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More specific (still model-independent) phenomenology
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Two classes of Fermionic Partners
(sorted by relevance)

|. Top Partners
2. Light quarks partners
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Note: VLQs also in one MSSM extension (Martin 2010)
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Light Higgs plus Low Tuning need Light Partners
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Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)
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T . i\[\\’\\’\' sizeable coupling with the bottom quark



Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

I X
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Spectrum: Couplings:
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ESSENTIAL to take GOLDSTONE symmetry into account

Can not understand Top Partners without Goldstone Higgs
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(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

Three possible production mechanisms
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(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

Three possible production mechanisms

X
QCD pair prod.
model indep.;
_ relevant at Io%y
X 1000 +

- /
single prod. with t
== X model dep. coupling

5 7 pdf-favoured at high mass
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=) M [GeV]

single prod. with b™ g
== X favoured by small b mass
- dominant when allowed
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Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

Searches on a Table:

Decay
W+t | Wb | Z/h+t
Pair Production | X5/3, B T Xoy3, 1, T
Single + top X5/3, B Xo/3, T
Single + bottom T T
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Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)
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Decay
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Single + top @ B Xa/3, T
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@

@

Composite Higgs favorite channels:
(lighter and/or larger rates)
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Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

Searches on a Table:

Decay
W+t W +0b Z/h+t
Pair Production | X5/3, B T Xo/3, 1, T
Single + top X5/3, B Xa/3, T
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Little Higgs favorite channels:
(see e.g. Peskin 2003)




Top Partners

(De Simone, Matsedonsky, Rattazzi, AWV, 201 2)

Searches on a Table:

Decay

W+t W+b | Z/h+t

Production

Pair Production X5/ @ (Xo/3, T, T
Single + top X5/3, B Xa/3, T
Single + bottom T T

Infidel experimentalist’s favorites:
(SM-like charges and QCD production)



Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

To interpret a search, we don’t need (have!) to use a model

A non-model: all possible couplings are free parameters
(see arXiv:1211.5663, HEPMDB link: http://hepmdb.soton.ac.uk/hepmdb:0214.0153)

couplings
partner (MG name)| @ W= A h WEW*
15,5 (T23) 2/3 C?’V, cgw c%Z, ng c%h, cgh —
B3 (B13) /3| BV, W B2 B2 Bh o Bh —
X5/3 (X53) 5/3|| 2", ez — — —
Y3 (Y43) 4/3|| W, R — — —
Va3 (V83) 8/3 — — — ", ep”

Telling which one to turn on for a given search channel
is what phenomenologist are (or should be) payed for!
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(Matsedonsky, Panico, AVY, 2014)

To interpret a search, we don’t need (have!) to use a model

A non-model: all possible couplings are free parameters
(see arXiv:1211.5663, HEPMDB link: http://hepmdb.soton.ac.uk/hepmdb:0214.0153)
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Explicit models cover different regions of the parameter space
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Limits on “c” easily translated in any model
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Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

CMS-B2G-12-012

Example: 2ssl plus jets {
ATLAS-CONF-2013-051

Potentially sensitive to pair and to single X5,3 production

L5/3 = g—wCRy5/3RW?5R + h.c.

PR
£ e

S = CZ BR,, €, 0., (M,,)
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Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)
S=L g BR,, €, 0, (M,,)
n

Total Branching Ratios bair = 0.2 BRgingle ~ 0.1

Acceptances/Efficiencies e, = BR¢€, tot. signal eff.

Cross-Sections in semi=-analytical form:

Upair(MX) Universal QCD pair from MC

fact. coupling

O_Sing(XB — C%{ UWt(MX) m};—,z




Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Efficiencies from recasting:

(one simulation per mass point)

CMS pair [%] CMS single [%]

_ 5 )

MGev]| @738 mgev)| €73
right right

700 2.27 700 0.185
800 2.64 800 0.269
900 2.89 900 0.308

ATLAS pair [%]

ATLAS single [%]

Mg | @35 wMicev) | @73
right right

700 2.17 700 1.14
800 2.23 800 1.26
900 2.22 900 1.31
1000 2.23 1000 1.23
1100 2.24 1100 1.26
1200 2.23 1200 1.25




Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Efficiencies from recasting:
(one simulation per mass point)

CMS pair [%] CMS single [%]

_ 5 _5
MGev]| 75 arjcev)| 973
right right
700 2.27 700 0.185
800 2.64 800 0.269
900 2.85 900 0.308 CMS loses on single prod.

