

Searches for B Vector-like quarks with leptons at CMS

Sadia Khalil on behalf of CMS Collaboration Vector-like quark workshop Sep 15-16, 2014 DESY, Hamburg, Germany

Motivation

• Top Partners are what cancels the top loop divergence in m_H

• Top Partners are light in all Natural Theories

$$\Delta \ge \frac{\delta m_H^2}{m_H^2} \simeq \left(\frac{125 \text{ GeV}}{m_H}\right)^2 \left(\frac{M_P}{400 \text{ GeV}}\right)^2$$

Light Higgs plus Low Tuning need light Partners

susy bosonic partners(stops)

X-dim, Little Higgs, Composite Higgs... fermionic partners

> http://arxiv.org/abs/1205.0013 http://arxiv.org/abs/1211.5663

Introduction

- What are **Vector-like fermions**:
 - Fermions that transforms as (3, 1, +2/3) under $SU(3)_c \times SU(2)_W \times U(1)_Y$
- Why are called "vector-like"?

$$\mathcal{L}_W = \frac{g}{\sqrt{2}} \left(J^{\mu +} W^+_\mu + J^{\mu -} W^-_\mu \right)$$
 Charged current Lagrangian

• SM chiral quarks: ONLY left-handed charged currents

$$\begin{split} J^{\mu} &= J^{\mu+}_L + J^{\mu+}_R \quad \text{with} \quad J^{\mu+}_L = \bar{u}_L \gamma^{\mu} d_L = \bar{u} \gamma^{\mu} (1-\gamma^{\mu}) d = V - A \\ J^{\mu+}_R &= 0 \end{split}$$

• vector-like quarks: BOTH left-handed and right-handed charged currents

$$J_L^{\mu+} + J_R^{\mu+} = \bar{u}_L \gamma^\mu d_L + \bar{u}_R \gamma^\mu d_R = \bar{u} \gamma^\mu d = \mathbf{V}$$

Introduction

- Models involving VLQ:
 - Composite/Little-Higgs, extra-dimensions, non-minimal SUSY extensions, etc.
- Vector-like quarks & FCNC:
 - Unlike for chiral quarks, FCNC are not suppressed
 - VLQ can decay into different final states and BR are considered as free parameters in the experimental searches
 - The W/Z/H bosons are used as a probe for new physics
- VLQ mixing:
 - Mixes maximumly with top quarks and CMS during Run1 has studied it with great emphasis
 - Mixing is not only constrained with the 3rd generation <u>G Cacciapaglia, A. Deandrea (arXiv:1007.2933</u>), Andrea Wulzer et.el (arXiv:1211.5663)
- VLQ Production:
 - Pair through strong production mechanism (CMS focus in Run1 with typical constraints of m_Q~ 750 GeV
 - Single quarks in association with a b-quark or a top quark (Main focus in Run2)

Pair-produced 3rd generation partners

New particles

Leptons help for triggering and offer a clean signature

Experimental signatures

Pair-produced 3rd generation partners

New particles

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

Complex and busy final states

- Multiple b quarks, bosons
- Many possible channels (0 to ≥4 leptons)
- B.R are free parameters

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

- Many possible channels (0 to ≥4 leptons)
- B.R are free parameters

Common Strategies

- Look for excesses over a known background in high $S_T(\text{sum } p_T \text{ of final decay products})$ tails
- Use N_{jets}, N_{bosons} as additional variable to enhance search sensitivity

Common Strategies

- Look for excesses over a known background in high $S_T(sum p_T of final decay products)$ tails
- Use N_{jets}, N_{bosons} as additional variable to enhance search sensitivity
- Use kinematic properties if applicable; e.g, mass reconstruction

Common tools

B-tagging

- Combine Secondary Vertex algorithm
 - Likelihood Ratio using impact parameter, significance of tracks and secondary vertices
- Performances: ε_b≈ 70% ε_{iight}≈1%
- Boosted regime
 - The New Physics searches often imply to look for massive objects
 - Boosted decay products ⇒ merged jets
 - Require advanced techniques of jet reconstruction and W/Z, top, Higgs tagging

Common samples & uncertainties

- Generators for background samples
 - Ttbar : MadGraph/POWHEG + PYTHIA 6 (Z2*)
 - Single t : MadGraph/POWHEG +PYTHIA
 - W/Z+jets, ttW, ttZ : MadGraph + PYTHIA
 - WW/WZ/ZZ, ttH : PYTHIA

