

Search for vector-like T and B quarks in all-hadronic final states at CMS

<u>Ivan Marchesini</u> on behalf of the CMS Collaboration <u>VLQ 2014</u>

Outline

Heavy mass of the VLQ quark:

- > boosted hadronic decay products, merged jets
- challenging hadronic final states

Accessing boosted hadronic final states:

substructure:

- PAS-B2G-14-002: T \rightarrow tH, H \rightarrow bb, full hadronic
- PAS-B2G-14-001: B→bH, H→bb
- Iclean signatures with photons:
 - PAS-B2G-14-003: T \rightarrow tH, H $\rightarrow\gamma\gamma$ (this search includes a leptonic category, included for completeness)

Searches with substructure

Boosted regime

Resolved regime:

- \rightarrow low-p_T analyses (SM)
- → multiple small jets (AK5) from decays of heavy particles

Boosted regime:

- → decay products merged in larger fat-jets (CA8, CA15)
- substructure tools to identify particle originating the jet

Top-Tagging [CMS-PAS-JME-10-013, CMS-PAS-JME-13-007]

CMSTopTagger. Based on **JHU toptagger** (*Kaplan et al [PRL 101 (2008) 142001]*):

- → start with CA8 jets
- reverse clustering sequence and identify subjets
- requirements on jet/subjets masses and subjet multiplicty

HEPTopTagger (*Plehn et al., [arXiv:1006.2833]*):

- → move to larger jets: CA8→CA15
- Indice to length jets, p_> 200 GeV
 Indice to length jets, p_> 200 GeV
- seamless transition between resolved and boosted regime

HepTopTagger [CMS-PAS-JME-13-007]

First step is **cleaning** of the large fat-jet (mass-drop+**filtering**):

- soft-radiation dilutes substructure of the fat-jet
- → large-jet: more from contamination from pile-up

Built exactly 3 subjets from remaining constituents, using smaller CA cone

Use Dalitz distributions based on subjet masses to identify tops (select A region)

Subjet b-tagging and Higgs-tagging [CMS-PAS-BTV-13-001, CMS-DP-2014/031]

- Combined Secondary Vertex CSV tagger:
 - → well established for isolated AK5 jets
 - Iikelihood-ratio combination of track displacement + secondary vertex (SV) information

Subjet b-tagging: apply CSV to tracks and SV reconstructed within subjets

► Higgs→bb tagger based on 2 subjet b-tags:

- → eccellent performance
- can be further improved by mass cut, n-subjettiness

Additional Variables [CMS-PAS-JME-13-007]

N-subjettiness τ_{N} : probability to have N-subjets

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$$

 $d_0 = \sum_k p_{T,k} R_0$, and R_0 is the original jet radius

$$\tau_{2}^{\prime} \tau_{1}^{\cdot}$$
: H/W/Z-tagging

$$\tau_{_3}/\tau_{_2}$$
: top-tagging

Fully Hadronic T→tH, H→bb [CMS-PAS-B2G-14-002]

Event Selection

Use of substructure: QCD background reduced at the level of ttbar

Two categories for analysis:

A) single Higgs tagB) multi Higgs tag

exploiting excellent signal/background ratio in multi Higgs-tag category

Background Estimation

ttbar background from MC. QCD contribution derived from control regions using ABCD method:

- sidebands obtained inverting substructure selections
- → if inverted criteria are uncorrelated: rates A/B=C/D

→ shape from region B: good closure for all relevant variables in MC

H_T (GeV)

Final Distributions

Two variables used for limit setting, with visible shape difference signal/background (here for multi Higgs-tag category)

Likelihood

H_T and Higgs-candidate mass observables uncorrelated: combined in likelihood

Background at lower L values and signal at higher L values: good discrimination power

Limits

Search targeting at $T \rightarrow tH$ decay: (expected) observed limit (701) 747 GeV

Cross-section limits provided for all possible BR to three possible decays: bW, tZ, tH

$B \rightarrow bH, H \rightarrow bb$ [CMS-PAS-B2G-14-001]

Higgs-tagger here given by:

- → pruned CA8 jet p_{τ} > 300 GeV
- → 2 subjet b-tags
- → N-subjettines $\tau_2/\tau_1 < 0.5$
- → 90 < mass pruned < 140 GeV</p>

Large H_{T} region

▶≥ 1 Higgs-tag

≥ 1 regular btagged AK5 jet

Event categories: 1 AK5 b-tag, ≥ 2 AK5 btags

Background Estimation

ttbar background from MC. QCD contribution evaluated using ABCD method

Control region from inverted substructure requirements

Closure test of the method done in MC and also in data, using a signal-free control sample: standard selection, but no b-tagged AK5 jet

Closure Test in Data

Performed in two event categories:

