

Searches for Vector-Like Quarks in the one lepton final state

Clement Helsens CERN

Signatures: 4th generation quarks

 4thGeneration models have a restricted list of available signatures that simplify the search strategy: TT → WbWb, BB→tWtW → WbW WbW

		TB _d	
41 (0Z)		BB	
31 (0Z)		BB	
l+l- (0Z)		TT,BB	
1±1±		BB	
l± (4j)		TT	
l± (≥6j)		BB	

3

Vector-Like-Quarks

 If we consider VLQ models, there are many signatures that could be exploited, and which are ultimately needed to both enhance discovery potential and model discrimination.

Overall ATLAS strategy

Will not talk about B today as no 1 lepton VLQ interpretation has been made public yet...

7TeV, 1fb⁻¹ Phys. Rev. Lett. 108, 261802 (2012)

7TeV, 1fb⁻¹Phys. Rev. Lett. 108, 261802 (2012)7TeV, 4.7fb⁻¹Phys. Lett. B718(2013) 1284

7TeV, 1fb⁻¹Phys. Rev. Lett. 108, 261802 (2012)7TeV, 4.7fb⁻¹Phys. Lett. B718(2013) 12848TeV, 14.3fb⁻¹ATL-CONF-2013-060

7TeV, 1fb⁻¹Phys. Rev. Lett. 108, 261802 (2012)7TeV, 4.7fb⁻¹Phys. Lett. B718(2013) 12848TeV, 14.3fb⁻¹ATL-CONF-2013-0608TeV, 14.3fb⁻¹ATL-CONF-2013-028

7TeV, 1fb⁻¹ Phys. Rev. Lett. 108, 261802 (2012) 7TeV, 4.7fb⁻¹ Phys. Lett. B718(2013) 1284 8TeV, 14.3fb⁻¹ ATL-CONF-2013-060 8TeV, 14.3fb⁻¹ ATL-CONF-2013-028 8TeV, 14.3fb⁻¹ ATL-CONF-2013-060

Signal samples

- Signal samples generated with PROTOS
 - Singlet model → checked that reweighting Singlet to Doublet BR is equivalent than generating Doublet (analysis not sensitive to chirality of the TWb coupling)
 - Masses 350-1100 GeV in steps of 50GeV
 - Original BR == 1/3 and apply a re-weighting procedure to achieve the desired BR

15/09/2014 C. Helsens, VLQ 1 lepton at ATLAS

Common objects

- Jets:
 - p_⊤ > 25GeV
 - |η|< 2.5
 - antik_T 0.4 cone
- B-tagging:
 - Multivariate algorithm
 - 70% efficiency to tag b-quark
 - Light rejection factor ~130
 - Charm rejection factor ~5

Electron:

- Single electron trigger
- isolated
- p_⊤> 25GeV
- |η|<2.47 removing crack region [1.37, 1.52]
- <u>Muon:</u>
 - Single muon trigger
 - isolated
 - p_T > 25GeV; |η|< 2.5
- <u>Topological</u>
 - $M_{T}(W) + E_{T}^{Miss} > 60 GeV$
 - E_τ^{Miss} > 20GeV

Overall strategy

- This analysis focuses on high multiplicities
 - ≥6 jets
 - ==2, ==3 and ≥4 b-jets
- Ht+X production with X=(Ht, Zt, Wb), always at least 2 b-jets
 - top \rightarrow Wb ~100%
 - H(125) → bb ~58%
 - Z → bb ~20%
- Thus sensitive in the high b-jets multiplicities regions to
 - HtHt, HtZt, HtWb, ZtZt, ZtWb
- Use H_T as discriminant
 - $\Sigma jet p_T + lepton p_T + E_T^{Miss}$
 - Model independent, same shape for the different decays

≥6jets ≥4 tags selection

- H_{T} is a suitable discriminating variable between signal and background
 - Peaks at ~twice the signal mass
 - Expect a very good signal to background discrimination at high H_T !
- Different decay modes have the same H_T shape
 - Rather independent of the signal decay mode \odot
 - Not possible to discriminate between models 😕

ttbar re-scaling

- Use the 3 channels with different ttbar composition:
 - ≥6 jets, ==2 tags (dominated by ttbar+light)
 - ≥6 jets, ==3tags (dominated by ttbar+light, with large fraction of ttbar+HF)
 - ≥6 jets, ≥4 tags (dominated by ttbar+HF)
- Consider 2 free parameters:
 - ttbar+HF scaling factor
 - ttbar+light scaling factor
- Perform a fit to data
 - ttbar+HF= 1.22 ± 0.08
 - ttbar+light= 0.88 ± 0.02
- Main purpose of this correction
 - Improve the modeling
 - Reduce the impact of systematic uncertainties on the background (fit is done during statistical analysis)

