, S̃αµ, ψα, ψ̃α, where jRµ is not conserved but dY = dỸ = 0: this gives 8+8 independent components. In

the R-multiplet we can set Yµ = Ỹµ = A = ψα = ψ̃α = 0, as well as ∂µjRµ = 0: this gives 4+4 independent

components. In the superconformal case we further set jZµ = jZ̃µ = Tµµ = γµSµ = 0, as well as εµν∂µj
R
ν = 0

(we get two chiral currents out of jRµ ): this gives 0+0 independent components.
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Killing spinor (GKS) equation—is:17

1
2
δΨµ = (∇µ − iVµ)ε− 1

2

(
H 0

0 H̃

)
γµε+ . . .

1
2
δΨ̃µ = (∇µ + iVµ)ε̃− 1

2

(
H̃ 0
0 H

)
γµε̃+ . . . .

(2.17)

I am using conventions in which
γ3 =

(
1 0
0 −1

)
,

therefore the last term can be written as a combination of 1 and γ3. Here ε, ε̃ are the two
supersymmetry parameters, which are complex Dirac spinors (in the Lorentzian theory they
are charge conjugate). They have R-charges 1,−1 respectively, and no central charges. The

dots represent terms that vanish when we set Ψµ = Ψ̃µ = 0 (they are present in the full
non-linear supergravity theory). Defining the U(1) spin connection

ωµ = −1

2
ωabµ εab , (2.18)

the metric-covariant derivative on fields of definite spin is

∇(s)
µ = ∂µ − isωµ . (2.19)

The full analysis of these equations has been done in [15]. Here we consider two simple
solutions.

Twist. A simple solution for any manifold and metric is18

Vµ =
1

2
ωµ , ε =

(
0
ε−

)
, ε̃ =

(
ε̃+
0

)
, H = 0 , H̃ = 0 (2.20)

where ε−, ε̃+ are constant. This is called the topological A-twist. There are two Killing
spinors of opposite R-charge and chirality, and (g − 1) units of R-symmetry flux. In this

17To derive the GKS equation it is enough to know the linearized supergravity. First, after imposing
WZ gauge, Hµ still has a residual gauge redundancy that for the gravitini consists of local supersymmetry
transformations:

δΨµ = ∂µε , δΨ̃µ = ∂ε̃ . (2.16)

From these expressions it seems that Ψµ, Ψ̃µ are invariant under constant (global) SUSY transformations
ε, ε̃. However the latter bring out of WZ gauge, and to restore the gauge one has to compensate with
gauge transformations (that we used to impose WZ gauge). These give an expression, linear in and with no
derivatives of ε, ε̃. Then there is a unique way to make the transformations covariant, which also introduces
the derivatives of ε, ε̃. This procedure gives (2.17).

Alternatively, one can perform the dimensional reduction from the 4d new minimal supergravity.
18More generally, H̃ can be an arbitrary function. We cannot turn on holonomies for Vµ because ε, ε̃ (and

the supercharges) would no longer be periodic and there would not be solutions.
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background the spinors behave as scalars because the R-symmetry background has, in a
sense, twisted their spin:

Dµε− = ∂µε− = 0 . (2.21)

The deformed algebra is simply δ2
ε = δ2

ε̃ = 0 and {δε, δε̃} = 0. For g > 1 this is essentially
the only solution.

Untwisted S2. With round metric, one finds the following untwisted background:

Vµ = 0 , H = H̃ =
i

R
, ∇µε =

i

2R
γµε , ∇µε̃ =

i

2R
γµε̃ . (2.22)

The spinors solve the Killing spinor equation.19 On the round S2 there are four solutions
(two for ε and two for ε̃), so the number of preserved supersymmetries is maximal.

With no central charges, the deformed supersymmetry algebra is

{δε, δε̃} = iLK −
εε̃

2R
RV , {δε1 , δε2} = {δε̃1 , δε̃2} = 0 , (2.23)

and the Killing vectors Kµ generate the SO(3) isometry algebra of S2. In fact the superal-
gebra is

su(2|1)A ⊃ su(2)× u(1)R . (2.24)

Notice that the background is not the analytic continuation of a real background in
Lorentzian signature. However, if the theory is superconformal, the auxiliary fields H, H̃
couple to redundant operators and reflection positivity is not broken.20

2.2.2 Localization for gauge theories

We will now focus on a class of theories, namely gauge theories, for which the S2 partition
function can be explicitly evaluated with localization techniques. We will consider a simple
class of gauge theories, composed of vector and chiral multiplets only (there are many other
multiplets one can use) as the result is interesting enough.

Multiplets. The 2d vector and chiral multiplets are just the dimensional reduction of the
4d vector and chiral multiplets.

The chiral multiplet Φ and the antichiral multiplet Φ̃ are complex scalar multiplets satis-
fying the constraints

D̃αΦ = 0 , DαΦ̃ = 0 . (2.25)

19The Killing spinor equation in dimension d is ∇µε = λγµε for some constant λ. By manipulations, one
gets λ2 = − Rs

4d(d−1) , in particular Rs has to be constant. On S2 one gets λ = ± i
2R . Notice that even without

assuming that λ is constant, such a condition follows from the initial equation.
20The action becomes the conformal transformation from flat space, with the correct conformal couplings

of scalars. In particular, scalars of R-charge zero have no extra curvature couplings.
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Their components are

Φ = (φ, ψ, F ) , Φ̃ = (φ̃, ψ̃, F̃ ) .

The vector multiplet V is a real multiplet: V = V†. In Wess-Zumino gauge21 its components
are

V = (Aµ, σ, σ̃, λ, λ̃, D) .

We parametrize
σ = σ1 − iσ2 , σ̃ = σ1 + iσ2 . (2.26)

Out of the vector multiplet, we can construct a twisted chiral multiplet Σ, with

D̃+Σ = D−Σ = 0 (2.27)

and its “conjugate” Σ̃, whose components are

Σ = (σ, λ+, λ̃−, D − iF12 + iH̃σ)

Σ̃ = (σ̃, λ−, λ̃+, −D + iF12 − iHσ̃) .

Gauge theory data.

• Gauge group G.