- Generators for signal samples
 - MadGraph/COMPHEP
 interfaced with PYTHIA

Common samples & uncertainties

- Generators for background samples
 - Ttbar : MadGraph/POWHEG + PYTHIA 6 (Z2*)
 - Single t : MadGraph/POWHEG +PYTHIA
 - W/Z+jets, ttW, ttZ : MadGraph + PYTHIA
 - WW/WZ/ZZ, ttH : PYTHIA
- Triggers:
 - Single lepton/dilepton, Lepton+3 central PFjets, H_T
 - All efficiencies studied on MC and data, selection tuned to be on the plateau

- Generators for signal samples
 - MadGraph/COMPHEP
 interfaced with PYTHIA

Common samples & uncertainties

- Generators for background samples
 - Ttbar : MadGraph/POWHEG + PYTHIA 6 (Z2*)
 - Single t : MadGraph/POWHEG +PYTHIA
 - W/Z+jets, ttW, ttZ : MadGraph + PYTHIA
 - WW/WZ/ZZ, ttH : PYTHIA
- Triggers:
 - Single lepton/dilepton, Lepton+3 central PFjets, H_T
 - All efficiencies studied on MC and data, selection tuned to be on the plateau
- Systematics:
 - All HLT, reconstruction and selection efficiencies and data/MC differences
 - Luminosity (2.6% (2013ReReco) to 4.4% (2012ReReco))
 - Jet energy scale (~5% eta and p_T dependent), Jet energy resolution (~1%)
 - MC : factorization and renormalisation scale, jet-parton matching scale, dedicated systematic samples
 - Data driven estimation: specific methods, data/MC, closure tests

- Generators for signal samples
 - MadGraph/COMPHEP
 interfaced with PYTHIA

B-1/3 quark, l+jets

B→tW, bZ, bH

CMS-PAS-B2G-12-019

- Selection
 - One isolated lepton (e,µ)
 - ≥ 4 AK5 jets (p_T >200,60,40,30 GeV), ≥ 1 b-jet,
 - MET > 20 GeV
 - Centrality = $\Sigma_{\text{Jets}} P_T / \Sigma_{\text{Jets}} E_T > 0.4$
- Data driven components
 - QCD multijet background
 - Trigger/lepton and V/b-tagging efficiencies

B-1/3 quark, l+jets

B→tW, bZ, bH

Selection

- One isolated lepton (e,µ)
- ≥ 4 AK5 jets (p_T >200,60,40,30 GeV), ≥ 1 b-jet,
- MET > 20 GeV
- Centrality = $\Sigma_{\text{Jets}} P_T / \Sigma_{\text{Jets}} E_T > 0.4$
- Data driven components
 - QCD multijet background
 - Trigger/lepton and V/b-tagging efficiencies

- Search Strategy
 - Discriminating variable: $S_T = p_T^l + \Sigma p_T^{jet} + E_T^{miss}$
 - Events Categorization:
 - 0, 1 and ≥ 2 V-tag
 - V-tagging: jet mass consistent with W/Z or H
 - p_T>200 GeV, 50 < M_{jet} < 150 GeV

Similar bins for muon channel

CMS-PAS-B2G-12-019

Backgrounds

CMS-PAS-B2G-12-019

QCD multijets

- Shapes: invert isolation or fail electron ID (e+jets) invert isolation (μ +jets)
- Normalization: Fit the MET distribution constraining EWK(Single top, Z+jets, dibosons, VV+jets) = 5%, TT+jets and W+jets = 10%
- Top, W/Z/ttV+jets, dibosons from simulations

Background process	e+jets events	μ +jets events
tī+jets	11397 ± 85	9550 ± 79
W+jets	1247 ± 37	1137 ± 37
Multijet	1072 ± 19	505 ± 4
Single top	775 ± 17	683 ± 17
Z+jets	222 ± 22	238 ± 23
tī+ V+jets	92 ± 1	82 ± 1
Diboson (WW, WZ, ZZ)	43 ± 2	34 ± 2
Total background	14846 ± 99	12229 ± 91
Data	14640	11695

