

## Model Independent Framework for Searches of Top Partners

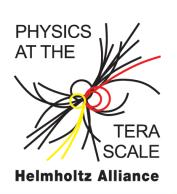
Mathieu Buchkremer - Université catholique de Louvain

Workshop on Vector-like Quarks 15th of September 2014



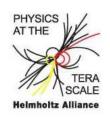






**Helmholtz Alliance** 

## **PHYSICS AT THE TERASCALE**



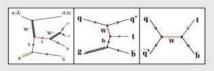
2nd Workshop on

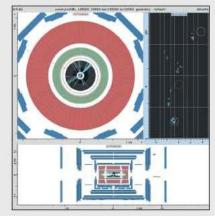
## Single-top physics and fourth-generation quarks

5 - 6 September 2011 DESY, Hamburg

#### Topics:

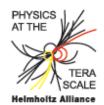
- Theoretical and experimental overview of single top and 4th generation quarks
- Single top results from ATLAS and CMS
- Searches for 4th generation quarks at ATLAS and CMS
- Monte Carlo models
- Analysis techniques





#### Helmholtz Alliance

## PHYSICS AT THE TERASCALE



# **Workshop on Vector-like Quarks 2014** 15-16 September 2014 **Hamburg University**

- Introduction.
- Model-independent framework for VLQ searches.
- Benchmark scenarios from flavour bounds.
- Conclusions & prospects.

#### Based on:

M. Buchkremer, G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl.Phys. B876 (2013) 376-417 [arXiv:1305.4172]

- Introduction.
- Model-independent framework for VLQ searches.
- Benchmark scenarios from flavour bounds.
- Conclusions & prospects.

#### Based on:

M. Buchkremer, G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl.Phys. B876 (2013) 376-417 [arXiv:1305.4172]

(

What are Vector-Like Quarks?

## What are Vector-Like Quarks?

Pedagogy =

Art of repetition

## What are Vector-Like Quarks?

- Colored Dirac fermions with 1/2 spin
- The right and left handed component of a VLQ transforms in the same way under the SM gauge group  $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

Why are they called vector-like?

## What are Vector-Like Quarks?

- Colored Dirac fermions with 1/2 spin
- The right and left handed component of a VLQ transforms in the same way under the SM gauge group  $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

Why are they called vector-like?

$$\mathcal{L} \supset \frac{g}{\sqrt{2}}(j^{\mu+}W_{\mu}^{+} + j^{\mu-}W_{\mu}^{-}) \qquad \qquad j^{\mu\pm} = j_{L}^{\mu\pm} + j_{R}^{\mu\pm}$$

## SM chiral quarks

$$j_L^\mu = \overline{f}_L \gamma^\mu f_L' \qquad j_R^\mu = 0$$
  $j_L^\mu = j_L^\mu + j_R^\mu = \overline{f} \gamma^\mu (1 - \gamma^5) f'$   $V - A$ 

$$VLQs$$
 $j_L^\mu = \overline{f}_L \gamma^\mu f_L' \qquad j_R^\mu = \overline{f}_R \gamma^\mu f_R'$ 
 $j^\mu = j_L^\mu + j_R^\mu = \overline{f} \gamma^\mu f'$ 
 $V$ 

## Puzzling feature: why does the EW interaction break Parity?

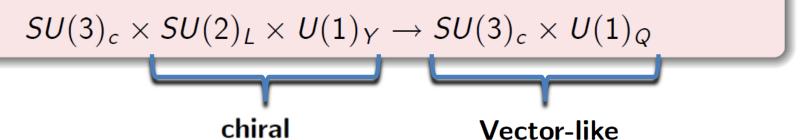
$$SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_Q$$

## Puzzling feature: why does the EW interaction break Parity?

$$SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_Q$$

Vector-like

## Puzzling feature: why does the EW interaction break Parity?



## Puzzling feature: why does the EW interaction break Parity?

$$SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_Q$$
  
Vector-like

In the Standard Model, quarks are chiral under the weak interaction  $(SU(2)_L)$ :

- Right-handed states transform as singlets
- Left-handed states transform as doublets

## Puzzling feature: why does the EW interaction break Parity?

$$SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_Q$$
  
Vector-like

In the Standard Model, quarks are chiral under the weak interaction  $(SU(2)_L)$ :

- Right-handed states transform as singlets
- Left-handed states transform as doublets

$$\left(egin{array}{c} t_L \ b_L \end{array}
ight)$$

 $t_R$ ,  $b_R$ 

## Puzzling feature: why does the EW interaction break Parity?

$$SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_Q$$
  
Vector-like

In the Standard Model, quarks are chiral under the weak interaction  $(SU(2)_L)$ :

- Right-handed states transform as singlets
- Left-handed states transform as doublets

$$\left(egin{array}{c} t_L \ b_L \end{array}
ight)$$

 $t_R$ ,  $b_R$ 

Mass terms forbidden by gauge invariance!