• Matter is in chiral multiplets, and they transform as some representation R of G, in
general reducible. In other words, the target space for chiral multiplets is a vector
space V , and each component transform as a weight ρ ∈ R.

• SUSY transformations and the su(2|1) algebra contain RV , therefore we must specify
the R-charges. Contrary to flat space, the action will depend on the R-charges: they
control some “curvature couplings”.

• Interactions. There are 2 types of them: superpotential and twisted superpotential.

• After including interactions, there can be some residual flavor symmetry GF . Therefore
V gives a representation of G × GF × U(1)R. A background for an external vector
multiplet coupled to GF produces the so-called twisted masses.

Summarizing:
(G, V, r,W,W ,m) . (2.28)

21The parameter for gauge transformations Λ is promoted to a chiral multiplet, therefore there is more
gauge freedom. We can fix the extra freedom going in the so-called Wess-Zumino gauge. The residual
symmetry is the standard gauge symmetry. Recall that when performing a SUSY transformation, we go out
of WZ gauge and we must compensate with a super-gauge transformation: this is what brings the vector
multiplet in the transformations of the chiral multiplet.
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Actions. Then the SYM action is

LSYM =
1

2
Tr

[(
F12 −

σ2

R

)2

+ (Dµσ1)2 + (Dµσ2)2 − [σ1, σ2]2 +
(
D − σ1

R

)2
]

+ Tr
[
iλ̃D/ λ− iλ̃[σ1, λ] + λ̃γ3[σ2, λ]

]
.

(2.29)

The matter action is

Lmat = Dµφ̃D
µφ+ φ̃

[
− iD + σ2

1 + σ2
2 +

ir

R
σ1 +

r(2− r)
4R2

]
φ+ FF̃

+ iψ̃D/ψ + ψ̃
[
− iσ1 + σ2γ3 +

r

2R

]
ψ + i

√
2 ψ̃λ̃φ+ i

√
2 φ̃λψ .

(2.30)

As promised, these actions explicitly depend on the R-charges.

If we choose a “real” contour, the real bosonic parts of the actions are non-negative and
the path-integral is convergent. We choose a supercharge22

δQ = δε + δε̃ (2.31)

for some choice of ε and ε̃, and we use it for localization. These two actions are Q-exact:

LSYM = δQ
(
. . .
)
, Lmat = δQ

(
. . .
)
. (2.32)

Thus we localize at their fixed points.

Then we can write interactions. Superpotential interactions are given by the F-terms of
gauge-invariant chiral multiplets of R-charge 2:

LW = i
(
FW + F̃W

)
. FW = ∂iW Fi +

i

2
∂2
ijW ψiψj (2.33)

where W (Φ) is a holomorphic function of R-charge 2. These interactions are Q-exact, there-
fore the partition function does not depend on the coefficients of W . But the R-charges are
constrained.

Twisted superpotential interactions are the G-terms of twisted chiral multiplets, and are
controlled by a gauge-invariant holomorphic functionW(Ω).23 In the special case of a linear
twisted superpotential we get the FI term and the theta angle:

W =
i

2

(
ξ + i

θ

2π

)
Tr Σ ⇒ LFI = Tr

(
iξD + i

θ

2π
F12

)
. (2.34)

22Such a supercharge satisfies δ2
Q = iLK − εε̃

2RRV and it defines a superalgebra su(1|1) ⊂ su(2|1), whose
bosonic part u(1)rot+RV

is a mix of rotation and R-trasformation.
23We have

LW = GW − iH̃W(ω) + G̃W + iHW̃(ω̃)

and the formula for GW is the same as for FW but sending back F → −iF .
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This term is not Q-exact.

Finally, we can add twisted masses. Whenever the theory has a continuous flavor symme-
try GF , we can couple to an external vector multiplet and give a background to the bosonic
fields. As long as the SUSY condition δλext = 0 is satisfied, this provides supersymmet-
ric deformations: mass terms and magnetic flux (see matter action). We will discuss the
conditions in a moment.

What GF is depends on the superpotential. Eventually, the twisted masses can be rotated
by a flavor rotation to the Cartan, and so in general they break GF to its maximal torus.

BPS configurations. Setting to zero the real part of the bosonic action (and imposing
the real contour) we get:

F12 =
σ2

R
, D =

σ1

R
, 0 = Dµσ1 = Dµσ2 = [σ1, σ2]

φ = φ̃ = 0 , F = F̃ = 0 .
(2.35)

If we simultaneously diagonalize σ1, σ2, F12 and the connection Aµ, then σ1,2 are simply

constant. The constraint φ = φ̃ = 0 is imposed whenever σ2
1 + σ2

2 + r(2−r)
4R2 > 0, which we

will assume is the case (we choose 0 < r < 2). This is the same as the solutions to the BPS
equations along the real contour (there are more and interesting solutions using complexified
fields, i.e. different contours).

This is also the condition for external vector multiplets, therefore we can always rotate
the twisted masses to the Cartan subalgebra of the flavor group.

The key point is that the localization locus is finite-dimensional, and it extremely simple!
This will allow us to get a simple formula. The locus is

D =
σ1

R
= const =

a

R2
, F12 =

σ2

R
= const =

m

2R2
, [σ1, σ2] = 0

φ = φ̃ = F = F̃ = 0 .
(2.36)

Since σ1,2 commute, we can rotate them to the Cartan subalgebra. The flux is GNO quan-
tized, i.e.

1

2π

∫
F = m e2πim = 1G . (2.37)

For instance for U(1): m ∈ Z.

On-shell action. The only contribution to the classical action comes from the twisted
superpotential. For an FI term:

S
(0)
FI = 4πiξ RTr σ1 + iθTrm . (2.38)
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2.2.3 1-loop determinants

The 1-loop determinants are obtained from the linearized actions around the BPS back-
grounds. Since they are decoupled, we can compute separately the contributions from chiral
and vector multiplets.

There are two strategies.

• Compute the full spectrum by hand. This is straightforward, but feasible only with a
lot of symmetry (such as on the round S2) because essentially we ask the spectrum of
the Laplacian and the Dirac operator on the manifold.

• Use a cohomological argument that reduces to the modes that don’t cancel.

