

Search for vector-like T quarks in final states with leptons at CMS

Gerrit Van Onsem (VUB) on behalf of the CMS Collaboration

Workshop on Vector-like Quarks 2014 Hamburg, 15 September 2014

Overview

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

Introduction to vector-like quarks (VLQs)

Right-handed and left-handed components of VLQ fields interact similarly via electroweak force No chiral "V-A" structure in Lagrangian, but purely "V"

Introduction to vector-like quarks (VLQs)

Right-handed and left-handed components of VLQ fields interact similarly via electroweak force No chiral "V-A" structure in Lagrangian, but purely "V"

• VLQs appear in many BSM models:

Little Higgs models

addressing naturalness problem: top-quark partner stabilizes Higgs-boson mass composite Higgs models

e.g. top quark and VLQ condensate driving

electroweak symmetry breaking

Grand Unified Theories

Extra dimensions

Kaluza-Klein states of SM fields in extra dimensions can have VLQ properties

Introduction to vector-like quarks (VLQs)

Right-handed and left-handed components of VLQ fields interact similarly via electroweak force No chiral "V-A" structure in Lagrangian, but purely "V"

• VLQs appear in many BSM models:

Little Higgs models

addressing naturalness problem: top-quark partner stabilizes Higgs-boson mass composite Higgs models

e.g. top quark and VLQ condensate driving electroweak symmetry breaking

Grand Unified Theories

Extra dimensions

Kaluza-Klein states of SM fields in extra dimensions can have VLQ properties

VLQs can have charge 2/3, 1/3, 5/3 or 4/3 and decay to W, Z or H bosons (model-dependent) → rich phenomenology

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

The Compact Muon Solenoid (CMS) detector

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

Physics-object reconstruction

 Particle-flow (PF) algorithm combines information of all subdetectors to reconstruct particles traversing the detector

muons

relative isolation defined in cone of $\Delta R = 0.4$

electrons

relative isolation defined in cone of $\Delta R = 0.3$

Physics-object reconstruction

 Particle-flow (PF) algorithm combines information of all subdetectors to reconstruct particles traversing the detector

muons

relative isolation defined in cone of $\Delta R = 0.4$

electrons

relative isolation defined in cone of $\Delta R = 0.3$

missing transverse energy (MET)

jets

anti-k_T jet clustering with distance parameter 0.5 (AK5) **energy corrections** (1-10% depending on p_{τ} and η) resolution smearing in simulation **b-tagging** using 'Combined Secondary Vertex' algo

W-boson and top-quark jet tagging

Decay of heavy quark → boosted decay products

Additional Cambridge-Aachen jet clustering, distance parameter 0.8

W-boson and top-quark jet tagging

Decay of heavy quark → boosted decay products

Additional Cambridge-Aachen jet clustering, distance parameter 0.8

'W jet'

 $p_T > 200 \text{ GeV}$ Mass = [60,130] GeV Exactly 2 subjets W-boson and top-quark jet tagging

Decay of heavy quark → boosted decay products

Additional Cambridge-Aachen jet clustering, distance parameter 0.8

'W jet'

 $p_{T} > 200 \text{ GeV}$ Mass = [60,130] GeV Exactly 2 subjets

Boosted top quark decaying to W → qq boson and b quark

'top-quark jet'

 $p_{T} > 200 \text{ GeV} (\text{or } 400 \text{ GeV})$ Mass = [140,250] GeV \geq 3 subjets Minimum pairwise mass > 50 GeV Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

B2G-12-015 1311.7667v2

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

Signal selection

 Strong pair production of TT with T → bW / tZ / tH leads to signature with possibly multiple leptons
 → different search channels according to leptons

Single-lepton channel

- 1 isolated muon ($|\eta| < 2.1$, $p_{\tau} > 32$ GeV, $I_{rel} < 0.12$) or 1 isolated electron ($|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$, $p_{\tau} > 32$ GeV, $I_{rel} < 0.10$)
- \geq 3 AK5 jets (p_T > 120, 90, 50 GeV, |η| < 2.4)
- \ge 1 W jet, or fourth AK5 jet with $p_{T} > 35 \text{ GeV}$
- MET > 20 GeV

Single-lepton channel

- 1 isolated muon ($|\eta| < 2.1$, $p_{\tau} > 32$ GeV, $I_{rel} < 0.12$) or 1 isolated electron ($|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$, $p_{\tau} > 32$ GeV, $I_{rel} < 0.10$)
- \geq 3 AK5 jets (p_T > 120, 90, 50 GeV, |η| < 2.4)
- \ge 1 W jet, or fourth AK5 jet with $p_{T} > 35 \text{ GeV}$
- MET > 20 GeV

Simulated W+jets background normalized to control data sample (≤ 3 jets but *no* W jet)

Separate scale factors for light-flavor and heavy-flavor components of simulated W+jets

B-jet and jet multiplicities well modeled by the simulation

Pull = (observed – expected) / (Sum in quadrature of syst. and stat. uncertainties) Uncertainties include luminosity, cross sections and correction factors

 No explicit b-jet requirement, but b-jet multiplicity enters as input variable in Boosted Decision Trees

Single-lepton channel: event yields

- ttbar and W+jets largest backgrounds
- Predicted number of events agree with observed, within uncertainties

Lepton flavor	Muon	Electron	
tī	36700 ± 5500	35900 ± 5400	
Single top quark	2200 ± 1100	2100 ± 1000	
W	19700 ± 9900	18600 ± 9400	
Z	2200 ± 1100	2000 ± 1000	
Multijets	<60	$1680 {\pm} 620$	
tīW	$144{\pm}72$	137 ± 68	
tīZ	109 ± 54	108 ± 54	
tīH	570 ± 290	570 ± 290	
WW/WZ/ZZ	410 ± 200	400 ± 200	
Total background	61900±13900	61500 ± 13700	
Data	58478	57743	

B2G-12-015 T (charge 2/3)

Single-lepton channel: signal efficiencies

- pp \rightarrow TT signal samples generated with Madgraph
- Table: assuming 'nominal' branching fractions BF(T \rightarrow bW) = 50%, BF(T \rightarrow tZ) = BF(T \rightarrow tH) = 25%