Event Counts

Systematic Uncertainties

CMS-PAS-B2G-12-019

Parameter type Source		Uncertainty (%)
	Q ² scales for tt+jet	9.1
Distribution	Matching partons	6.5
Distribution	Jet energy scale	5.5
	b-tagging Scale Factor	2.1
	V-tagging Scale Factor	1.0
	Jet energy resolution	
	Pile-up	< 1
	Lepton ID/reco/trigger	2.0
	Luminosity	4.4
	tt cross section	10
Normalization	Other Electroweak Backgrounds	50
	QCD Multijet Background	100

- Shape uncertainty estimates are from change in background acceptance
- Use shape templates due to shape uncertainties in final fit result

B-1/3 quark, l+jets

CMS-PAS-B2G-12-019

Combine e+µ limits: A mass bound of [582, 732] GeV is set at 95% CL for all possible BR.

Benchmark point, tW:bZ:bH=0.50:0.25:0.25 : 700(Obs), 689(Exp)

B-1/3 quark, OS dilepton

CMS-PAS-B2G-12-021

B→tW, bZ

Selection

- Two OS isolated leptons (e or μ)
- 60<M(II)<120 GeV
- p_T(II)>150 GeV
- \geq 1 b-jet with $p_T > 80 \text{ GeV}$

• Strategy

- Channels: e+e- & µ+µ-
- Reconstruct invariant mass of B candidate, Mass(IIb): peak to the signal mass
- With Mass(IIb) > 375 GeV, fit Mass(IIb) simultaneously to test for presence of signal.

Background

Modeling of the distributions with data-driven method:

- Hard to reproduce M(IIb) shape using simulation in the presence of high $p_{\rm T} \ Z$
- Use ABCD method of evaluate it from data
 - $N_B = N_A \times N_D / N_C$ assuming no correlation
 - Use region IJKL to find the correlation
 - Apply correction factors to N_B
 - Shape of M(IIb) is tested to be same in region A and B

Background

Modeling of the distributions with data-driven method:

- Hard to reproduce M(IIb) shape using simulation in the presence of high $p_{\rm T} \ Z$
- Use ABCD method of evaluate it from data
 - $N_B = N_A \times N_D / N_C$ assuming no correlation
 - Use region IJKL to find the correlation
 - Apply correction factors to N_B
 - Shape of M(IIb) is tested to be same in region A and B

Expected Events

Channel	${\rm Z}{ ightarrow}e^+e^-$	${\rm Z}{ ightarrow}\mu^+\mu^-$
Expected background in data	379 ± 70	534 ± 79
Observed events	334	542

B-1/3 quark, OS dilepton

CMS-PAS-B2G-12-021

B→tW, bZ (OS dilepton channel)

 Signal templates of M(B) mass distribution are prepared with different admixtures of the B → bZ and B → tW final states, assuming

 $BR(B \rightarrow bZ) + BR(B \rightarrow tW) = 100\%$.

dilepton channel is sensitive, unlike l+jets

B-1/3 quark, SS dilepton

CMS-PAS-B2G-12-020

B→tW, bZ, bH

• Final state

- In BB→tW tW, tW bH, bHbH→bW W bW W
 - Two W bosons decaying hadronically and other two leptonically => same-sign lepton pair + 6jets
- ≥ 4 jets, MET >30 GeV

• Strategy

- Search in all three channel: ee, eμ, μμ
- Binned S_T into five exclusive bins
- [200,400], [400,600],[600,800],[800,1200],
 [≥1200] GeV

Backgrounds

CMS-PAS-B2G-12-020

- Four Categories
 - Type I (MC) -- Fake lepton
 - ttW/Z, diboson and tribosons
 - Type II (data driven)-- Charge Misidentification
 - use ratio to SS DL/ OS DL for combine Z+jets and ttbar+jets and multiply the ratio to the prediction in control region
 - Type III (data) -- Prompt and non-prompt dileptons
 - use Tight/Loose method
 - Several control regions: N_{LL} , N_{TL} , N_{LT} , N_{TT}
 - Estimate: N_{pp} , $N_{pf/}N_{fp}$, N_{ff} as 2, 1 and 0 prompt leptons
 - Non-prompt fake rate: f₁ and f₂
 - Prompt leptons rates: p₁ and p₂

$$\begin{pmatrix} N_{pp} \\ N_{pf} \\ N_{fp} \\ N_{ff} \end{pmatrix} = \begin{pmatrix} (1-p_1)(1-p_2) & (1-p_1)(1-f_2) & (1-f_1)(1-p_2) & (1-f_1)(1-f_2) \\ p_1(1-p_2) & p_1(1-f_2) & f_1(1-p_2) & f_1(1-f_2) \\ (1-p_1)p_2 & (1-p_1)f_2 & (1-f_1)p_2 & (1-f_1)f_2 \\ p_1p_2 & p_1f_2 & f_1p_2 & f_1f_2 \end{pmatrix}^{-1} \begin{pmatrix} N_{LL} \\ N_{TL} \\ N_{LT} \\ N_{TT} \end{pmatrix}$$