Full spectrum. Consider first the chiral multiplet. The 1-loop determinant is

Z1-loop =
DetOψ
DetOφ

,

and the determinant of F, F̃ is trivial and can be set to 1. On the round S2 we can compute
these determinants exactly.

The way to compute the determinants is to decompose the wavefunctions into spin spher-
ical harmonics

Y s
j,j3

with j, j3 ∈ Z + s , |j3|, |s| ≤ j . (2.39)

Let me consider for simplicity fields of charge 1. Then s is the effective spin:

s = sz −
m

2
(2.40)

Recall that the spin connection is an Abelian gauge field.24 The spin spherical harmonics
Y s
j,j3

are eigenfunctions of DµD
µ:

R2DµD
µY s

j,j3
=
[
− j(j + 1) + s2

]
Y s
j,j3

. (2.43)

24The scalar spherical harmonics Y 0
j,j3

are eigenfunctions of the Laplacian R2∇µ∂µY 0
j,j3

= −j(j + 1)Y 0
j,j3

and are parametrized by j, j3 ∈ Z with |j3| ≤ j. This generalizes to fields with spin and moving in a magnetic
background. In fact if ϕ has spin sz and it transforms as a weight ρ of a representation R, its covariant
derivative is

Dµ = ∂µ − i
(
sz − ρ(m)

2

)
ωµ (2.41)

since 1
2π

∫
dω = −2 and we can choose a gauge Aµ = −m

2 ωµ. Thus ϕ behaves as a field of effective spin

s = sz − ρ(m)
2 . Moreover the holomorphic derivatives D± = D1∓iD2

2 (using vielbein indices) behave as
rasing/lowering operators for the spin, s→ s± 1. They also satisfy

2{D+, D−} = DµD
µ , [D+, D−] = − s

2R2
. (2.42)
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The scalar operator is

Oφ = −DµD
µ − iD + σ2

1 + σ2
2 + i

rσ1

R
+
r(2− r)

4R2
. (2.44)

We decompose each field into spin spherical harmonics Y s
j,j3

with s = −m
2
. It is then imme-

diate to compute

DetOφ =
∞∏

j=
|m|
2

(
j +

r

2
− ia

)2j+1(
j + 1− r

2
+ ia

)2j+1

, (2.45)

where we discarded an infinite products of factors of R.

The fermionic operator is

Oψ = iD/ − iσ1 + σ2γ3 +
r

2R
. (2.46)

Using matrix notation, D/ is written in terms of D±. Then the eigenfunctions are(
Y

1
2
−m

2
j,j3

Y
− 1

2
−m

2
j,j3

)
.

One has to be careful because, in the presence of magnetic field, for the minimal possible value
of j only one harmonic exists: those are the chiral zeromodes of the Dirac operator predicted
by the index theorem. After taking that into account, one reaches a similar expression:

DetOψ = (−1)
m+|m|

2

∞∏
k=

|m|
2

(
k +

r

2
− iRσ1

)2k(
k + 1− r

2
+ iRσ1

)2k+2

. (2.47)

Most terms cancel out in the ratio, and we are left with

DetOψ
DetOφ

=
∞∏
n=0

n+ 1− r
2

+ ia− m
2

n+ r
2
− ia− m

2

. (2.48)

We should expect such a cancelation. The theory is supersymmetric, therefore—following
the argument of the Witten index—all “positive-energy modes” should come in pairs and
simplify: only a fraction of the modes does not cancel, and this will be at the core of the
cohomological computation that we will see later.

The expression above does not make sense, because the product does not converge, and
it requires regularization. We can use ζ-function regularization. We use the Hurwitz zeta
function ζ(z; q):

ζ(z; q) =
∞∑
n=0

(q + n)−z , − ∂

∂z
ζ(z; q)

∣∣
z=0

= log

√
2π

Γ(q)
= “ log

∞∏
n=0

(q + n)” . (2.49)
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After including the product over the weights ρ of the representation R, the one-loop deter-
minant for chiral multiplets is

Z1-loop =
∏
ρ∈R

Γ
(
r
2
− iρ(a)− ρ(m)

2

)
Γ
(
1− r

2
+ iρ(a)− ρ(m)

2

) . (2.50)

Notice that this is already enough to compute the partition function of Landau-Ginzburg
models.

Vector multiplet. The vector multiplet can be treated in a similar way. The only compli-
cation is that we should fix the gauge. This is done with the standard Fadeev-Popov method.
In fact we should perform gauge-fixing on a background. Separating the background from
the oscillatory part,

Aµ = A(0)
µ +

1√
t
Âµ ,

the gauge-fixing action is

Lg-f = −c̃
(
DµDµc− iDµ[Âµ, c]

)
− 1

2ξ
(DµÂµ)2 (2.51)

where covariant derivatives contain only the background A
(0)
µ . The new fields c, c̃ are anti-

commuting complex scalars in the adjoint representation. At this point we expand LV +Lg-f

at quadratic order around the background, decompose Âµ into two components of spin ±1
and use spin spherical harmonics as before. There appear bosonic zero-modes correspond-
ing to the moduli a of the background: one should remove the zero eigenvalues from the
determinants, and integrate over the zero-modes.25 The one-loop determinant is

Det′Oc DetOλ√
Det′Ogauge

=
∏

α(m)=0

1

|α(a)|
·
∏
α>0

(−1)α(m)
(α(m)2

4
+ α(a)2

)
. (2.52)

The zero-modes of a span the gauge subalgebra unbroken by the flux m: we integrate over
the Cartan subalgebra with a Vandermonde determinant:∫

zero-modes =
1

|Wm|

∫ rankG∏
n=1

dan
2π

∏
α(m)=0

|α(a)| . (2.53)

Wm is the Weyl group of the unbroken subalgebra. We see that the Vandermonde cancels an
equal term in the one-loop determinant. Finally we sum over the inequivalent gauge fluxes
(divide by the Weyl transformations that act on the flux):∑

m∈Γmag

1

|W/Wm|
.