Fermion masses arise from EWSSB



$$M_{u,d,e} = \frac{Y_{u,d,e} \ v}{\sqrt{2}}$$

## Theoretical Motivations (a selection thereof)

#### Vector-like quarks:

- may provide a solution to the Hieararchy Problem.
- provide anomaly-free extensions of the SM.
- break the GIM mechanism, allow for non-vanishing FCNCs at tree-level.
- decouple, i.e., do not conflict with the current precision constraints if  $M \to \infty$ .
- can lead to new sources of CP violations, ...
- appear as a common ingredient of many New Physics models: Composite Higgs/top models, Universal extra-dimensions, Little Higgs models, Gauge flavoured groups, extended gauge symmetries, ... and many more.

...



See arXivs [hep-ph]: ···, 1004.4895, 1102.1987, 1103.4170, 1106.6357, 1107.1500, 1204.6333, 1205.2378, 1206.3360, 1207.4440, 1211.5663, 1302.0270, 1305.3818, 1306.2656, 1311.5928, 1404.4398, 1409.0100, 1409.0805, ···

## Properties

## **Properties**

 VLQs can have a gauge invariant mass term independently from the EWSSB mechanism

$$L_{mass} = -M(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$$

- → VLQ masses are not bounded by any symmetries
- → VLQ can exist near/above the EW scale without upsetting the existing measurements

## Properties

 VLQs can have a gauge invariant mass term independently from the EWSSB mechanism

$$L_{mass} = -M(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$$

- → VLQ masses are not bounded by any symmetries
- VLQ can exist near/above the EW scale without upsetting the existing measurements
- Vector-Like Quarks can couple to the SM Higgs doublet through standard Yukawa couplings
- → The VLQ couplings to SM quarks are either left-handed or right-handed.

 $\longrightarrow$  non-chiral quarks decay into a standard quark plus a W, Z, or H boson.

Complete list of vector-like multiplets forming mixed Yukawa terms with the SM quark representations and a SM or SMlike Higgs boson doublet

| $\psi$                 | $(SU(2)_L, U(1)_Y)$ | $T_3$ | $Q_{EM}$ |
|------------------------|---------------------|-------|----------|
| U                      | (1, 2/3)            | 0     | +2/3     |
| D                      | (1, -1/3)           | 0     | -1/3     |
| $\left(X^{8/3}\right)$ |                     | +2    | +8/3     |
| $X^{5/3}$              | (3, 5/3)            | +1    | +5/3     |
| $\bigcup U \bigcup$    |                     | 0     | +2/3     |
| $X^{5/3}$              |                     | +1    | +5/3     |
| U                      | (3, 2/3)            | 0     | +2/3     |
| ( D )                  |                     | -1    | -1/3     |
|                        |                     | +1    | +2/3     |
| D                      | (3, -1/3)           | 0     | -1/3     |
| $Y^{-4/3}$             |                     | -1    | -4/3     |

Left-handed

## Embeddings in SU(2)<sub>L</sub>× U(1)<sub>Y</sub>

| $\psi$                                                           | $(SU(2)_L, U(1)_Y)$ | $T_3$                        | $Q_{EM}$                     |
|------------------------------------------------------------------|---------------------|------------------------------|------------------------------|
| $\begin{pmatrix} U \\ D \end{pmatrix}$                           | (2, 1/6)            | $+1/2 \\ -1/2$               | $+2/3 \\ -1/3$               |
| $\begin{pmatrix} X^{5/3} \\ U \end{pmatrix}$                     | (2,7/6)             | $+1/2 \\ -1/2$               | +5/3 + 2/3                   |
| $\begin{pmatrix} D \\ Y^{-4/3} \end{pmatrix}$                    | (2, -5/6)           | $+1/2 \\ -1/2$               | $-1/3 \\ -4/3$               |
| $\begin{pmatrix} X^{8/3} \\ X^{5/3} \\ U \\ D \end{pmatrix}$     | (4,7/6)             | +3/2<br>+1/2<br>-1/2<br>-3/2 | +8/3<br>+5/3<br>+2/3<br>-1/3 |
| $\begin{pmatrix} X^{5/3} \\ U \\ D \\ Y^{-4/3} \end{pmatrix}$    | (4, 1/6)            | +3/2<br>+1/2<br>-1/2<br>-3/2 | +5/3<br>+2/3<br>-1/3<br>-4/3 |
| $ \begin{pmatrix} U \\ D \\ Y^{-4/3} \\ Y^{-7/3} \end{pmatrix} $ | (4, -5/6)           | +3/2<br>+1/2<br>-1/2<br>-3/2 | +2/3 $-1/3$ $-4/3$ $-7/3$    |

Right-handed

## Hypothesis:

Vector-Like Quarks belong to complete representations of  $SU(2)_L \times U(1)_Y$ , with chiral couplings to the SM.

This work sticks to singlet, doublet and triplet representations under the EW gauge group.

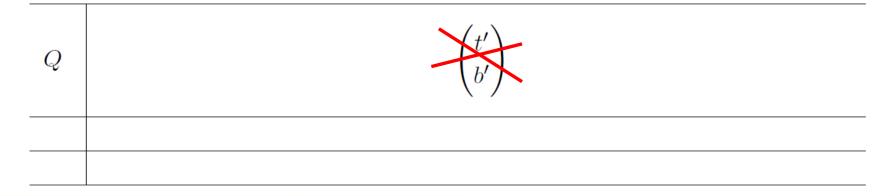
2.