ATLAS pair [%]

ATLAS single [%]

mainly due to Ncop > 5

B _ 5
M [GeV] Ciight?, M [GeV] Ciighs for ATLAS, 2 jets are enough

700 2.17 700 1.14
800 2.23 800 1.26
900 2.22 900 1.31
1000 2.23 1000 1.23
1100 2.24 1100 1.26
1200 2.23 1200 1.25




Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)
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Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Current Limit;

0.0

20i\\/?= 8 TeV
L2007

700
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[(]i(:

Projection:
Avetisyan,Bose ‘I 3

14I()d | 1600 1800 2?80 V]ZZOO 2400 2600




Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Limits depend on coupling chirality:

Current Limit:
25 — ~_ - T
Vs = STEV\\\
00 Los20 !
Q@lS\\\\\\\ _
b+ -
@\l
S0 —
: 1 cg=0
051 =0 ]
00k [ ] €L=—CR ]
700 800 900 1000 1100 1200
My [GeV]

Details in Backup, ask if interested



Interpretation Strategy

T searches at 8 TeV:

(Matsedonsky, Panico, AVY, 2014)

* pair prod. from ATLAS and CMS

* estimated single production reach from
(Ortiz, Ferrando, Kar, Spannowsky, 2014)

1.4 prerer———— o
1_22\‘\~\ \‘\~\~ T~ . i
i - ~ ~._ A
10F IR -
S 08¢ =03
N 402
6+ h
04F ]
—— Vs =8TeV
O.2j L — 20 fb—] ]

600 700 800 900 1000 1100 1200

My [GeV]



Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)
Rough |3 TeV extrapolation:

* assuming sensitivity to same number of
produced Partners as at 8 TeV

I~ | = ~ ;/
08F 4.
i I T
- |
B = \|~
06F -
S
04F |
-
F— |
0.2»/1//
I -1
k : ---L=20 fb
OO ) 1 ) ) ) | | | | | | | | | | |
1200 1400 1600 1800 200(

My [GeV]



Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Impact on a concrete Composite Higgs model

8TeV
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Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Impact on a concrete Composite Higgs model
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1500
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>
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Interpretation Strategy

(Matsedonsky, Panico, AVY, 2014)

Impact on a concrete Composite Higgs model

Compare withcouptimg deviations ...
CMS Preliminary {s=7TeV,L<51fb" ys=8TeV,L<19.6fb"
2000 ———— o o we 2'03 !
.. '. o.... .. 1.5: 5
B N N : :
1500F . .‘-“”..: 1.0} -
~ I A W e - -
% .&‘o? o..‘.‘: 0.5: _: 7
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500; -1.0; —i ]
| 560 | | _15:— —; ' e T ° ':‘%. o o |
pgbe e R I TRARS I
0.0 0.5 1.0 1.5
K | | | | | | | | | | | |
Top Partner searches are by far the mast 40 1600 | 1800 2000
sensftive probes of CH at the LAG!GeV]
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* Exotic/enhanced signatures?

The answer crucially depends on the scheme adopted
to incorporate Flavour structure and constraints



Other Partners

Fermionic Partners come from partial compositeness

Elementary Sector: Elementary/Composite =~ Composite Sector:
mixing Higgs
——= resonances



Other Partners

Fermionic Partners come from partial compositeness

Elementary Sector: Elementary/Composite =~ Composite Sector:
mixing Higgs
——= resonances
mixing generates Yukawas... ... and single Partner couplings

V/h

yr = X YLyk Al §O< vl R

f

Ytop is large. Thus the Top must have large mixing.

Light quarks €an have one large mixing, but need not.



Other Partners

Anarchic @ Flavour Scheme

Large Top Mixin
B SRV NG, { o5 °
Small Other Quarks Mixings

|I: Flavour Anarchy. All Partner couplings/mixings allowed
No distinction among “Top” and “Other” Partners

UAT,\,\!\!\'V/h U _ \,q\‘wv/h
Lol > gl

t
Top Partner searches cover Other Partners as well




Other Partners

In Composite Higgs, each quark has a Partner
(Light families partners generically unrelated with Naturalness)

Flavour Scheme

®

* Worth searching for them? NO

* Exotic/enhanced signatures? NO

The answer crucially depends on the scheme adopted
to incorporate Flavour structure and constraints



Other Partners

id (3)° Flavour Scheme
{ Yf by a very small y}i

Large uR, cr, t p Mixings

I Yk =% =yh

|I: Flavour Symmetry in the Strong Sector
Distinct Phenomenology (e.g., decay to jets)
V/h

- § — “lLarge”

U
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New single production modes



Other Partners

In Composite Higgs, each quark has a Partner
(Light families partners generically unrelated with Naturalness)

Flavour Scheme

A | vy

* Worth searching for them? NO YES

* Exotic/enhanced signatures? NO YES

The answer crucially depends on the scheme adopted
to incorporate Flavour structure and constraints




Other Partners
id(2)° Flavour Scheme
I Yk =yh < Yk

|I: Flavour Symmetry for the Light Families
Distinct Phenomenology (e.g., decay to jets)
V/h

- § — “Small”

U

u

NO new single production modes



Other Partners

In Composite Higgs, each quark has a Partner
(Light families partners generically unrelated with Naturalness)

Flavour Scheme

A | veP | ve?