25There are also zero-modes for the ghosts. They should be removed including ghost-for-ghosts. This is
done for instance in [2].
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2.2.4 The final formula

Finally we put all pieces together:

ZS2 =
1

|W|
∑

m∈Γmag

∫
Rrk

rankG∏
n=1

dan
2π
· e−4πiξTr a−iθTrm

∏
α>0

(−1)α(m)
(α(m)2

4
+ α(a)2

) ∏
ρ∈R

Γ
(
r
2
− iρ(a)− ρ(m)

2

)
Γ
(
1− r

2
+ iρ(a)− ρ(m)

2

) . (2.54)

The integration contour is along the real lines. Twisted masses and external fluxes are
included by shifting a,m in Zmat

1-loop.

Comments:

• The final formula for the path-integral is very simple! Closing the contour in the
complex a-plane and picking up the residues, it can be converted to a series. Each
term of this series is an instanton (vortex) contribution to the path-integral. We will
see this in the next lecture.

• Order operators, such as Wilson line operators, are easily included.

• The result for 3d N = 2 gauge theories on S3 is very similar [19]. In 4d it is more
complicated, because one has to include instanton corrections that have to be com-
puted separately (Ω-background). As we will see, our 2d formula already includes all
instanton corrections, secretly.

• The partition function is independent of the gauge coupling, i.e. of the renormalization
scale (there is a running of the FI, though). If the theory flows to an IR fixed point,
the partition function is the same as the one of the IR fixed point. This is useful for
the physics of NLSMs.

2.3 Tricks to compute one-loop determinants

There are various techniques to compute the one-loop determinants on spaces which are not
as symmetric as the round sphere: they amount not to compute the full spectrum of the
Laplacian and the Dirac operator, but rather to compute only the modes that do not cancel
out.

Cohomological argument. Let us compute the chiral multiplet one-loop determinant
using a cohomological argument [20]. Suppose we have a spinor eigenfunction:

OψΨ =
λ

R
Ψ . (2.55)
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Then one can show that the scalar wavefunction Φ ≡ εΨ is an eigenfunction:

Oφ εΨ =
1

R2
λ
(
λ+ 1− r + 2iRσ1

)
. (2.56)

A spinor eigenfunction with eigenvalue − 1
R

(λ+ 1− r+ 2iRσ1) would lead to the same scalar
eigenvalue.

Then consider a scalar eigenfunction

OφΦ =
1

R2
λ
(
λ+ 1− r + 2iRσ1

)
Φ . (2.57)

Then construct the two following spinor wavefunctions:

Ψ1 = ε̃Φ , Ψ2 = iγµε̃ DµΦ +
(
iσ1 + σ2γ3 −

r

2R

)
ε̃Φ . (2.58)

These two expressions are suggested by the supersymmetry variations. Then one shows

Oψ
(

Ψ1

Ψ2

)
=

(
−2iσ1 + r−1

R
1

1
R2λ(λ+ 1− r + 2iRσ1) 0

)(
Ψ1

Ψ2

)
, (2.59)

therefore on the subspace generated by Ψ1,2, Oψ has eigenvalues

λ

R
, − 1

R

(
λ+ 1− r + 2iRσ1

)
.

The contributions from the scalar and spinor eigenfunctions cancel out, and there is no need
to compute λ explicitly.

Thus the only contributions come from “unpaired” modes. Given the spinor eigenfunction
Ψ in (2.55), the corresponding scalar wavefunction does not exists if εΨ = 0, which happens
if and only if Ψ = εF . This leads to an eigenvalue equation(

Oψ −
λ

R

)
εF = 0 (2.60)

which only gives contributing eigenvalues. The spectrum of this equation can be found
without solving for the eigenfunctions explicitly, because it is two first order equations in
the same function F and the spectrum if fixed by the regularity conditions around the zeros
of ε+, ε−. Similarly, given the scalar eigenfunction Φ in (2.57), the corresponding spinor
wavefunction Ψ1 = ε̃Φ always exists, while Ψ2 does not exist as an independent wavefunction
if it is proportional to Ψ1 (including the case that it vanishes): Ψ2 = − α

R
Ψ1. From the matrix

above we conclude that the eigenvalues for Φ and Ψ1 under Oφ, Oψ respectively, are:

Φ :
1

R2
α
(
α + 1− r + 2iRσ1) , Ψ1 : − 1

R
(α + 1− r + 2iRσ1) .
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Therefore α is missing, and we should multiply by α in the denominator. The eigenvalue
equation is now

Ψ2 = −α
R

Ψ1 ⇒ Oψ ε̃Φ = − 1

R

(
α + 1− r + 2iRσ1

)
ε̃Φ . (2.61)

Again, this is a pair of first order differential equations in a single function Φ, and the
spectrum follows from regularity conditions around the zeros of ε̃+, ε̃− with no need to solve
for the actual eigenfunctions.

Index theorems. First we divide the fields into two groups, as in cohomological field
theory:

bosonic: X ,Qξ , fermionic: ξ ,QX . (2.62)

The path-integral is then over DX DξDQX DQξ. We choose the canonical deformation

QV = Q
(
(X,QX) + (ξ,Qξ)

)
= (QX,QX) + (X,Q2X) + (Qξ,Qξ)− (ξ,Q2ξ) , (2.63)

provided that Q2V = 0 and QV has non-negative bosonic part. In these variables, the
one-loop determinant is

Z1-loop =
DetξQ2

DetX Q2
. (2.64)

Still there are many cancelations. Suppose we can find a differential operator D : X → ξ
which commutes with Q2: then the contribution to Z1-loop from modes X not in the kernel
of D cancel with the contribution from modes ξ in the image of D. We then reduce to

Z1-loop =
DetcokerDQ2

DetkerDQ2
(2.65)

where kerD ⊂X while cokerD ⊂ ξ.

The eigenvalues can be extracted from the equivariant index of D (with respect to Q2),
defined as

indD(u) = TrkerD e
−iuQ2 − TrcokerD e

−iuQ2

. (2.66)

By a Fourier transform of this object we can read off the eigenvalues and their multiplicities.
In turn, if D is transversally elliptic with respect to Q2, we can compute the index with the
Atiyah-Singer index theorem:

indD(u) =
∑
p∈Fix

TrX(p) e
−iuQ2 − Trξ(p) e

−iuQ2

DetTM(p)(1− e−iuQ2)
, (2.67)

where p run over the fixed points of e−iuQ
2
, X(p) and ξ(p) are the fields at p, and TM(p) is

the tangent space to the manifold M at p. A full account of this method is reviewed in [21].
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3 Lecture Three

3.1 ZS2 and the Zamolodchikov metric

We would like to understand what physical information is contained in the S2 partition
function that we have computed.