B-1/3 quark, SS dilepton

Event Yield

CMS-PAS-B2G-12-020

Table 4: The events yield of this analysis in the signal region. Errors are a total quadratic sum of systematic uncertainty and statistical uncertainty.

μμ	Total Events Yield	$200 \le S_T < 400$	$400 \le S_T < 600$	$600 \le S_T < 800$	$800 \le S_T < 1200$	$S_T \ge 1200$
Data	29	29 5		12 5		1
Background Estimation	29.16 \pm 1.59 (stat.) \pm 10.37 (sys.)	6.14 ± 0.84 (stat.) ±2.61 (sys.)	12.50 ± 1.08 (stat.) ± 4.25 (sys.)	6.45 ± 0.67 (stat.) ±2.03 (sys.)	3.39 ± 0.44 (stat.) ±1.17 (sys.)	0.68 ± 0.15 (stat.) ±0.32 (sys.)
Prompt-Prompt	13.61	0.99	4.97	4.13	2.84	0.68
Prompt-NonPrompt	15.09	5.04	7.30	2.23	0.53	0.00
NonPrompt-NonPrompt	0.46	0.11	0.24	0.08	0.03	0.00
Charge Flip	0.00	0.00	0.00	0.00	0.00	0.00
ee	Total Events Yield	$200 \le S_T < 400$	$400 \le S_T < 600$	$600 \le S_T < 800$	$800 \le S_T < 1200$	$S_T \ge 1200$
Data	33	5	19	5	4	0
Background Estimation	34.84 ± 1.68 (stat.) \pm 12.05 (sys.)	5.49 ± 0.73 (stat.) ±2.11 (sys.)	14.91 ± 1.14 (stat.) ±5.26 (sys.)	8.67 ± 0.79 (stat.) ± 2.83 (sys.)	4.52 ± 0.56 (stat.) ±1.43 (sys.)	$1.24\pm0.25(\text{stat.})\pm0.42$ (sys.)
Prompt-Prompt	12.42	1.11	4.52	3.58	2.42	0.79
Prompt-NonPrompt	17.93	3.25	8.30	4.31	1.66	0.41
NonPrompt-NonPrompt	1.29	0.39	0.62	0.15	0.14	0.00
Charge Flip	3.20	0.74	1.47	0.63	0.30	0.05
μe	Total Events Yield	$200 \le S_T < 400$	$400 \le S_T < 600$	$600 \le S_T < 800$	$800 \le S_T < 1200$	$S_T \ge 1200$
Data	57	10	28	9	8	2
Background Estimation	65.55 ± 3.16 (stat.) ± 21.94 (sys.)	9.32 ± 1.37 (stat.) ±3.46 (sys.)	29.27 \pm 2.19 (stat.) \pm 10.21 (sys.)	14.14 ± 1.33 (stat.) \pm 4.31 (sys.)	10.77 ± 1.15 (stat.) ±3.28 (sys.)	$2.05\pm0.46(\text{stat.})\pm0.67$ (sys.)
Prompt-Prompt	25.41	2.03	9.13	7.14	5.86	1.25
Prompt-NonPrompt	37.62	6.58	19.10	6.55	4.62	0.77
NonPrompt-NonPrompt	0.77	0.41	0.11	0.13	0.13	0.00
Charge Flip	1.74	0.30	0.94	0.32	0.15	0.03

B-1/3 quark, SS dilepton

$B \rightarrow tW$, bZ, bH (SS dilepton channel)

Expected

CMS-PAS-B2G-12-020

Benchmark point, tW:bZ:bH=0.50:0.25:0.25:641(Obs), 646(Exp)