Lepton flavor	Cross section	Muon		Electron	
T mass (GeV)	(fb)	Efficiency	Events	Efficiency	Events
500	571	7.6%	850	7.5%	840
600	170	8.3%	280	8.4%	280
700	56.9	8.7%	97	8.8%	98
800	20.8	8.9%	36	9.1%	37
900	8.09	9.0%	14.3	9.3%	14.8
1000	3.27	9.0%	5.8	9.4%	6.0
1100	1.37	9.0%	2.4	9.4%	2.5
1200	0.58	9.0%	1.0	9.4%	1.1

approximate NNLO (HATHOR)

T-quark signal separated from SM background via Boosted Decision Trees (BDT)

Input variables

jet multiplicity, b-tagged jet multiplicity, MET, H_T (scalar sum of p_T of all jets), p_T lepton, p_T third jet, p_T fourth jet, number and p_T of W jets number of top jets For events with W jet

 Separate BDT trainings for events with ≥ 1 W jet and without W jet, at every T-quark mass

B2G-12-015 T (charge 2/3)

BDT discriminator distributions show good discrimination power

B2G-12-015 T (charge 2/3)

BDT discriminator distributions show good discrimination power

- 2 isolated opposite-charged leptons ($p_{_{T}} > 20 \text{ GeV}$)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV and \ge 1 b jet

Sensitive to $TT \rightarrow bWbW$

- 2 isolated opposite-charged leptons ($p_{T} > 20 \text{ GeV}$)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV and ≥ 1 b jet

0S1

- 2 or 3 jets ($p_T > 30$ GeV, $|\eta| < 2.4$)
- $H_T > 300 \text{ GeV}$, $S_T > 900 \text{ GeV}$ (sum of H_T , MET and p_T of all leptons)
- dilepton pair mass veto in 15 GeV window around Z-boson mass suppresses DY background
- Smallest mass of (lepton,b-jet) system $M_{lb} > 170 \text{ GeV}$

suppresses ttbar background

Sensitive to $TT \rightarrow bWbW$ Sensitive to $T \rightarrow tZ$ decays

- 2 isolated opposite-charged leptons ($p_{_{\rm T}}$ > 20 GeV)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV and ≥ 1 b jet

0S1

- 2 or 3 jets ($p_T > 30$ GeV, $|\eta| < 2.4$)
- $H_T > 300 \text{ GeV}$, $S_T > 900 \text{ GeV}$ (sum of H_T , MET and p_T of all leptons)
- dilepton pair mass veto in 15 GeV window around Z-boson mass suppresses DY background
- Smallest mass of (lepton,b-jet) system $M_{lb} > 170 \text{ GeV}$

suppresses ttbar background

OS2

- \geq 5 jets of which 2 b-tagged
- $H_T > 500 \text{ GeV}, S_T > 1000 \text{ GeV}$

Multilepton channel: same-sign dileptons

- 2 isolated same-charged leptons ($p_{T} > 20 \text{ GeV}$)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV
- ≥ 3 jets
- $H_{T} > 500 \text{ GeV}, S_{T} > 700 \text{ GeV}$

Multilepton channel: same-sign dileptons

- 2 isolated same-charged leptons ($p_{T} > 20 \text{ GeV}$)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV
- ≥ 3 jets
- $H_{T} > 500 \text{ GeV}, S_{T} > 700 \text{ GeV}$

Three main backgrounds

irreducible (SM processes with SS dileptons) charge misidentification in OS dileptons non-prompt leptons (lepton misidentification)

Estimated from observed data

B2G-12-015 T (charge 2/3) Multilepton channel: same-sign dilepton distributions

B2G-12-015 T (charge **2/3**) Multilepton channel: same-sign dilepton S_T distribution before S_T cut

B2G-12-015 T (charge 2/3)

Multilepton channel: trileptons

Sensitive to $T \rightarrow tZ/tH$ decays

- \geq 3 isolated leptons (p_T > 20 GeV)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV
- ≥ 3 jets
- $H_{T} > 500 \text{ GeV}, S_{T} > 700 \text{ GeV}$

B2G-12-015 T (charge 2/3)

Multilepton channel: trileptons

Sensitive to $T \rightarrow tZ/tH$ decays

- \geq 3 isolated leptons (p_T > 20 GeV)
- \ge 1 dilepton pair with mass > 20 GeV
- MET > 30 GeV
- ≥ 3 jets

•
$$H_{T} > 500 \text{ GeV}, S_{T} > 700 \text{ GeV}$$

Two main backgrounds

irreducible (SM processes with trileptons) non-prompt leptons (lepton misidentification)]- E

Estimated from observed data

Multilepton channel: trilepton distributions

Multilepton channel: event yields

Predicted number of events agree with observed, within uncertainties

Channel	OS1	OS2	SS	Trileptons
tī	5.2 ± 1.9	80 ± 12	_	_
Single top quark	2.5 ± 1.3	2.0 ± 1.0	—	—
Z	9.7 ± 2.9	2.5 ± 1.9	—	—
tĪW	_	_	5.8 ± 1.9	0.25 ± 0.11
tīZ	_	_	1.83 ± 0.93	1.84 ± 0.94
WW	_	_	0.53 ± 0.29	_
WZ	_	_	0.34 ± 0.08	0.40 ± 0.21
ZZ	_	_	0.03 ± 0.00	0.07 ± 0.01
WWW/WWZ/ZZZ/WZZ	_	_	0.13 ± 0.07	0.08 ± 0.04
tīWW	_	_	_	0.05 ± 0.03
Charge misidentification	_	_	0.01 ± 0.00	_
Non-prompt	—	_	7.9 ± 4.3	0.99 ± 0.90
Total background	17.4 ± 3.7	84 ± 12	16.5 ± 4.8	3.7 ± 1.3
Data	20	86	18	2

B2G-12-015 T (charge 2/3)

Multilepton channel: signal efficiencies

• Table: assuming 'nominal' branching fractions BF(T \rightarrow bW) = 50%, BF(T \rightarrow tZ) = BF(T \rightarrow tH) = 25%

Channel	OS	51	OS	52	S	S	Trilep	otons
T mass (GeV)	ϵ	N	ϵ	N	ϵ	N	ϵ	N
500	0.15%	16.7	0.31%	35.1	0.19%	21.3	0.17%	19.1
600	0.27%	8.9	0.50%	16.6	0.22%	7.5	0.26%	8.5
700	0.36%	4.0	0.60%	6.6	0.25%	2.8	0.28%	3.1
800	0.39%	1.6	0.61%	2.5	0.25%	1.0	0.32%	1.3
900	0.43%	0.67	0.60%	0.96	0.25%	0.40	0.33%	0.52
1000	0.44%	0.28	0.56%	0.36	0.23%	0.15	0.33%	0.21
1100	0.44%	0.12	0.52%	0.14	0.22%	0.06	0.32%	0.09
1200	0.45%	0.05	0.46%	0.05	0.20%	0.02	0.31%	0.04