Let us first do a first digression on CFTs. Given a CFT in d dimensions, consider its
exactly marginal operators

Oi with dimOi = d . (3.1)

They can be used to deform the theory:

δS =

∫
ddxλiOi(x) (3.2)

where λi are coupling constants. At least in a neighbourhood of the original CFT, this gives
a family of new CFTs parametrized by λi, called the conformal manifold S. It admits a
natural metric, called the Zamolodchikov metric

〈Oi(x)Oj(0)〉p∈S ≡
gij(p)

x2d
. (3.3)

In a 2d N = (2, 2) SCFT the R-symmetry group is U(1)V × U(1)A, and exactly marginal
operators are the superconformal descendants of operators in the chiral and twisted chiral
rings with charges (2, 0) and (0, 2). The coupling constants λi are in chiral and twisted
chiral multiplets of charges (0, 0), respectively. The conformal manifold S is Kähler, and the
Zamolodchikov metric takes locally a factorized form

S = Sc × Stc . (3.4)

In the special case of a conformal NLSM, whose target is CY, marginal deformations corre-
spond (at one-loop) to deformations of the metric that keeps it Ricci-flat. The moduli space
of Ricci flat metrics is locally factorized into Kähler deformations and complex structure
deformations:

S = SK × SCS (3.5)

with dimensions h1,1 and h(d−1,1). Complex structure deformations are already complex,
while Kähler structure deformations have to be “complexified”:

JC = ω + iB , dB = 0 , B ∈ H(1,1) . (3.6)

The closed B is the B-field, and it appears in the NLSM as a topological term

L ⊃ iεµν∂µφ
i∂νφ

̄Bī = iφ∗(B) . (3.7)

However what we are going to say is more generally valid for N = (2, 2) SCFTs.
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We can try (following [22]) to study the conformal manifold around λ = 0 by using

〈O(y)〉λ =
〈
O(y) exp(δS)

〉
λ=0

, (3.8)

however this introduces divergences when x→ y, that have to be cured by local counterterms.
So, let us consider the SCFT on S2 and insist that the counterterms preserve su(2|1)A (the
massive algebra that we studied so far).26

Chiral (complex structure) deformations come from F-terms of chiral multiplets of R-
charge 2: ∫

dvol2 F =

∫
dvol2 δ(. . . ) (3.9)

is supersymmetric (δF = Dµ(. . . )µ) but it also Q-exact, therefore ZS2 does not depend on
chiral moduli (we already knew that there is no dependence on the superpotential). Twisted
chiral (Kähler) deformations come from G-terms of twisted chiral multiplets of RA-charge 2:∫

dvol2G = 4πRω(NP) +

∫
dvol2 δ(. . . ) . (3.10)

The LHS is supersymmetric (δG = Dµ(. . . )µ), not Q-exact but almost: the integrated top
operator is Q-equivalent to a local insertion of the bottom operator, at a point that I called
North Pole.27 Notice that this relation is indeed satisfied by our localization formulæ, even
in the non-conformal case. Similarly, insertions of integrated G̃ are Q-equivalent to local
insertions of −4πR ω̃ at the opposite South Pole.

We can then conclude:

∂i∂̄ logZS2 =
1

π2

〈∫
dvol2Gi(x)

∫
dvol2Ḡ(y)

〉
= −4R2

〈
ωi(NP) ω̄(SP)

〉
= −16R4

〈
Gi(NP) Ḡ(SP)

〉
= −gī = −∂i∂̄Ktc .

(3.11)

To go to the third line we used a supersymmetry Ward identity. This proves that

ZS2 = e−Ktc up to Ktc → Ktc + f + f . (3.12)

The holomorphic ambiguity, which is the standard Kähler transformations, can be under-
stood in the CFT as the possibility to add a local counterterm in supergravity which modifies
the partition function.28

26One might hope to be able to preserve the full superconformal group, but this is not possible [22]. Of
course if we stay at one point p ∈ S we do preserve the superconformal group, the problem is in exploring
S from p.

27The argument shows that the partition function is the same with the insertion of the LHS or RHS.
However the RHS preserves all supersymmetries, while the RHS only preserves two.

28This coupling looks like ∫
d2x dθ+dθ̃− ε̂−1F F(Ωi) + c.c. ,

where Ωi are the twisted chiral multiplets whose lowest components are the couplings λi.
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Now, we can compute the S2 partition function of an N = (2, 2) GLSM that flows to a
conformal NLSM, or more generally to a fixed point, in the IR. In this way, we can compute
the Zamolodchikov metric on the conformal manifold. If we consider the case that the
fixed point is a Calabi-Yau three-fold NLSM, then ZS2 can be used to extract the so-called
Gromov-Witten invariants of the manifold [23].

3.2 Higgs branch localization

Let us perform the localization in a different way. We will obtain the same result, because
it is still the path-integral on S2, but expressed in a different way. The new expression will
manifestly look as a sum over non-perturbative contributions (instantons in two dimensions
are vortices), and the computation of the vortex partition function will be a baby-version of
Nekrasov’s instanton partition function.

Let us add another localization term to the action, which starts with the D-term equation:

LH = Tr
[
− i
(
D − σ1

R

)(
φφ† − χ

)
+ . . .

]
= Q(. . . ) . (3.13)

This action is not non-negative,29 however it becomes non-negative if we integrate out D,
which can be done exactly because it is an auxiliary field. This enforces the constraint:

D − σ1

R
= i
(
φφ† − χ

)
. (3.14)

This is essentially the D-term equation, whose solutions are on the Higgs branch.