B-1/3 quark, multileptons

- Event selection:
 - ► ≥ 3 isolated leptons ($\tau_l = e \text{ or } \mu, \leq 1 \tau_h$)
 - M(II)>12 GeV: quarkonia veto
 - M(III)-MZ|<15 GeV: conversion veto</p>
 - ▶ \geq 1 b-tagged jet (P₁>80 GeV)
- Classification:
 - number of leptons, taus, b-jets
 - # of opposite-sign same flavor (OSSF)
 - OSSF0 = $\mu^+\mu^+e^-$
 - OSSF1 = $\mu^{\dagger}\mu^{\mu}\mu^{\dagger}$ and $\mu^{\dagger}\mu^{\bullet}e^{\dagger}$
 - OSSF2 = $\mu^+\mu^-e^+$
 - on/off Z: OSSF in Z window (75–105 GeV)?
- Use S_T in multiple exclusive channels

CMS-PAS-B2G-13-003

B-1/3 quark, multileptons

B→tW, bZ, bH

CMS-PAS-B2G-13-003

A mass bound of [520, 785] GeV is set at 95% CL for all possible BR.

B-1/3 quark, multileptons

CMS-PAS-B2G-13-003

B→tW, bZ, bH

Expected

Observed

A mass bound of [520, 785] GeV is set at 95% CL for all possible BR.

B-1/3 quark: Grand Combination

- CMS-PAS-B2G-13-003
- Five different analyses for a legacy publication using 8 TeV data
 - Lepton+jets
 - Dileptons(OS, SS)
 - Multilepton
 - ▶ Boosted H→bb

Stay Tuned!

Run 2 Preparation

General Description

- Generic 'broad' assumption consistent with realistic models are:
 - New fermions interact with the SM fermions via Yukawa interactions.
 - The Quantum-numbers of the new fermions under the weak SU(2)_L x U(1)_Y gauge group are limited by interaction with the SM Higgs doublet and one of the SM fermions.

<u>G Cacciapaglia, A. Deandrea (arXiv:1007.2933)</u>

		SM	Singlets	Doublets	Triplets
		$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(t') (b')	$\binom{\binom{X}{t'}}{\binom{t'}{b'}}\binom{b'}{\binom{b'}{Y}}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
 Possible Q-numbers : 	$SU(2)_L$	2	1	2	3
 1 SM-like singlet 		$q_{L} = 1/6$			
 3 doublets : 1 with SM hypercharge Y 	$U(1)_Y$	$u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	1/6 7/6 -5/6	2/3 -1/3
the others Y+/-1	\mathcal{L}_Y	$-\frac{\underline{y}_{\mu}^{i} v}{\sqrt{2}} \overline{u}_{L}^{i} u_{R}^{i}$	$-\frac{\lambda_{u}^{i}v}{\sqrt{2}}\bar{u}_{L}^{i}U_{R}$	$-\frac{\lambda_{u}^{i}v}{\sqrt{2}}U_{L}u_{R}^{i}$	$-\frac{\lambda_i v}{\sqrt{2}} \overline{u}_L^i U_R$
 2 triplets with Y+/-1 		$-\frac{d}{\sqrt{2}}d_L V_{CKM}^{S}d_R$	$-\frac{a}{\sqrt{2}}d_L^2 D_R$	$-\frac{a}{\sqrt{2}}D_L d_R$	$-\lambda_1 v u_L D_R$
	\mathcal{L}_m		$-Mar{\psi}\psi$	(gauge invariant sinc	e vector-like)
	Free parameters		$\frac{4}{M+3\times\lambda^i}$	$\begin{vmatrix} 4 \text{ or } 7 \\ M + 3\lambda_u^i + 3\lambda_d^i \end{vmatrix}$	$\overset{4}{M+3\times\lambda^{i}}$

VLQ Production

LHC Run1 has focused more on pair production of VLQ, with typical constraints of m_Q~ 750 GeV

Three possible production mechanisms

VLQ Production

LHC Run1 has focused more on pair production of VLQ, with typical constraints of m_Q~ 750 GeV

Three possible production mechanisms

Benchmark Models

- Few interesting benchmark models to focus on for Run2 startup
 - Single Y(4/3) quark (Y → Wb) production in an association with b
 - Single B(4/3) quark (B →Wb) production in an association with b quark or top quark (other decay modes also feasible)