Systematic uncertainties

Treated as nuisance parameters in statistical limit setting

normalization of signal and background simulation luminosity 2.6% cross sections diboson, single top, W/Z+jets 50% ttbar 8% efficiency corrections lepton trigger and identification 3% jet energy scale and resolution b-tagging efficiency renormalization and factorization scale jet-parton matching threshold top-quark p_T distribution

proton PDF uncertainties negligible

Combined mass limits on vector-like T (charge 2/3) quarks

• Figure: assuming 'nominal' branching fractions BF(T \rightarrow bW) = 50%, BF(T \rightarrow tZ) = BF(T \rightarrow tH) = 25%

B2G-12-015 T (charge 2/3) Scanning branching fractions: combined limits

Bran	Branching fractions		Expected	Observed	
$T \to b W$	$T \to t H$	$T \to t Z$	limit (GeV)	limit (GeV)	
0.5	0.25	0.25	773	696	
0.0	0.0	1.0	813	782	
0.0	0.2	0.8	798	766	
0.0	0.4	0.6	790	747	
0.0	0.6	0.4	783	731	
0.0	0.8	0.2	773	715	
0.0	1.0	0.0	770	706	
0.2	0.0	0.8	794	758	
0.2	0.2	0.6	786	739	
0.2	0.4	0.4	777	717	
0.2	0.6	0.2	767	698	
0.2	0.8	0.0	766	694	
0.4	0.0	0.6	786	734	
0.4	0.2	0.4	776	705	
0.4	0.4	0.2	766	693	
0.4	0.6	0.0	762	690	
0.6	0.0	0.4	779	703	
0.6	0.2	0.2	771	693	
0.6	0.4	0.0	769	687	
0.8	0.0	0.2	779	695	
0.8	0.2	0.0	777	689	
1.0	0.0	0.0	785	700	

B2G-12-015 T (charge 2/3)

Limits represented in branching-fraction triangles

 Lower mass limits at 95% CL between 687 GeV and 782 GeV for all possible branching fractions

Weights of multilepton channel in combination of limits

Observed Expected CMS preliminary $\sqrt{s} = 8 \text{ TeV}$ 19.6 fb⁻¹ CMS preliminary $\sqrt{s} = 8$ TeV 19.6 fb⁻¹ BR(bW) BR(bW) **Observed Multilepton Weight Expected Multilepton Weight** 0.9 0.9 0.8 0.8 0.8 0.8 -0.7 0.7 0.6 -0.6 0.6 -0.6 n -0.5 0.5 -0.4 0.4 -0.3 0.3 0.2 -0.2 0.2 0.2 0.1 0.1 0 0 0 BR(tZ) BR(tH) BR(tZ) BR(tH)

B2G-12-015 T (charge 2/3)

43

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

B2G-12-012 1312.2391v2

Summary

Signal selection

- 2 isolated same-sign leptons ($|\eta| < 2.4$, $p_T > 30$ GeV, muon $I_{rel} < 0.20$, electron $I_{rel} < 0.15$)
- $\Delta R(lepton, top-jet) > 0.8$
- Dilepton Z-boson veto M(ee) < 76 GeV or M(ee) > 106 GeV
- Trilepton Z-boson veto using mass of pair of lepton and 'loose' lepton ($p_T > 15$ GeV, muon $I_{rel} < 0.40$, electron $I_{rel} < 0.60$)
- Number of constituents $N_c \ge 7$

AK5 jet, lepton = both 1 constituent W boson = 2 constituents top jet = 3 constituents

• $H_T > 900 \text{ GeV}$ (scalar sum of p_T of all jets and leptons)

Signal selection

- 2 isolated same-sign leptons ($|\eta| < 2.4$, $p_T > 30$ GeV, muon $I_{rel} < 0.20$, electron $I_{rel} < 0.15$)
- $\Delta R(lepton, top-jet) > 0.8$
- Dilepton Z-boson veto M(ee) < 76 GeV or M(ee) > 106 GeV
- Trilepton Z-boson veto using mass of pair of lepton and 'loose' lepton ($p_T > 15$ GeV, muon $I_{rel} < 0.40$, electron $I_{rel} < 0.60$)
- Number of constituents $N_c \ge 7$

AK5 jet, lepton = both 1 constituent W boson = 2 constituents

top jet = 3 constituents

• $H_{T} > 900 \text{ GeV}$ (scalar sum of p_{T} of all jets *and leptons*)

Signal efficiency 10-13% for strong pair production of $T_{_{5/3}}$ quarks with masses in [750-1000] GeV

Three main background sources

Irreducible

SM processes with prompt same-sign dileptons: diboson, ttW, ttWW, ttZ, W[±]W[±], WWW from simulation

Three main background sources

Irreducible

SM processes with prompt same-sign dileptons: diboson, ttW, ttWW, ttZ, W[±]W[±], WWW from simulation

Lepton charge misidentification in OS leptons (ttbar, DY)

- electron charge misid probability R (~10⁻³, dependent on p_T and η) determined from data DY events in Z mass window

-
$$N_{SS, charge misid} = N_{OS after full selection} \times R$$

Three main background sources

Irreducible

SM processes with prompt same-sign dileptons: diboson, ttW, ttWW, ttZ, W[±]W[±], WWW from simulation

Lepton charge misidentification in OS leptons (ttbar, DY)

- electron charge misid probability R (~10⁻³, dependent on p_T and η) determined from data DY events in Z mass window
- $N_{SS, charge misid} = N_{OS after full selection} \times R$

Non-prompt leptons (lepton misidentification) estimated from data using "*Tight-Loose method*"

a) N_{tight} / N_{loose} determined from data:

- for prompt leptons from DY events in Z mass window
- for non-prompt leptons from bkg enriched sample MET < 25 GeV, transverse mass(lepton,MET) < 25 GeV, \ge 1 jet with p_T > 40 GeV and Δ R > 1.0 w.r.t lepton

b) events with ≥ 1 loose leptons weighted with these ratios

Systematic uncertainties influencing acceptance

```
luminosity 2.6%
cross sections
      WZ 17%, ZZ 5.1%, ttW 32%
      other rare backgrounds 50%
lepton trigger (1\%), reconstruction and identification (1\%)
  per lepton)
pile-up
       signal 3%
       background: 3-6%
jet energy scale
       signal: 2%
       background: 3-6% for AK5 jets
       constant 3% for CA8 jets
charge misidentification background 20%
non-prompt lepton background 50%
```