Due to the constraint, the BPS equations essentially reduce to the following. The Coulomb
branch parameters are fixed to the roots of the Higgs branches:

(σ1 −m)φ = σ2φ = 0 . (3.15)

Outside the poles of S2 we are on the Higgs branch:

F12 = 0 , φφ† = χ . (3.16)

In a neighborhood of the poles, though, we find the vortex equations :

F12 = ±
(
χ− φφ†

)
D∓φ = 0 .

(3.17)

Indeed, vortices are the instanton configurations in two dimensions, and we see that they
appear in this “Higgs branch localization”.

29The full term can be found in [16]. It has a real bosonic piece which is not non-negative.

26



In fact, there are other contributions called “deformed Coulomb branch”, which however
can be suppressed in the limit χ→∞ (and one has to check that this is the case). In that
limit the solutions to the vortex equations become pointlike, since their size scales as χ−1/2,
making the system consistent.

Therefore, we find the following expression for the path-integral. We have to sum over the
Higgs branches, and in each Higgs branch integrate over the moduli space of vortices. These
spaces are the disjoint union of sectors with fixed vortex number, for instance for U(N)

k =
1

2π
Tr

∫
S2

F . (3.18)

Then we should evaluate the classical action and the small quadratic fluctuations around
them. The one-loop determinants on a vortex background can be computed with the index
theorem [16, 17]. Pulling out the factors that do not depend on the vortex background we
find:

ZS2 =
∑
Higgs

branches

eScl Z ′1-loop Zvortex(q) Zantivortex(q̄) . (3.19)

Here Z ′1-loop is the one-loop determinant of all fields not taking VEV on the Higgs branch.

Zvortex is the vortex partition function. Since, close to the poles, the action on S2 at
first order is equal to the action on R2 but in the so-called Ω-background, Zvortex can be
computed on R2 with Ω-background. This is a background that, essentially, contains a
quadratic potential that traps non-trivial field configurations around the origin.

The vortex contribution is a sum over the disjoint topological sectors parametrized by the
vortex number:

Zvortex =
∑
k

qk
∫
Mk,vortex

1 , q = e−4πξ−iθ . (3.20)

The integral is an integral over the vortex moduli space, essentially its equivariant volume.
We have∫

Mk,vortex

1 = 0d path-integral of a theory that has Mk,vortex as its moduli space (3.21)

and this is the ADHM construction.

3.3 Vortex moduli space and its partition function

Let us focus on U(N) SQCD with Nf fundamentals and Ñf antifundamentals (and Nf ≥
N, Ñf ). We want to compute its vortex partition function in Ω-background.

From a brane construction, Hanany and Tong [24] found that the k-vortex sector can be
algebraically described as the Higgs branch of a 0d gauge theory (which is the dimensional
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reduction of a 2d N = (0, 2)) given by

U(k) vector ϕ, λ, λ,D

one adjoint X,χ

N fundamental chirals I, µ

Nf −N antifundamental chirals J, ν

Ñf fundamental Fermi ξ,G .

(3.22)

The 2d gauge coupling is mapped to the 0d FI term r, thus the moduli space is the Higgs
branch. The equivariant action U(1)ε is mapped to a symmetry acting on the adjoint (and
ε is identified with 1/R).

The vacuum equations (D-terms and F-terms) are

[X,X†] + II† − J†J = r1k

ϕI − IM̂ = 0 [ϕ, ϕ̃] = 0

Jϕ− M̌J = 0 [ϕ,X] = εX .

(3.23)

Here M̂ are the masses of the N chirals taking VEV, M̌ are the masses of the Nf −N chirals

not taking VEV, while M̃ are the masses of the Ñf antifundamentals.

We want to compute the partition function of this 0d gauge theory, which is the same as
the integral over its moduli space. This is, once again, done with localization! The one-loop
determinants are straightforward, because they are given by standard Gaussian integrals
(path-integrals are standard integrals). For instance for a chiral multiplet:∫

dX dX† dχ dχ† e−X
†ϕ2X−χ†ϕχ ∼ 1

ϕ
.

This is in fact the equivariant volume of C. The vector multiplet can be treated similarly to
what we did before fixing the gauge, the final result is [25]:

Zk =

∮
C

k∏
I=1

dϕI
2πi
Zvec(ϕ) Zfund(M,ϕ) Zantifund(M̃, ϕ) , (3.24)

where the one-loop determinants are

Zvec =
1

k! εk

∏
I 6=J

ϕI − ϕJ
ϕI − ϕJ − ε

Zfund =
k∏
I=1

Nf∏
f=1

1

ϕI −Mf

Zantifund =
k∏
I=1

Ñf∏
a=1

(ϕI + M̃a) .

(3.25)

28



The integral is along a contour that encircles certain poles of the integrand, associated to
the fixed points of the equivariant action on Mk,vortex.30 These poles are located at

ϕI = Mpi + (l − 1)ε , l = 1, . . . , ki ,
∑

ki = k (3.26)

and are parametrized by N one-dimensional Young diagrams (with total number of boxes
equal to k). One can explicitly compute the residues, and collecting together all values of k
one obtains

ZSQCD
vortex =

∑
~k

q|
~k|

~k!

∏N
i=1

∏Ñf
a=1

(
1
ε
(Mpi + M̃s)

)
ki∏N

i 6=j
(

1
ε
(Mpi −Mpj

)
− kj

)
kj

∏N
i=1

∏Nf
f 6∈{pj}

(
1
ε
(Mpi −Ms)

)
kj

. (3.27)

This, plugged into the Higgs branch localization formula, gives the same result as the
Coulomb branch integral formula.