- \rightarrow ==1 AK5 jet with p_T > 80 GeV
- → ≥2 AK5 jets with p_{τ} > 80 GeV

Sood agreement between true and predicted background by ABCD method for the observable used for limit setting $H_{T} = \sum p_{T}$ (AK5 jets)

Event Selection

Good signal selection efficiency and background rejection

Signal: b'b́'→bHbH						
b' quark mass (GeV)	Yields after	Yields in 1 b-tagged	Yields in ≥ 2 b-tagged	Selection		
	full selection	category	category	efficiency		
500	326.9	169.2	157.7	0.037		
600	170.6	90.2	80.4	0.055		
700	77.6	42.1	35.5	0.070		
800	32.8	18.5	14.3	0.079		
900	13.4	8.0	5.5	0.082		
1000	5.3	3.3	2.0	0.082		
1200	0.9	0.6	0.3	0.078		

Process	Yields after	Yields in 1 b-tagged	Yields in ≥ 2 b-tagged
	full selection	category	category
Data-driven background	872^{+49}_{-55}	825^{+47}_{-52}	46^{+4}_{-11}
Data	903	860	43

H₋ Observable

> H_{τ} observable in two b-tag categories used for limit setting

Very good signal/background ratio

Limits

Search targeting at $B \rightarrow bH$ decay: (expected) observed limit (846) 811 GeV

Thanks to substructure hadronic analyses obtain limits competitive with searches in leptonic final states

A search with photons

$T \rightarrow tH, H \rightarrow \gamma \gamma$ [B2G-14-003]

Exploit narrow $H \rightarrow \gamma \gamma$ resonances (as done in $H \rightarrow \gamma \gamma$ analysis)

Both hadronic and leptonic final states to improve sensitivity:

- → hadronic: higher cross-section
- → letponic: better signal/background

Analysis Optimization

Main backgrounds:

- resonant background ttH: from MC
- → non-resonant background, from diphoton + jets; tt+γγ, t+γγ, tt+jets

Non-resonant background MC not reliable:

- → for optimization studies: use control sample CS
- → for limit setting: sideband regions in $M_{_{yy}}$ distribution (later)

Control sample:

- obtained inverting photon identification
- kinematics re-weighted to match signal region

Selection optimization:

- → based on CS and signal with a 700 GeV mass
- → separate from hadronic/leptonic channels

Discriminating Variables

Several discriminating variables considered

Selection cuts optimized through MVA

Final Selection

Variable	Hadronic channel	Leptonic channel	•	
$p_{ m T}(\gamma_1)$	$> \frac{3}{4}m_{\gamma\gamma}$ GeV	$> \frac{1}{2}m_{\gamma\gamma} \text{ GeV}$	selection cuts from MVA	
$p_{ m T}(\gamma_2)$	35 GeV	25 GeV	optimization	
$n_{ m jets}$	≥ 2	≥ 2		
$H_{ m T}$	$\geq 1000 { m ~GeV}$	$\geq 770~{ m GeV}$		
leptons	0	≥ 1		
b tags	≥ 1	-		

Background evaluation:

- $\boldsymbol{\textbf{\textbf{\textbf{+}}}}$ signal gives a peak in $M_{_{\!\!\mathcal{W}}}$ distribution
- → fit background in sideband regions outside M_y peak (125±3 GeV) for M_y between [100,180] GeV
- different fit functions tested: simple
 exponential chosen

Final Observables

 $\mathbf{M}_{_{\!\gamma\!\gamma}}$ in hadronic and leptonic categories, with fitted background

Limits

Search targeting at $T \rightarrow tH$ decay: (expected) observed limit (607) 540 GeV

Limits provided for different BR to tH

Conclusions

Development and use of substructure in hadronic boosted analyses payed off:

- Iimits competitive with those obtained by searches in clean leptonic final states
- Weaker limits obtained by the search with photons:
 - → thinking in discovery mode:
 - **explicit Higgs identification** crucial to distinguish between theories proposing similar final states
 - ideal final state to measure the key parameters of the theory

Several other VLQ searches at CMS not shown here:

- more in talks from Gerrit and Sadia
- → combinations of searches underway, results expected soon

Results shown for pair-produced VLQ: work on the single production searches has started

Additional Material

HepTopTagger [CMS-PAS-JME-13-007]

First step is **cleaning** of the large fat-jet (mass-drop+**filtering**):

- → soft-radiation dilutes substructure of the fat-jet
- → large-jet: more from contamination from pile-up

Built exactly 3 subjets from remaining constituents, using smaller CA cone

HepTopTagger

Use Dalitz distributions based on subjets masses to identify tops:

- x axis: arctan $(m_{13}^{\prime}/m_{12}^{\prime})$
- → y axis: m₂₃/m_{jet}
- → m_{ii} = mass *i*-subjet + *j*-mass subjet

Select A region, where signal concentrates