Same-sign dilepton event yields

Predicted number of events agree with observed, within uncertainties

Channel	ee	еµ	μμ	All
Same-sign	0.8 ± 0.2	1.9 ± 0.4	1.3 ± 0.3	4.0 ± 0.8
Chrg. misid.	0.06 ± 0.02	0.04 ± 0.01		0.11 ± 0.02
Non-prompt	1.9 ± 1.2	0.6 ± 0.9	0.3 ± 0.6	2.8 ± 1.9
Tot. bkgnd	2.7 ± 1.3	2.5 ± 1.0	1.6 ± 0.7	6.8 ± 2.1
Obs. events	0	6	3	9
T _{5/3}	2.1 ± 0.1	4.7 ± 0.3	2.8 ± 0.2	9.7 ± 0.5

T_{5/3} mass 800 GeV

H_{T} distribution after full selection (w/o H_{T} cut)

Expected and observed spectra agree

B2G-12-012 T (charge 5/3) Illustration: vector-like quark mass variable

 T_{5/3} quark mass can be reconstructed via combination of top jets, W jets and AK5 jets

53

B2G-12-012 T (charge 5/3)

Limits assuming BF($T_{5/3} \rightarrow tW^+$) = 100%

- Event yields from all lepton (ee, eµ, µµ) channels combined
- Observed (expected) lower mass limit at 95% CL: 800 GeV (830 GeV)

Introduction to vector-like T quarks

The CMS detector

Event reconstruction and W/top jet tagging

Search for T (charge 2/3) → bW, tZ, tH single-lepton and multilepton channels

Search for T (charge 5/3) → tW⁺ same-sign dilepton channel

Summary

 Searches performed for vector-like quarks (top partners) with the CMS detector in pp collisions at sqrt(s) = 8 TeV

 Searches performed for vector-like quarks (top partners) with the CMS detector in pp collisions at sqrt(s) = 8 TeV

search for T (charge 2/3) \rightarrow bW, tZ, tHB2G-12-015single lepton and multilepton1311.7667v2

→ observed lower mass limit between 687 GeV and 782 GeV for all possible branching fractions

 Searches performed for vector-like quarks (top partners) with the CMS detector in pp collisions at sqrt(s) = 8 TeV

search for T (charge 2/3) \rightarrow bW, tZ, tHB2G-12-015single lepton and multilepton1311.7667v2

→ observed lower mass limit between 687 GeV and 782 GeV for all possible branching fractions

search for **T (charge 5/3)** → **tW**⁺ same-sign dilepton B2G-12-012 1312.2391v2

→ observed lower mass limit of 800 GeV

 Searches performed for vector-like quarks (top partners) with the CMS detector in pp collisions at sqrt(s) = 8 TeV

search for T (charge 2/3) \rightarrow bW, tZ, tHB2G-12-015single lepton and multilepton1311.7667v2

→ observed lower mass limit between 687 GeV and 782 GeV for all possible branching fractions

search for **T (charge 5/3) → tW**⁺ same-sign dilepton B2G-12-012 1312.2391v2

→ observed lower mass limit of 800 GeV

Stay tuned for new searches in the next LHC runs!

 T (charge 2/3) expected reach at 14 TeV with 3000/fb:
 5σ discovery: 1.48 TeV
 So Official CMS PAS
 95% CL exclusion: 1.85 TeV

19.5 fb⁻¹

BDT discriminator for events without b jets Single-muon channel

Single-electron channel

 $\sqrt{s} = 8 \text{ TeV}$

CMS

61

B2G-12-015 T (charge 2/3)

Smallest M_{Ib} for opposite-sign dileptons

B-tagged jet multiplicity in control region

Jet p_T spectrum well modeled by the simulation Jet 1

B2G-12-015 T (charge 2/3)

Single-muon channel

Jet 2

T signal approximate NNLO cross sections (HATHOR)

Limits represented in branching-fraction triangles

Expected

B2G-12-015 T (charge 2/3)

Single-lepton channel

Observed

B2G-12-015 T (charge 2/3) Multilepton channel: opposite-sign dileptons

B2G-12-015 T (charge 2/3) Multilepton channel: opposite-sign dileptons (OS1)

Signal efficiency vs T mass (OS1)

B2G-12-015 T (charge 2/3) Multilepton channel: opposite-sign dileptons

Signal efficiency vs T mass (OS2)

Same-sign dilepton channel

Signal efficiency vs T mass (same-sign dilepton)

Trilepton channel

Signal efficiency vs T mass (trilepton)

Signal efficiency vs T mass (multilepton)

Signal efficiency vs T mass (multilepton + lepton+jets [1])

···\.	bWtH -WTag
+	tHtH -WTag
	tZtZ -WTag
••• * •••	bWtH -NoWTag
	tHtH -NoWTag
····	tZtZ -NoWTag
•••	bWtH - OS5
••••••	bWtH - SS
··· <u>A</u> ···	bWtH - TRI
•••	tHtH - OS5
•••••••	tHtH - SS
····×···	tHtH - TRI
••••	tZtZ - OS5
¥	tZtZ - SS
	tZtZ - TRI

Signal efficiency vs T mass (multilepton + lepton+jets [2])

Mass limits on vector-like T (charge 2/3) quarks in multilepton channel

• Figure: assuming 100% branching fraction to tZ BF(T \rightarrow tZ) = 100%, BF(T \rightarrow bW) = BF(T \rightarrow tH) = 0%

Mass limits on vector-like T (charge 2/3) quarks in multilepton channel

• Figure: assuming 100% branching fraction to tH BF(T \rightarrow tH) = 100%, BF(T \rightarrow bW) = BF(T \rightarrow tZ) = 0%

Mass limits on vector-like T (charge 2/3) quarks in multilepton channel

• Figure: assuming 100% branching fraction to bW BF(T \rightarrow bW) = 100%, BF(T \rightarrow tH) = BF(T \rightarrow tZ) = 0%

Limits represented in branching-fraction triangles

B2G-12-015 T (charge 2/3)

Single-lepton channel

Mass limits on vector-like T (charge 2/3) quarks in lepton+jets channel

• Figure: assuming 'nominal' branching fractions BF(T \rightarrow bW) = 50%, BF(T \rightarrow tZ) = BF(T \rightarrow tH) = 25%