Benchmark Models

Search Strategies

- Both W and b carry half of Y(4/3)-quark mass energy and are boosted for heavier Y(4/3)-quark
- W- and t-tagging using CA8 jet selection is essential

recoiled b-quark is soft due to gluon splitting

- Both **W** and **b** carry half of Y(4/3)-quark mass energy
- W- and t-tagging using CA8 jet selection is essential
- Single lepton can be the best way to go + **BDT** but all hadronic is also very sensitive
- recoiled b-quark is soft due to gluon splitting

Benchmark Models

Search Strategies

- Both **W** and **b** carry half of Y(4/3)-quark mass energy and are boosted for heavier Y(4/3)-quark
- A combination of multiple final state can be used

t quark is relatively soft

- Variety of final states
 - Single lepton + boosted W/t
 - SS and OS dileptons
 - All hadronic

- MC Production
 - Testing production using MG5 and 5F scheme

Conclusion

- CMS is very actively pursuing the search program in the top-like sector
- Many interesting analyses
 - with more and more stringent limits
 - useful for generic searches
- Extensive use of jet substructure techniques @ 8TeV analyses
- Final legacy results to come, stay tuned :

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

- Getting ready for more data at higher energy !
 - MC is a challenge: Many more new channels (Bt, Bq, BW, BZ, BH)

Common tools: W-tagging

Partially merged

- W tagging uses pruning algo: http://arxiv.org/abs/0912.0033
 - Recluster jets from its constituents removing soft and wide angle radiation
- W Selection
 - N_{subjets} = 2
 - 60 GeV < m_{jet} < 130 GeV
- Validated on semileptonic tt events (leptonic and hadronic legs are tag and probe)
 - W mass peak serves as a calibration of the subjet energy scale

Common tools: top tagging

- Top tagging algo: http://arxiv.org/abs/0806.0848
 - Invert the last steps of CA algo removing soft objects
- Top Selection
 - N_{subjets} ≥ 3
 - m_{min} > 50 GeV
 - 140 GeV < m_{jet} < 250 GeV

• Validated on semileptonic tt events (leptonic and hadronic legs are tag and probe)

B quark searches

CMS-PAS-B2G-12-021

B→tW, bZ (OS dilepton channel)

B-1/3 quark, SS dilepton

CMS-PAS-B2G-12-020

Signal Acceptance

B search with multileptons

CMS-PAS-B2G-13-003

• Systematic Uncertainty

Source of Uncertainty	Uncertainty (%)
Luminosity	2.6
E_T^{miss} Resolution (0-50 GeV, 50-100 GeV, > 100 GeV)	(-3, +4, +4)
Jet Energy Scale WZ	0.5
b-tagging Scale Factor	$0.1 (WZ), 6 (t\bar{t})$
Muon ID/Isolation at 10 (100) GeV	11 (0.2)
Electron ID/Isolation at 10 (100) GeV	14 (0.6)
Tau ID/isolation at 10 (100) GeV	2(1.1)
Dilepton trigger efficiency	5
$t\bar{t}$ cross section	5
$t\bar{t}$ fake contribution	50
WZ normalization	6
ZZ normalization	12
Asymmetric Internal conversion fake rate	50
Internal Photon Extrapolation for muons (electrons)	0.1 (0.3)
Fake Muons (electrons) contribution	0.2~(0.2)