Signal region

- Ttbar +HF and light are by far the main BG contribution
- Blind ≥6 jets, ==2 tags with H_T>800GeV for orthogonality with Wb+X

	\geq 6 jets, 2 <i>b</i> -tags	\geq 6 jets, 3 <i>b</i> -tags	\geq 6 jets, \geq 4 <i>b</i> -tags
tt+heavy-flavour jets	1500 ± 900	900 ± 400	170 ± 70
tt+light-flavour jets	9600 ± 1000	1900 ± 350	75 ± 22
W+jets	250 ± 130	50 ± 30	5 ± 3
Z+jets	50 ± 40	9 ± 6	0.5 ± 0.9
Single top	300 ± 70	75 ± 18	7 ± 3
Diboson	1.7 ± 0.6	0.3 ± 0.1	0.03 ± 0.03
tĪV	70 ± 20	36 ± 12	7 ± 3
tīH	28 ± 4	31 ± 6	12 ± 3
Multijet	49 ± 23	1.7 ± 0.8	0.15 ± 0.06
Total background	11860 ± 260	2990 ± 210	270 ± 60
Data	11885	2922	318
Doublet			
$t'\bar{t'}(400)$	550 ± 70	1100 ± 100	790 ± 160
$t'\bar{t'}(600)$	4.3 ± 1.2	94 ± 7	79 ± 18
$t'\bar{t'}(800)$	0.12 ± 0.05	10.7 ± 0.8	9.1 ± 2.1
Singlet			
$t'\bar{t'}(400)$	290 ± 30	650 ± 80	330 ± 70
$t'\bar{t'}(600)$	2.3 ± 0.4	61 ± 7	36 ± 9
$t'\bar{t}'(800)$	0.06 ± 0.01	6.9 ± 0.7	4.2 ± 1.1

Results versus mass

- Doublet m(t') > 790(745)GeV Obs(Exp)
- Singlet m(t') > 640(615)GeV Obs(Exp)

Results 2D

 We are probing a region of phase space that was never probed before!

 For example, a T quark with a mass of 600GeV and BR(T→Ht)>0.3 is excluded at 95% C.L. regardless of the values of BR(T →Wb)

- This analysis focuses on events with boosted hadronic and leptonic Ws in the final state:
 - Developed a strategy to identify boosted hadronic Ws
 - Apply tight cuts
- Heavy quarks T decaying to Wb
- The reconstructed mass will be used as discriminant
 - Hadronic mass m(W_{had},b)
 - Optimized for WbWb final states

Strategy

- Optimize the analysis for masses > 500GeV
- Important fraction of boosted W bosons
 - Small angular separation between the decay products
- Boosted hadronic W reconstruction:
 - Combining 2 close-by jets

Strategy

- Optimize the analysis for masses > 500GeV
- Important fraction of boosted W bosons
 - small angular separation between the decay products
- Boosted hadronic W reconstruction:
 - Combining 2 close-by jets
 - In a single jet

Strategy

- Optimize the analysis for masses > 500GeV
- Important fraction of boosted W bosons
 - small angular separation between the decay products
- Boosted hadronic W reconstruction:
 - Combining 2 close-by jets
 - In a single jet
 - ΔR(W,b) very discriminant between top and heavy quark

Analysis details

- This analysis selects as b-jets the two highest MV1 weight jets in the event, one of them being tagged
 - Leading MV1 weight jet -> tagged
 - Sub-leading MV1 weight jet -> not necessarily tagged
- When talking about b-jet p_T cuts, or minΔR(W,b) and minΔR(l,b) those are the jets to be considered
- Reconstructed heavy quark mass:
 - Pair W-had and b-jet
 - Pair W-lep and b-jet
 - Take the combination that minimize |M_{had}-M_{lep}| (4 solutions, 2 bjets and 2 neutrino solution)

W_{had}, mass reconstruction

- Select at least 1 hadronic W:
 - <u>Type-I:</u>
 - Jet p_T > 250GeV; 60<m(j) <120GeV
 - Type-II:
 - 60 < m(jj) < 120GeV, p_T(jj)>250GeV, ΔR(jj)<0.8 rejecting the two highest MV1 weight jets
 - If more than 1 select the highest p_T one to reconstruct the mass
- Mass reconstruction:
 - Solve neutrino equation: 0 or 2 p_{Z} solutions. If 0 set the neutrino η to the lepton η
 - Pair W_{had} and W_{lep} with b-jets
 - Chose the solution that minimizes |M_{lep} M_{had}|
 - M_{had} used as final discriminant