A 2d supersymmetry transformations

Conventions. The epsilon tensor in vielbein coordinates is ε12 = ε12 = 1. This is the
epsilon tensor with vector indices εµν . We decompose Weyl spinors as

ψ =

(
ψ+

ψ−

)
(A.1)

The contraction of spinors is upper-left to lower-right, and we declare ψα = εαβψ
β:

ψ χ = ψαχα = ψ+χ− − ψ−χ+ , ψ+ = −ψ− , ψ− = ψ+ . (A.2)

Notice that for anticommuting spinors ψχ = χψ. Complex coordinates are

z = x1 + ix2 , z̄ = x1 − ix2 , ∂z =
∂1 − i∂2

2
, ∂z̄ =

∂1 + i∂2

2
. (A.3)

The gamma matrices are

(γ1) β
α =

(
0 1
1 0

)
, (γ2) β

α =

(
0 −i
i 0

)
, (γ3) β

α =

(
1 0
0 −1

)
(A.4)

and satisfy γµγν = δµν + iεµνγ3. With complex indices

(γz)
β
α =

(
0 0
1 0

)
, (γz̄)

β
α =

(
0 1
0 0

)
, (A.5)

30This can be rigorously obtained as the Jeffrey-Kirwan prescription. A physical derivation is in [10, 11],
and its application to the instanton partition function of Nekrasov is in [26].
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and in particular

ψγ3χ = −ψ+χ− − ψ−χ+ , ψγzχ = ψ+χ+ , ψγz̄χ = −ψ−χ− . (A.6)

We see that γz, γz̄ have spin 1,−1 respectively. Under exchange:

ψγµ1 . . . γµnχ = s (−1)n+1 χγµn . . . γµ1ψ (A.7)

where n ≥ 0, µi = 1, 23, and s = 1 for commuting spinors and s = −1 for anticommuting.
Another useful trick is (

(γµψ)χ
)

= −ψγµχ (A.8)

for any statistics. Moreover γzγ3 = −γ3γz = γz, γz̄γ3 = −γ3γz̄ = −γz̄. The Fierz identity,
for spinors of any statistics, is

ζ · χ = −1

2
(ζχ)1 +

1

2

∑
µ=1,2,3

(ζγµχ)γµ (A.9)

where (ζ · χ) β
α = ζαχ

β. The covariant derivative and the field strength are

Dµ = ∇µ − iAµ , Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (A.10)

where in the first one Aµ acts in the correct representation. We define the U(1) spin con-
nection ωµ = −ω12

µ , then the covariant derivative on fields of definite spin s is

∇µϕ
(s) =

(
∂µ − isωµ

)
ϕ(s) . (A.11)

SUSY. The supersymmetry parameters are ζ, ζ̃ with R-charge 1,−1 respectively, and are
commuting. The supercharges Qα, Q̃β are anticommuting spinorial operators. We construct
the anticommuting variation

δ = 1√
2

(
ζQ+ ζ̃Q̃

)
. (A.12)

The flat-space supersymmetry algebra is

{Qα, Q̃β} =
[
2γµPµ + 2iP+Z + 2iP−Z̃

]
αβ
, (A.13)

where Pµ = −i∂µ. In components this reads:

{Q+, Q̃+} = 4Pz , {Q−, Q̃−} = −4Pz̄ , {Q+, Q̃−} = −2iZ , {Q−, Q̃+} = 2iZ̃ . (A.14)

In terms of variations this is

{δζ , δζ̃} = iLζγµζ̃ − iζ
(
Z 0

0 Z̃

)
ζ̃ . (A.15)
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For a scalar, a spinor, a gauge field and a 2d field of generic spin s, the Lie derivative is:

LKφ = Kµ∂µφ

LKψ = Kµ∇µψ +
1

4
(∇µKν)γ

µνψ

L′KA = LKA− dA(ıKA) = KρFρµdx
µ

LKϕ(s) = Kµ(∂µ − isωµ)ϕ(s) +
is

2
εµν(∇µKν)ϕ

(s) .

(A.16)

The Killing spinor equations are (see e.g. [15]):

Dµζ = (∇µ − iVµ)ζ =
1

2
Hγµζ −

i

2
Gγµγ3ζ =

1

2

(
H 0

0 H̃

)
γµζ

Dµζ̃ = (∇µ + iVµ)ζ̃ =
1

2
Hγµζ̃ +

i

2
Gγµγ3ζ̃ =

1

2

(
H̃ 0
0 H

)
γµζ̃ .

(A.17)

We reserve ∇µ for the pure metric-covariant derivative, and Dµ for the full covariant deriva-
tive:

Dµ = ∇µ − irVµ +
1

2
zC̃µ −

1

2
z̃Cµ − iAµ . (A.18)

Of course ζ, ζ̃ are only charged under the R-symmetry. If we decompose Cµ = CH
µ + iCG

µ ,

C̃µ = CH
µ − iCG

µ , z = zG − izH , z̃ = zG + izH , we find 1
2
(zC̃µ − z̃Cµ) = −izHCH

µ − izGCG
µ . If

we have both ζ, ζ̃ we can form
Kµ = ζγµζ̃ . (A.19)

From the Killing spinor equations follows

∇µKν = −ζ
(
H 0

0 H̃

)
γµν ζ̃ ,

1

4
∇µKνγ

µν =
1

2
ζ

(
H 0

0 H̃

)
γ3ζ̃ · γ3 , (A.20)

in particular ∇(µKν) = 0 and so Kµ is a Killing vector.

SUSY transformations. The transformations of a vector multiplet are:

δAµ =
i√
2

(
ζγµλ̃+ ζ̃γµλ

)
δF12 = − 1√

2
Dµ

(
ζγµγ3λ̃+ ζ̃γµγ3λ

)
δ(σ + σ̃) = −

√
2 ζλ̃+

√
2 ζ̃λ δσ = −

√
2 ζP−λ̃+

√
2 ζ̃P+λ

δ(σ − σ̃) =
√

2 ζγ3λ̃+
√

2 ζ̃γ3λ δσ̃ = −
√

2 ζP+λ̃+
√

2 ζ̃P−λ

δλ =
i√
2

[
− iD +

(
−F12 +

1

2
[σ, σ̃]

)
γ3 +

(
H̃σ 0
0 Hσ̃

)
+Dµ

(
σ 0
0 σ̃

)
γµ
]
ζ

δλ̃ = − i√
2

[
− iD +

(
F12 +

1

2
[σ, σ̃]

)
γ3 +

(
Hσ̃ 0

0 H̃σ

)
+Dµ

(
σ̃ 0
0 σ

)
γµ
]
ζ̃

δD = − i√
2
Dµ

(
ζγµλ̃− ζ̃γµλ

)
− i√

2
ζ

(
[σ, ·] 0

0 [σ̃, ·]

)
λ̃− i√

2
ζ̃

(
[σ̃, ·] 0

0 [σ, ·]

)
λ .