B search with multileptons

• Event counts for 3 leptons

CMS-PAS-B2G-13-003

N _{OSSF}	$m(\ell^+\ell^-)$	$s_{ m T}$	$N_{\tau_h} =$	0, $N_{b-jets} = 0$	$0 \qquad N\tau_{\rm h} = 1, N_{\rm b-jets} = 0$		$N_{\tau_h} =$	$N_{\tau_{h}} = 0, N_{b-jets} \ge 1$		1, $N_{b-jets} \ge 1$
	(GeV)	$({ m TeV})$	obs	exp	obs	exp	obs	exp	obs	exp
0	-	> 2.0	0	< 0.02	0	0.04 ± 0.05	0	0 ± 0.02	0	$0~\pm~0.22$
0	-	1.5 - 2.0	0	0.07 ± 0.06	0	0.18 ± 0.19	0	0.05 ± 0.06	0	0.46 ± 0.28
0	-	1.0 - 1.5	0	0.21 ± 0.18	2	$2.6~\pm~1.2$	0	0.36 ± 0.14	2	$3.9~\pm~2$
0	-	0.6 - 1.0	†3	$3.1~\pm~1$	†26	28 ± 12	2	4.9 ± 1.9	†46	$58~\pm~28$
0	-	0.3 - 0.6	32	$27~\pm~10$	289	290 ± 129	42	39 ± 17	410	$480~\pm~241$
0	-	0 - 0.3	72	79 ± 22	1194	$1324~\pm~330$	37	32 ± 15	316	$331~\pm~160$
1	> 105	> 2.0	0	0.001 ± 0.02	0	0 ± 0.21	0	0 ± 0.03	0	$0~\pm~0.21$
1	< 75	> 2.0	0	0.004 ± 0.02	0	0 ± 0.21	0	0.01 ± 0.04	0	$0~\pm~0.21$
1	$\operatorname{on}\mathbf{Z}$	> 2.0	0	0.2 ± 0.12	0	0.009 ± 0.21	0	0.04 ± 0.06	0	$0.04~\pm~0.05$
1	> 105	1.5 - 2.0	0	0.15 ± 0.09	0	0.22 ± 0.22	0	0.08 ± 0.05	0	$0.2~\pm~0.18$
1	< 75	1.5 - 2.0	1	0.11 ± 0.08	0	0.03 ± 0.05	0	0.07 ± 0.05	0	$0.06~\pm~0.07$
1	onZ	1.5 - 2.0	3	$1.1~\pm~0.6$	0	0.31 ± 0.17	1	0.28 ± 0.18	0	0.25 ± 0.12
1	> 105	1.0 - 1.5	2	$1~\pm~0.4$	1	1.3 ± 0.6	0	0.5 ± 0.22	1	$2.1~\pm~1.2$
1	< 75	1.0 - 1.5	0	1.1 ± 0.38	1	0.9 ± 0.44	†1	$0.6~\pm~0.27$	0	$1~\pm~0.7$
1	$\mathrm{on}\mathbf{Z}$	1.0 - 1.5	11	$15~\pm~6.9$	9	$5.9~\pm~1.6$	2	$3.3~\pm~1.2$	1	$1.7~\pm~0.6$
1	> 105	0.6 - 1.0	13	$10~\pm~2.4$	21	$23~\pm~7.2$	†7	$7.4~\pm~2.4$	23	28 ± 14
1	< 75	0.6 - 1.0	14	$10~\pm~3.6$	21	$11~\pm~3.4$	†4	8.3 ± 2.6	†14	$12~\pm~6$
1	$\mathrm{on}\mathbf{Z}$	0.6 - 1.0	106	$111~\pm~40$	108	70 ± 17	†16	$24~\pm~7$	17	$17~\pm~4.7$
1	> 105	0.3 - 0.6	63	$65~\pm~12$	285	372 ± 96	36	35 ± 13	169	$187~\pm~94$
1	< 75	0.3 - 0.6	84	$86~\pm~21$	290	$279~\pm~71$	52	56 ± 22	167	$171~\pm~87$
1	onZ	0.3 - 0.6	*669	735 ± 166	*2099	2705 ± 772	122	$108~\pm~24$	325	$284~\pm~73$
1	> 105	0 - 0.3	180	$195~\pm~33$	1620	$1712~\pm~482$	17	$17~\pm~6.4$	97	$79~\pm~35$
1	< 75	0 - 0.3	617	644 ± 102	10173	9211 ± 2694	62	74 ± 28	297	288 ± 97
1	onZ	0 - 0.3	*4255	4439 ± 691	*49916	49192 ± 14670	*140	149 \pm 24	795	$826~\pm~229$
Total3	All	All	6125	6430 ± 916	66055	65233 ± 19038	541	564 ± 150	2680	$2774~\pm~903$