Event selection

Selection	Requirements
Preselection	One electron or muon
	$E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T} > 60 \text{ GeV}$
	\geq 4 jets, \geq 1 <i>b</i> -tagged jets
loose selection	Preselection
	$\geq 1 W_{had}$ candidates
	$H_{\rm T} > 800 { m ~GeV}$
	$p_{\rm T}(b_1) > 160 \text{ GeV}, p_{\rm T}(b_2) > 80 \text{ GeV}$
	$\Delta R(\ell,\nu) < 1.2$
tight selection	loose selection
	$\min \Delta R(\ell, b) > 1.4, \min \Delta R(W_{\text{had}}, b) > 1.4$

Signal region

	loose selection	tight selection
tī	264 ± 80	10 ± 6
$t\bar{t}V$	5.1 ± 1.8	0.5 ± 0.2
W+jets	16 ± 11	6 ± 5
Z+jets	1.1 ± 1.4	0.2 ± 0.5
Single top	30 ± 7	4.4 ± 1.6
Dibosons	0.21 ± 0.15	0.06 ± 0.05
Total background	317 ± 90	21 ± 9
Data	348	37
$T\bar{T}(600 \text{ GeV})$		
Chiral fourth-generation	88 ± 10	54 ± 7
Vector-like singlet	41 ± 4	20.3 ± 2.2

Reconstructed mass used to set limits

$min\Delta R(l,b-jets)>1.4$ $min\Delta R(W,b-jets)>1.4$

Systematics

	$T\bar{T}$ (600 GeV)	tī	Non- <i>tt</i>	
Uncertainties [%] affecting only the normalisation of the m_{reco} distribution:				
Luminosity	+3.6/-3.6	+3.6/-3.6	+3.6/-3.6	
Lepton trigger, reconstruction and ID efficiency	+2.0/-2.0	+2.0/-2.0	+2.0/-2.0	
$t\bar{t}$ cross section	_	+10/-11	_	
Uncertainties [%] affecting both normalisation and shape of the m_{reco} distribution:				
Jet energy scale	+6.6/-8.4	+15/-15	+33/-22	
Jet energy resolution	+8.4/-8.4	+3.6/-3.6	+9.3/-9.3	
Jet identification efficiency	+2.3/-2.7	+2.3/-2.5	+1.9/-2.6	
<i>b</i> -quark tagging efficiency	+6.7/-7.3	+6.7/-8.9	+1.8/-2.2	
c-quark tagging efficiency	+1.6/-1.6	+4.1/-4.1	+5.6/-5.6	
Light-jet tagging efficiency	+0.3/-0.3	+0.7/-0.7	+2.7/-2.7	
$t\bar{t}$ modelling: NLO MC generator	_	+48/-48	_	
$t\bar{t}$ modelling: parton shower and fragmentation	_	+25/-25	_	
$t\bar{t}$ modelling: initial and final state QCD radiation	_	+8.8/-8.8	_	
W+jets normalisation	_	_	+8.9/-7.8	
W+heavy-flavor fractions	_	_	+18/-19	
W+jets modelling: scale variation	_	_	+11/-11	
Z+jets cross section	_	_	+1.1/-1.1	
Single top cross section	_	_	+1.9/-1.5	
Diboson cross section	_	_	< 0.1%	
$t\bar{t}V$ cross section	_	_	+1.5/-1.5	
Total	+14/-15	+59/-59	+42/-35	

Results

Chiral -> 740(770)GeV Obs (Exp) Singlet ->505(630) GeV Obs(Exp)

 $\sigma(pp \rightarrow T\overline{T}) [pb]$

Combined results

Only ATLAS combination limits versus mass in the singlet scenario 670(675) GeV Obs(Exp)

Conclusion and Outlook

- ATLAS performed the search for new heavy quarks in several decay channels
- Unfortunately no sign of new physic yet :(
- Our program of heavy quark searches is barely covering the tip of the iceberg....
 - Haven't done much in terms of combination
 - And in term of signal overlap
- Very exciting prospects ahead!
 - Higher energy in the center of mass!
 - Single production becomes very interesting
 - Lots of fun coming soon :)

Bonus

Ht+X

This analysis focuses on high jet (≥6) and b-jet (==2, ==3 and ≥4) multiplicities