(A.21)
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To write the transformations of charged chiral multiplets in gauge representation R, we
introduce the short-hand notation

Q =

(
z − σ − r

2
H 0

0 z̃ − σ̃ − r
2
H̃

)
(A.22)

and Q̃ which has inverted ,̃ i.e. Q̃ = γµQγµ for fixed µ = 1, 2. Here σ, σ̃ are valued in R.
Then

δφ = ζψ δφ̃ = −ζ̃ψ̃
δψ = iγµζ̃ Dµφ− iQζ̃ φ+ iζF δψ̃ = −iγµζ Dµφ̃+ iQ̃ζ φ̃+ iζ̃F̃

δF = ζ̃γµDµψ + ζ̃Q̃ψ +
√

2 ζ̃ λ̃φ δF̃ = ζγµDµψ̃ + ζQψ̃ +
√

2 φ̃ζλ .

(A.23)

Recall that (φ̃, ψ̃, F̃ ) transform in gauge representation R. For all fields but Aµ,31 the algebra
can be written as

{δζ , δζ̃}ϕ(r,z,z̃) = i
(
L′K − ζQζ̃

)
ϕ , {δζ , δη} = {δζ̃ , δη̃} = 0 , (A.24)

where L′K is the gauge-covariant Lie derivative.

Actions. The action for chiral multiplets is

LΦ = Dµφ̃D
µφ− iφ̃Dφ+

1

2

(
r
2
Rs +Hz̃ + H̃z

)
φ̃φ+

1

2
φ̃{Q, Q̃}φ

+ F̃F + iψ̃γµDµψ + iψ̃Q̃ψ + i
√

2 ψ̃λ̃φ+ i
√

2 φ̃λψ .
(A.25)

This is the D-term of −1
2
Φ̃e−2VΦ.

The YM action is

LV =
1

2

(
F12 −

1

2
H̃σ +

1

2
Hσ̃
)2

+
1

2
Dµσ̃D

µσ +
1

8
[σ, σ̃]2

+ iλ̃γµDµλ− iλ̃
(

[σ̃, ·] 0
0 [σ, ·]

)
λ− 1

2

(
− iD +

1

2
H̃σ +

1

2
Hσ̃
)2 (A.26)

with trace implicit. This is the D-term of a gauge-invariant multiplet whose lowest compo-
nent is 1

2
Tr σ̃σ.

B Wilson loop operators as defect theories

Wilson loop operators are defined by

WR[γ] = TrRP exp

∮
γ

A . (B.1)

31For all fields including Aµ, the algebra can be written as the gauge-invariant part of (A.24) plus a gauge
transformation, which comes from imposing Wess-Zumino gauge.
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We would like to find a defect theory description of these operators.

First, consider a 1d theory along γ, given by a free complex spinor ψ in representation R
of the bulk gauge group G, minimally coupled to the bulk. Its Lagrangian is

LD = ψD/ψ = ψ(∂τ − iAτ )ψ =
∑
ρ∈R

ψρ
(
∂τ − iρ(Aτ )

)
ψρ . (B.2)

Here τ is a coordinate along γ, A is the bulk connection pulled back to γ, ρ are the weights
of R, and the 1d gamma matrix γτ = 1 in einbein basis. For simplicity, we will take τ such
that the pulled back metric is 1. Let γ be a circle of length β and let us choose antiperiodic
(thermal) boundary conditions for the fermions. Then the path-integral is easily evaluated,
since ψ is free. Let us choose a gauge where Aτ is constant. Then

ZD =

∫
DψDψ e−

∫
dτ ψ(∂τ−iAτ )ψ =

∏
ρ∈R

∏
k∈Z

(
2πi
β

(
k + 1

2

)
− iρ(Aτ )

)
. (B.3)

That is because the modes of ψ are e
2πi
(
k+

1
2

)
τ/β

. The regularization has some ambiguity, as
the function should have zeros at ρ(Aτ ) = 2π

(
k + 1

2

)
, but we can choose

ZD =
∏
ρ∈R

(
1 + eiβρ(Aτ )

)
≡
∏
ρ∈R

(1 + xρ) . (B.4)

This is just the partition function of the fermionic Fock space, where the excited levels
have energies −iρ(Aτ ). Notice that xρ are the eigenvalues of the holonomy P exp

∮
γ
A in

representation R, therefore the gauge-invariant expression for ZD is

ZD = detR

(
1 + P exp

∮
γ

A
)
. (B.5)

This is not yet the Wilson line operator in representation R. However notice that if we
decompose

∏
ρ(1 + xρ) into characters, we find all antisymmetric products of R, which can

be further decomposed into irreducible representations:

∏
ρ

(1 + xρ) ∼
dimR∑
`=0

R⊗A` .

Each level ` is the partition function restricted to fermion number `. To select a specific
fermion number, we gauge it – which corresponds to imposing Gauss law – and include a
Chern-Simons coupling which includes −` units of electric charge so that gauge-invariant
states have fermion number `. Thus, we consider the action

L̃D = ψ
(
∂τ − iAτ − iÃτ

)
ψ + i`Ãτ , (B.6)

where Ã is a 1d gauge field. The path-integral over Ã gives a delta function on ψψ = `,
which projects the partition function to the sector with fermion number `. Alternatively, we
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perform the path-integral over ψ first and introduce a fugacity y = eiβÃτ for the 1d U(1)
symmetry; then the CS term gives a classical contribution y−` and finally the path-integral
over Ã – imposing Gauss law – reduces to a contour integral along |y| = 1:

Z̃D =

∮
|y|=1

dy

2πi y
y−`

∏
ρ∈R

(
1 + xρy

)
=

∑
ρ1<...<ρ`

xρ , (B.7)

where, with some abuse of notation, we have assumed an ordering of the weights.

If now we consider the special case ` = 1, we precisely produce the trace of the holonomy
in representation R:

Z̃D(` = 1) =
∑
ρ

xρ = TrRP exp

∮
γ

A . (B.8)

Representations R which are the antisymmetric product of some representation R′ can be
obtained either by choosing higher `, or by choosing R directly.
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