* Worth searching for them? NO YES YES

* Exotic/enhanced signatures? NO YES NO

The answer crucially depends on the scheme adopted
to incorporate Flavour structure and constraints



Other Partners Phenomenology

(from Panico, Perez et.al., 201 3)

Fourplet of custodial SO(4): Us={U, D, X5,3} + U

Spectrum: Couplings:

V/h
o U33= 1\!\/1\’\' U1]= P g
Us \/‘d\

\_ J \.




Other Partners Phenomenology

(from Panico, Perez et.al., 201 3)

New Single Production channels:

U, /U

~
~

u/d Us U S h

Similar to Top Partners Radically new



Other Partners Phenomenology

(from Panico, Perez et.al., 201 3)

Triplet Mass from pair production:

M3 > 530 GeV
recasting CMS leptoquark (CMS-PAS-EXO-12-042)

Triplet from single production:

T T T
~

CMS-PAS-EXO-12-024

§~--
-
_____________

[ ug—partner |

[ cr—partner
05F QCD prod. -

--=- ['/M=03
0.2 C f =600GeV |

partially composite quarks

500 1000 15001 2000 2500 3000 3500

M3



Other Partners Phenomenology

(from Panico, Perez et.al., 201 3)

Singlet is basically unbounded!



Production

Other Partners Phenomenology

Relevant channels:

(from Panico, Perez et.al., 201 3)

Decay
W + Z+7 h+j
Pair Production D, X5/3 U U1, (7
Single + Higgs U17 (7
Single (+fwd jet) | D, X5/3 U




Conclusions and Outlook

Top Partner searches allow to test Naturalness in a non-SUSY context.

Even a negative result, discovering “Unnaturalness” would be a valuable
information towards the understanding of Fundamental Interactions.

Top Partner phenomenology is simple enough to be studied in general
by a Simplified Model approach. Efficient coverage of explicit models.

Other Partners can couple strongly to light quarks and display peculiar
production and decay modes.

Under reasonable assumptions, few parameters control Other Partner
phenomenology. An extended Simplified Model?
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Backup

In some corner of the par. space, ¢ ~ CR
Jw Jw

L5/3 = 5 CR 75/3RW?5R + 5 CL 75/3LW75L + h.c.

New cross-section formula:

_ m
Using(Xt) — (C% + C%) (TWt(M)() + cr cy, ( t

Mx + my

RS

* very first approximation, just send c% — c2R + c%

* interference term is parametrically suppressed, ...

but numerically enhanced: 500
o (Mx) ~ —5.20w(Mx). 100

50k
e use full formula

10+
05F

Vs =8Tev Y

~
0.1 V CL2 + CR2 =0.2 \\\\

600 800 1000 1200 1400




Backup

Mild changes in efficiencies:
ATLAS, single prod. eff. [%)]

ATLAS, pair prod. eff. [%]

M [GeV] Q= % Q= %
right left
700 1.14 0.952
800 1.26 1.01
900 1.31 1.10
1000 1.23 1.09
1100 1.26 1.13
1200 1.25 1.19
Wi
T53

o

A

M[GGV] ng ng Q:_% (b/)
right left left [24]
700 2.17 1.87 1.84
800 2.23 1.95 2.03
900 2.22 2.00 2.06
1000 2.23 2.03 -
1100 2.24 2.07 -
1200 2.23 2.06 -

* chirality of boosted t modifies
shape, lepton cut eff changes (20%)
* unboosted associated Top

chirality has no impact

2 2
€T, L CRr R
5 En

2€n1

en =
2 2
CL—I—CR CL—|—CR



Backup

4 )
ssl distribution, pair and single production
Mild changes ir - AT
ATLAS, 0.05H — pp, right d. eff.]| [%]
- -~ Sp, left - o
§ ' =2 | @=—% (b
M |GeV] %0.045 sp, right 3 5 (V)
8T
T00 N o0.03f 7 1.84
00 g F 5 2.03
Ioo S 0.02 0 2.06
1000 K 3 -
1hoo 0.01p 7 _
100 T i -
0p~""50 100 150" 200 250 300 350 400
GeV
b, [GeV] d t modifies
shape, Iepton cut eff changes (20%)
Ts)3 L\\\\\‘\' * unboosted associated Top
> — 1 chirality has no impact

A

€En —

2
€T,

2
CR R

e —+ e’
2 n 2 -n
¢ + ch,

cL+c