Scanning branching fractions in lepton+jets channel

	Branc	Branching Fractions			observed
Scenario	$T{\rightarrow} bW$	$T{\rightarrow} tH$	$T{\rightarrow}tZ$	limit	limit
(0) Nominal	0.5	0.25	0.25	$733~{ m GeV}$	$667~{ m GeV}$
(1) Full tZ	0.0	0.0	1.0	$689~{ m GeV}$	$644~{ m GeV}$
(2)	0.0	0.2	0.8	$695~{ m GeV}$	$660~{\rm GeV}$
(3)	0.0	0.4	0.6	$708 { m ~GeV}$	$665~{ m GeV}$
(4)	0.0	0.6	0.4	$720 {\rm GeV}$	$676~{ m GeV}$
(5)	0.0	0.8	0.2	$738~{ m GeV}$	$684~{\rm GeV}$
(6) Full tH	0.0	1.0	0.0	$753~{ m GeV}$	$689~{ m GeV}$
(7)	0.2	0.0	0.8	$693~{\rm GeV}$	$639~{ m GeV}$
(8)	0.2	0.2	0.6	$698~{ m GeV}$	$660~{\rm GeV}$
(9)	0.2	0.4	0.4	$720 { m GeV}$	$669~{ m GeV}$
(10)	0.2	0.6	0.2	$733~{\rm GeV}$	$677~{ m GeV}$
(11)	0.2	0.8	0.0	$752 {\rm GeV}$	$686~{ m GeV}$
(12)	0.4	0.0	0.6	$698~{ m GeV}$	$645~{\rm GeV}$
(13)	0.4	0.2	0.4	$718~{\rm GeV}$	$660~{\rm GeV}$
(14)	0.4	0.4	0.2	$728 { m ~GeV}$	$674~{\rm GeV}$
(15)	0.4	0.6	0.0	$748 { m ~GeV}$	$680~{\rm GeV}$
(16)	0.6	0.0	0.4	$703~{\rm GeV}$	$648~{ m GeV}$
(17)	0.6	0.2	0.2	$735 {\rm GeV}$	$665~{\rm GeV}$
(18)	0.6	0.4	0.0	$749~{\rm GeV}$	$676~{ m GeV}$
(19)	0.8	0.0	0.2	$729 {\rm GeV}$	$661~{\rm GeV}$
(20)	0.8	0.2	0.0	$748 { m ~GeV}$	$671~{\rm GeV}$
(21) Full bW	1.0	0.0	0.0	$755~{ m GeV}$	$669~{ m GeV}$

Mass limits on vector-like T (charge 2/3) quarks in multilepton channel

• Figure: assuming 'nominal' branching fractions BF(T \rightarrow bW) = 50%, BF(T \rightarrow tZ) = BF(T \rightarrow tH) = 25%

Scanning branching fractions in multilepton channel

	Branc	Branching Fractions			observed
Scenario	$T \rightarrow bW$	$T{\rightarrow} tH$	$T \rightarrow tZ$	limit	limit
(0) Nominal	0.5	0.25	0.25	$683~{ m GeV}$	$668~{ m GeV}$
(1) Full tZ	0.0	0.0	1.0	$793~{\rm GeV}$	$794 {\rm GeV}$
(2)	0.0	0.2	0.8	$779 \mathrm{GeV}$	782 GeV
(3)	0.0	0.4	0.6	$759 \mathrm{GeV}$	$759 \mathrm{GeV}$
(4)	0.0	0.6	0.4	728 GeV	727 GeV
(5)	0.0	0.8	0.2	$694 \mathrm{GeV}$	692 GeV
(6) Full tH	0.0	1.0	0.0	$673~{\rm GeV}$	$668~{\rm GeV}$
(7)	0.2	0.0	0.8	$775 \mathrm{GeV}$	775 GeV
(8)	0.2	0.2	0.6	751 GeV	750 GeV
(9)	0.2	0.4	0.4	712 GeV	706 GeV
(10)	0.2	0.6	0.2	$684 \mathrm{GeV}$	677 GeV
(11)	0.2	0.8	0.0	653 GeV	633 GeV
(12)	0.4	0.0	0.6	744 GeV	742 GeV
(13)	0.4	0.2	0.4	$701 \mathrm{GeV}$	694 GeV
(14)	0.4	0.4	0.2	677 GeV	660 GeV
(15)	0.4	0.6	0.0	636 GeV	$595 {\rm GeV}$
(16)	0.6	0.0	0.4	$699 \mathrm{GeV}$	$692 \mathrm{GeV}$
(17)	0.6	0.2	0.2	$677 \mathrm{GeV}$	655 GeV
(18)	0.6	0.4	0.0	$645 {\rm GeV}$	592 GeV
(19)	0.8	0.0	0.2	687 GeV	670 GeV
(20)	0.8	0.2	0.0	$675 \mathrm{GeV}$	632 GeV
(21) Full bW	1.0	0.0	0.0	$698 \mathrm{GeV}$	$678 \mathrm{GeV}$

Mass limits on vector-like T (charge 2/3) quarks with all channels

• Figure: assuming 100% branching fraction to tZ BF(T \rightarrow tZ) = 100%, BF(T \rightarrow bW) = BF(T \rightarrow tH) = 0%

Mass limits on vector-like T (charge 2/3) quarks with all channels

• Figure: assuming 100% branching fraction to tH BF(T \rightarrow tH) = 100%, BF(T \rightarrow bW) = BF(T \rightarrow tZ) = 0%

Mass limits on vector-like T (charge 2/3) quarks with all channels

• Figure: assuming 100% branching fraction to bW BF(T \rightarrow bW) = 100%, BF(T \rightarrow tH) = BF(T \rightarrow tZ) = 0%

Number of selected events (OS1)