B search with multileptons

• Event counts for 4 leptons

CMS-PAS-B2G-13-003

N _{OSSF}	on- or off-Z	S_{T}	$N_{\tau_h} =$	= 0, $N_{b-jets} = 0$	N_{τ_h}	$\geq 1, N_{b-jets} = 0$	N_{τ_h}	$= 0, N_{b-jets} \ge 1$	N_{τ_h}	\geq 1, N _{b-jets} \geq 1
		(TeV)	obs	exp	obs	exp	obs	exp	obs	exp
0	-	> 2.0	0	< 0.02	0	0 ± 0.02	0	0 ± 0.02	0	0 ± 0.02
0	-	1.5 - 2.0	0	< 0.02	0	0 ± 0.02	0	0 ± 0.02	0	0 ± 0.02
0	-	1.0 - 1.5	0	< 0.02	0	0 ± 0.02	0	$0~\pm~0.02$	0	0.007 ± 0.02
0	-	0.6 - 1.0	0	< 0.02	0	0.12 ± 0.11	0	$0.05~\pm~0.05$	†0	0.12 ± 0.1
0	-	0.3 - 0.6	0	0.09 ± 0.06	1	0.5 ± 0.19	0	0.001 ± 0.02	0	0.28 ± 0.12
0	-	0 - 0.3	0	0.05 ± 0.05	2	1.1 ± 0.45	0	0.0003 ± 0.02	0	$0.25~\pm~0.16$
1	offZ	> 2.0	0	< 0.02	0	0 ± 0.02	0	$0~\pm~0.02$	0	$0~\pm~0.02$
1	onZ	> 2.0	0	< 0.02	0	0 ± 0.02	0	0 ± 0.02	0	0 ± 0.02
1	offZ	1.5 - 2.0	0	< 0.02	0	0.007 ± 0.02	0	$0~\pm~0.02$	0	$0~\pm~0.02$
1	onZ	1.5 - 2.0	0	< 0.02	0	0.02 ± 0.03	0	0.01 ± 0.03	0	0.007 ± 0.02
1	offZ	1.0 - 1.5	0	0.002 ± 0.02	0	0.12 ± 0.07	†0	0.03 ± 0.04	0	0.02 ± 0.02
1	onZ	1.0 - 1.5	1	0.06 ± 0.06	0	0.1 ± 0.07	0	0.11 ± 0.08	0	0.04 ± 0.04
1	offZ	0.6 - 1.0	0	0.06 ± 0.04	2	0.48 ± 0.17	0	$0.06~\pm~0.07$	†0	$0.3~\pm~0.13$
1	onZ	0.6 - 1.0	0	0.43 ± 0.15	0	1.7 ± 0.6	0	0.5 ± 0.29	†0	0.7 ± 0.33
1	offZ	0.3 - 0.6	0	0.27 ± 0.11	4	2.1 ± 0.5	0	0.33 ± 0.17	0	$1.2~\pm~0.43$
1	onZ	0.3 - 0.6	5	1.8 ± 0.47	10	12 ± 3	2	1 ± 0.5	2	$1.6~\pm~0.5$
1	offZ	0 - 0.3	2	0.48 ± 0.18	18	8.3 ± 2.1	0	0.04 ± 0.04	1	$0.6~\pm~0.3$
1	onZ	0 - 0.3	2	3 ± 0.9	43	41 ± 10	2	0.07 ± 0.04	2	1 ± 0.4
2	offZ	> 2.0	0	1e-05 \pm 0.02	-	-	0	$0~\pm~0.02$	-	-
2	onZ	> 2.0	0	0.002 ± 0.02	-	-	0	0.02 ± 0.03	-	-
2	offZ	1.5 - 2.0	0	0.0002 ± 0.02	-	-	0	$0~\pm~0.02$	-	-
2	onZ	1.5 - 2.0	0	0.05 ± 0.03	-	-	0	0.01 ± 0.02	-	-
2	offZ	1.0 - 1.5	0	0.01 ± 0.02	-	-	0	$0~\pm~0.02$	-	-
2	onZ	1.0 - 1.5	1	0.6 ± 0.26	-	-	†0	0.1 ± 0.05	-	-
2	offZ	0.6 - 1.0	0	0.11 ± 0.04	-	-	0	0.14 ± 0.08	-	-
2	onZ	0.6 - 1.0	4	$5.9~\pm~2.0$	-	-	1	1 ± 0.39	-	-
2	offZ	0.3 - 0.6	3	1 ± 0.3	-	-	1	0.22 ± 0.1	-	-
2	onZ	0.3 - 0.6	26	42 ± 10	-	-	4	$3.2~\pm~1$	-	-
2	offZ	0 - 0.3	7	8.2 ± 2.3	-	-	0	0.18 ± 0.07	-	-
2	onZ	0 - 0.3	*135	$122~\pm~29$	-	-	1	1 ± 0.26	-	-
Total4	All	All	186	187 ± 39	80	68 ± 15	11	8.3 ± 2.7	5	$6.3~\pm~1.6$

SingleVLQ Production

LHC Run1 has focused more on pair production of VLQ, with typical constraints of m_Q~ 750 GeV

• Similar decays for B