Sample	$\mu\mu$	$\mathrm{e}\mu$	ee	Sum
Signal:				
Tprime500 BWTZ	2.52 ± 0.28	3.50 ± 0.33	1.47 ± 0.19	7.49 ± 0.59
Tprime500 TZTZ	0.44 ± 0.13	0.50 ± 0.13	0.27 ± 0.10	1.21 ± 0.22
Tprime500 THTZ	0.02 ± 0.02	0.39 ± 0.20	0.20 ± 0.14	0.62 ± 0.25
Tprime500 THTH	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Tprime500 BWTH	3.98 ± 0.61	5.38 ± 0.73	2.50 ± 0.48	11.86 ± 1.20
Tprime500 BWBW	13.66 ± 1.07	22.63 ± 1.60	10.39 ± 0.86	46.68 ± 3.06
Summed Signal (Nominal BR):				16.66
Tprime800 BWTZ	0.19 ± 0.02	0.39 ± 0.03	0.19 ± 0.02	0.78 ± 0.06
Tprime800 TZTZ	0.05 ± 0.01	0.07 ± 0.01	0.03 ± 0.01	0.15 ± 0.02
Tprime800 THTZ	0.03 ± 0.01	0.04 ± 0.01	0.03 ± 0.01	0.10 ± 0.02
Tprime800 THTH	0.04 ± 0.02	0.08 ± 0.02	0.01 ± 0.01	0.13 ± 0.03
Tprime800 BWTH	0.41 ± 0.04	0.56 ± 0.05	0.25 ± 0.03	1.22 ± 0.09
Tprime800 BWBW	1.28 ± 0.08	2.11 ± 0.13	0.88 ± 0.06	4.27 ± 0.26
Summed Signal (Nominal BR):				1.60
Backgrounds:				
TTbar	0.69 ± 0.69	3.00 ± 1.39	1.50 ± 1.08	5.19 ± 1.95
SingleTop	0.99 ± 0.73	1.05 ± 0.77	0.51 ± 0.52	2.54 ± 1.25
DrellYan	6.64 ± 1.99	0.00 ± 0.00	3.03 ± 0.91	9.67 ± 2.90
Total Background	8.31 ± 2.23	4.04 ± 1.59	5.05 ± 1.50	17.40 ± 3.71
Data	7.00	6.00	7.00	20.00

Signal efficiency (OS1)

t' Mass	Decay channel						
	bWtZ	tZtZ	tHtZ	tHtH	bWtH	bWbW	
$500 {\rm GeV}$	0.067 ± 0.004	0.011 ± 0.002	0.006 ± 0.002	0.000 ± 0.000	0.106 ± 0.009	0.418 ± 0.012	
$600 {\rm GeV}$	0.132 ± 0.007	0.016 ± 0.003	0.015 ± 0.004	0.009 ± 0.003	0.179 ± 0.012	0.742 ± 0.016	
$700 {\rm GeV}$	0.165 ± 0.008	0.030 ± 0.003	0.017 ± 0.003	0.011 ± 0.003	0.271 ± 0.014	0.974 ± 0.018	
$800 {\rm GeV}$	0.191 ± 0.008	0.036 ± 0.004	0.024 ± 0.004	0.032 ± 0.004	0.299 ± 0.015	1.048 ± 0.018	
$900 {\rm GeV}$	0.221 ± 0.007	0.049 ± 0.004	0.036 ± 0.003	0.031 ± 0.005	0.328 ± 0.011	1.116 ± 0.020	
$1000~{\rm GeV}$	0.230 ± 0.009	0.051 ± 0.004	0.044 ± 0.004	0.043 ± 0.006	0.326 ± 0.011	1.150 ± 0.019	
$1100~{\rm GeV}$	0.225 ± 0.009	0.055 ± 0.004	0.055 ± 0.004	0.038 ± 0.006	0.339 ± 0.011	1.151 ± 0.019	
$1200~{\rm GeV}$	0.238 ± 0.009	0.059 ± 0.004	0.051 ± 0.004	0.048 ± 0.006	0.345 ± 0.011	1.155 ± 0.020	
$1300~{\rm GeV}$	0.217 ± 0.009	0.061 ± 0.005	0.057 ± 0.004	0.057 ± 0.006	0.343 ± 0.011	1.106 ± 0.019	
$1400~{\rm GeV}$	0.223 ± 0.006	0.062 ± 0.005	0.064 ± 0.005	0.056 ± 0.007	0.318 ± 0.011	1.065 ± 0.013	
$1500~{\rm GeV}$	0.219 ± 0.006	0.069 ± 0.005	0.068 ± 0.003	0.048 ± 0.006	0.290 ± 0.010	1.174 ± 0.019	

Number of selected events (OS2)

Sample	$\mu\mu$	$\mathrm{e}\mu$	ee	Sum
Signal:				
Tprime500 BWTZ	19.98 ± 1.35	8.70 ± 0.66	11.83 ± 0.85	40.51 ± 2.58
Tprime500 TZTZ	43.74 ± 2.89	13.94 ± 1.07	27.86 ± 1.92	85.54 ± 5.40
Tprime500 THTZ	33.44 ± 2.66	13.94 ± 1.40	23.87 ± 2.06	71.25 ± 4.98
Tprime500 THTH	15.55 ± 1.72	17.91 ± 1.86	10.29 ± 1.45	43.75 ± 3.61
Tprime500 BWTH	7.51 ± 0.98	12.18 ± 1.33	4.94 ± 0.74	24.64 ± 2.15
Tprime500 BWBW	1.94 ± 0.28	3.43 ± 0.39	2.04 ± 0.30	7.41 ± 0.67
Summed Signal (Nominal BR):				35.13
Tprime800 BWTZ	1.22 ± 0.08	0.53 ± 0.04	0.74 ± 0.05	2.49 ± 0.16
Tprime800 TZTZ	3.14 ± 0.20	1.05 ± 0.07	2.10 ± 0.14	6.30 ± 0.39
Tprime800 THTZ	2.40 ± 0.17	1.26 ± 0.10	1.51 ± 0.11	5.17 ± 0.33
Tprime800 THTH	1.15 ± 0.10	1.96 ± 0.15	0.64 ± 0.07	3.76 ± 0.26
Tprime800 BWTH	0.57 ± 0.06	0.91 ± 0.08	0.42 ± 0.05	1.90 ± 0.14
Tprime800 BWBW	0.12 ± 0.01	0.20 ± 0.02	0.09 ± 0.01	0.41 ± 0.03
Summed Signal (Nominal BR) :				2.48
Backgrounds:				
TTbar	26.63 ± 5.17	39.48 ± 6.93	13.54 ± 3.26	79.65 ± 11.89
SingleTop	0.97 ± 0.71	1.03 ± 0.63	0.00 ± 0.00	2.00 ± 0.99
DrellYan	0.00 ± 0.00	0.00 ± 0.00	2.47 ± 1.90	2.47 ± 1.90
Total Background	27.59 ± 5.22	40.51 ± 6.96	16.02 ± 3.77	84.12 ± 12.08
Data	33.00	37.00	16.00	86.00

Signal efficiency (OS2)

t' Mass			Decay	channel		
	bWtZ	tZtZ	tHtZ	tHtH	bWtH	bWbW
$500 {\rm GeV}$	0.362 ± 0.008	0.765 ± 0.016	0.637 ± 0.022	0.391 ± 0.018	0.220 ± 0.012	0.066 ± 0.005
$600 {\rm GeV}$	0.554 ± 0.013	1.293 ± 0.021	1.002 ± 0.029	0.727 ± 0.025	0.349 ± 0.015	0.084 ± 0.005
$700 {\rm GeV}$	0.602 ± 0.014	1.483 ± 0.020	1.246 ± 0.029	0.972 ± 0.028	0.449 ± 0.017	0.092 ± 0.006
$800 {\rm GeV}$	0.612 ± 0.015	1.545 ± 0.023	1.269 ± 0.029	0.922 ± 0.028	0.466 ± 0.017	0.101 ± 0.005
$900~{\rm GeV}$	0.575 ± 0.011	1.512 ± 0.023	1.262 ± 0.020	0.999 ± 0.028	0.480 ± 0.012	0.105 ± 0.006
$1000~{\rm GeV}$	0.506 ± 0.013	1.372 ± 0.021	1.219 ± 0.019	0.885 ± 0.027	0.463 ± 0.012	0.095 ± 0.006
$1100~{\rm GeV}$	0.469 ± 0.013	1.241 ± 0.021	1.151 ± 0.019	0.821 ± 0.026	0.422 ± 0.011	0.097 ± 0.006
$1200 { m GeV}$	0.402 ± 0.012	1.200 ± 0.019	0.966 ± 0.017	0.698 ± 0.024	0.372 ± 0.010	0.088 ± 0.005
$1300~{\rm GeV}$	0.387 ± 0.011	1.019 ± 0.019	0.874 ± 0.016	0.626 ± 0.021	0.323 ± 0.010	0.083 ± 0.005
$1400~{\rm GeV}$	0.323 ± 0.007	0.880 ± 0.017	0.809 ± 0.016	0.566 ± 0.021	0.296 ± 0.009	0.074 ± 0.003
$1500~{\rm GeV}$	0.301 ± 0.007	0.773 ± 0.015	0.690 ± 0.009	0.518 ± 0.021	0.269 ± 0.009	0.052 ± 0.004

Number of selected events (same-sign dilepton)

Sample	$\mu\mu$	$\mathrm{e}\mu$	ee	Sum
Signal:				
Tprime500 BWTZ	5.85 ± 0.50	9.55 ± 0.70	4.64 ± 0.40	20.04 ± 1.35
Tprime500 TZTZ	12.06 ± 0.96	20.21 ± 1.46	9.11 ± 0.77	41.38 ± 2.74
Tprime500 THTZ	10.63 ± 1.17	22.47 ± 1.99	8.51 ± 1.00	41.62 ± 3.17
Tprime500 THTH	13.57 ± 1.59	22.31 ± 2.23	9.66 ± 1.32	45.55 ± 3.73
Tprime500 BWTH	5.89 ± 0.85	12.98 ± 1.44	3.68 ± 0.64	22.56 ± 2.06
Summed Signal (Nominal BR) :				21.31
Tprime800 BWTZ	0.28 ± 0.03	0.50 ± 0.04	0.25 ± 0.02	1.03 ± 0.07
Tprime800 TZTZ	0.53 ± 0.04	0.99 ± 0.07	0.46 ± 0.04	1.98 ± 0.13
Tprime800 THTZ	0.48 ± 0.05	0.90 ± 0.08	0.46 ± 0.05	1.85 ± 0.13
Tprime800 THTH	0.68 ± 0.07	1.01 ± 0.09	0.52 ± 0.06	2.21 ± 0.17
Tprime800 BWTH	0.35 ± 0.04	0.55 ± 0.06	0.21 ± 0.03	1.12 ± 0.09
Summed Signal (Nominal BR) :				1.03
Backgrounds:				
WW	0.08 ± 0.06	0.38 ± 0.22	0.07 ± 0.06	0.53 ± 0.29
WZ	0.09 ± 0.03	0.22 ± 0.06	0.04 ± 0.02	0.34 ± 0.08
ZZ	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.03 ± 0.00
TTW	1.97 ± 0.66	2.84 ± 0.94	0.94 ± 0.33	5.75 ± 1.87
WWW	0.03 ± 0.02	0.09 ± 0.05	0.01 ± 0.01	0.13 ± 0.07
TTZ	0.65 ± 0.35	0.91 ± 0.47	0.27 ± 0.15	1.83 ± 0.93
ChargeMisID	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.00
Total Prompt MC	2.84 ± 0.75	4.45 ± 1.08	1.33 ± 0.37	8.62 ± 2.12
Non-Prompt	1.25 ± 1.01	4.81 ± 2.68	1.85 ± 1.14	7.91 ± 4.26
Total Background	4.09 ± 1.26	9.26 ± 2.89	3.19 ± 1.20	16.53 ± 4.75
Data	8.00	8.00	2.00	18.00

Signal efficiency (same-sign dilepton)

t' Mass			Decay of	channel		
	bWtZ	tZtZ	tHtZ	tHtH	bWtH	bWbW
$500 { m GeV}$	0.179 ± 0.006	0.370 ± 0.011	0.372 ± 0.017	0.408 ± 0.018	0.202 ± 0.011	0.001 ± 0.000
$600~{\rm GeV}$	0.230 ± 0.009	0.435 ± 0.012	0.404 ± 0.019	0.467 ± 0.020	0.241 ± 0.012	0.002 ± 0.001
$700~{\rm GeV}$	0.262 ± 0.009	0.458 ± 0.012	0.456 ± 0.017	0.527 ± 0.021	0.282 ± 0.013	0.001 ± 0.001
$800 { m GeV}$	0.253 ± 0.009	0.486 ± 0.013	0.453 ± 0.017	0.543 ± 0.020	0.275 ± 0.013	0.004 ± 0.001
$900~{\rm GeV}$	0.252 ± 0.007	0.455 ± 0.013	0.447 ± 0.012	0.580 ± 0.021	0.265 ± 0.009	0.001 ± 0.001
$1000 { m ~GeV}$	0.246 ± 0.009	0.446 ± 0.012	0.399 ± 0.011	0.507 ± 0.020	0.245 ± 0.008	0.000 ± 0.000
$1100 { m ~GeV}$	0.235 ± 0.009	0.427 ± 0.012	0.394 ± 0.011	0.450 ± 0.019	0.228 ± 0.008	0.002 ± 0.001
$1200 { m GeV}$	0.206 ± 0.009	0.408 ± 0.011	0.369 ± 0.011	0.364 ± 0.018	0.208 ± 0.008	0.002 ± 0.001
$1300~{\rm GeV}$	0.199 ± 0.008	0.388 ± 0.012	0.342 ± 0.010	0.353 ± 0.016	0.192 ± 0.007	0.003 ± 0.001
$1400~{\rm GeV}$	0.188 ± 0.006	0.359 ± 0.011	0.303 ± 0.010	0.313 ± 0.016	0.158 ± 0.007	0.001 ± 0.000
$1500~{\rm GeV}$	0.182 ± 0.005	0.311 ± 0.010	0.287 ± 0.006	0.299 ± 0.015	0.171 ± 0.007	0.001 ± 0.001

Number of selected events (trilepton)

Sample	$\mu\mu\mu$	$e\mu\mu$ or $ee\mu$	eee	Sum
Signal:				
Tprime500 BWTZ	11.46 ± 0.83	15.89 ± 1.10	5.08 ± 0.44	32.44 ± 2.10
Tprime500 TZTZ	23.84 ± 1.69	36.02 ± 2.42	11.71 ± 0.94	71.57 ± 4.56
Tprime500 THTZ	10.72 ± 1.15	22.95 ± 1.98	4.77 ± 0.68	38.43 ± 2.94
Tprime500 THTH	2.99 ± 0.69	6.57 ± 1.03	1.05 ± 0.43	10.61 ± 1.39
Tprime500 BWTH	1.27 ± 0.39	2.80 ± 0.55	0.31 ± 0.18	4.38 ± 0.73
Summed Signal (Nominal BR):				19.14
Tprime800 BWTZ	0.74 ± 0.05	1.11 ± 0.08	0.37 ± 0.03	2.22 ± 0.14
Tprime800 TZTZ	1.49 ± 0.10	2.43 ± 0.16	0.79 ± 0.06	4.72 ± 0.29
Tprime800 THTZ	0.72 ± 0.06	1.41 ± 0.11	0.45 ± 0.04	2.57 ± 0.18
Tprime800 THTH	0.15 ± 0.03	0.42 ± 0.05	0.10 ± 0.02	0.67 ± 0.07
Tprime800 BWTH	0.08 ± 0.02	0.19 ± 0.03	0.03 ± 0.01	0.30 ± 0.04
Summed Signal (Nominal BR):				1.29
Backgrounds:				
TTWW	0.01 ± 0.01	0.03 ± 0.02	0.00 ± 0.00	0.05 ± 0.03
TTW	0.03 ± 0.03	0.22 ± 0.10	0.00 ± 0.00	0.25 ± 0.11
TTZ	0.54 ± 0.29	0.95 ± 0.49	0.35 ± 0.19	1.84 ± 0.94
WW	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
WZ	0.12 ± 0.07	0.26 ± 0.14	0.02 ± 0.02	0.40 ± 0.21
ZZ	0.02 ± 0.00	0.03 ± 0.01	0.01 ± 0.00	0.07 ± 0.01
Tri-bosons	0.03 ± 0.02	0.04 ± 0.03	0.00 ± 0.00	0.08 ± 0.04
ZG	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Total Prompt MC	0.76 ± 0.30	1.54 ± 0.52	0.39 ± 0.19	2.69 ± 0.97
Non-Prompt	0.00 ± 0.00	0.99 ± 0.90	0.00 ± 0.00	0.99 ± 0.90
Total Background	0.76 ± 0.30	2.54 ± 1.04	0.39 ± 0.19	3.69 ± 1.32
Data	0.00	0.00	2.00	2.00

Signal efficiency (trilepton)

t' Mass			Decay cha	nnel		
	bWtZ	tZtZ	tHtZ	tHtH	bWtH	bWbW
$500 {\rm GeV}$	0.290 ± 0.008	0.640 ± 0.015	0.344 ± 0.016	0.095 ± 0.009	0.039 ± 0.005	$0. \pm 0.$
$600~{\rm GeV}$	0.433 ± 0.012	0.916 ± 0.018	0.510 ± 0.021	0.150 ± 0.011	0.072 ± 0.006	$0.\ \pm\ 0.$
$700~{\rm GeV}$	0.484 ± 0.013	1.046 ± 0.017	0.548 ± 0.020	0.171 ± 0.012	0.064 ± 0.006	$0. \pm 0.$
$800~{\rm GeV}$	0.545 ± 0.014	1.157 ± 0.020	0.631 ± 0.021	0.164 ± 0.011	0.073 ± 0.006	$0. \pm 0.$
$900~{\rm GeV}$	0.566 ± 0.011	1.192 ± 0.020	0.632 ± 0.015	0.188 ± 0.012	0.082 ± 0.005	$0. \pm 0.$
$1000~{\rm GeV}$	0.564 ± 0.013	1.205 ± 0.020	0.639 ± 0.014	0.200 ± 0.013	0.092 ± 0.005	$0. \pm 0.$
$1100~{\rm GeV}$	0.576 ± 0.014	1.184 ± 0.020	0.583 ± 0.014	0.170 ± 0.012	0.087 ± 0.005	$0.\ \pm\ 0.$
$1200~{\rm GeV}$	0.514 ± 0.013	1.171 ± 0.019	0.586 ± 0.014	0.167 ± 0.011	0.091 ± 0.005	$0. \pm 0.$
$1300~{\rm GeV}$	0.501 ± 0.013	1.033 ± 0.019	0.510 ± 0.013	0.210 ± 0.012	0.080 ± 0.005	$0.\ \pm\ 0.$
$1400~{\rm GeV}$	0.458 ± 0.009	0.962 ± 0.018	0.486 ± 0.013	0.142 ± 0.011	0.069 ± 0.004	$0. \pm 0.$
$1500~{\rm GeV}$	0.420 ± 0.008	0.883 ± 0.016	0.447 ± 0.008	0.158 ± 0.011	0.057 ± 0.004	$0.\ \pm\ 0.$

$H_{\scriptscriptstyle T}$ distribution cross-check

 Expected and observed spectra agree after requirement of same-sign dileptons, Z-boson veto and ≥ 2 jets