## Hypothesis:

Vector-Like Quarks belong to complete representations of  $SU(2)_L \times U(1)_Y$ , with chiral couplings to the SM.

This work sticks to singlet, doublet and triplet representations under the EW gauge group.

$$Q = T_3 + \frac{Y}{2}$$



## Hypothesis:

Vector-Like Quarks belong to complete representations of  $SU(2)_L \times U(1)_Y$ , with chiral couplings to the SM.

This work sticks to singlet, doublet and triplet representations under the EW gauge group.

$$Q = T_3 + \frac{Y}{2}$$

| $Q_q$ | $T_{\frac{2}{3}}$ | $B_{-\frac{1}{3}}$ | $\begin{pmatrix} t' \\ b' \end{pmatrix}$ |
|-------|-------------------|--------------------|------------------------------------------|
| $T_3$ | 0                 | 0                  |                                          |
| Y     | 4/3               | -2/3               |                                          |

## Hypothesis:

Vector-Like Quarks belong to complete representations of  $SU(2)_L \times U(1)_Y$ , with chiral couplings to the SM.

This work sticks to singlet, doublet and triplet representations under the EW gauge group.

$$Q = T_3 + \frac{Y}{2}$$

## Hypothesis:

Vector-Like Quarks belong to complete representations of  $SU(2)_L \times U(1)_Y$ , with chiral couplings to the SM.

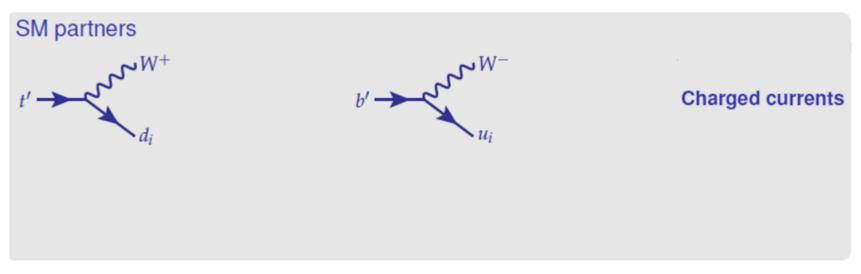
This work sticks to singlet, doublet and triplet representations under the EW gauge group.

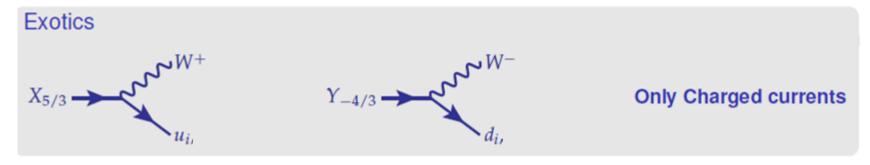
Each case leads to a different phenomenology!

$$Q = T_3 + \frac{Y}{2}$$

## Decays

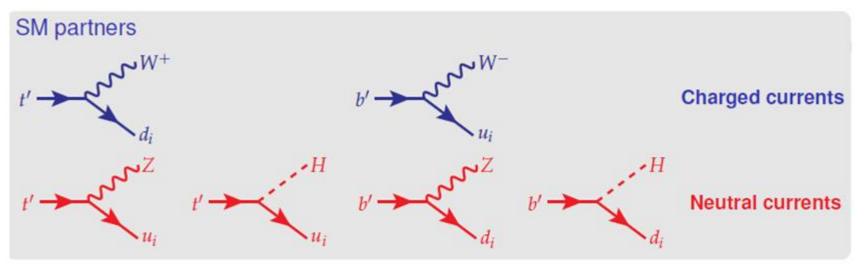
$$i = 1, 2, 3$$

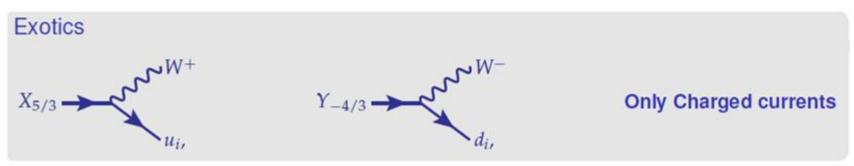




## Decays

$$i = 1, 2, 3$$

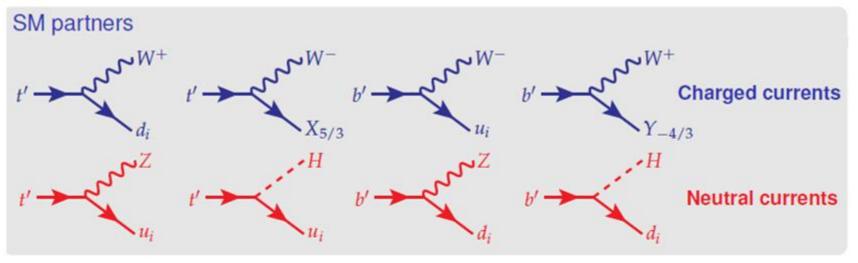


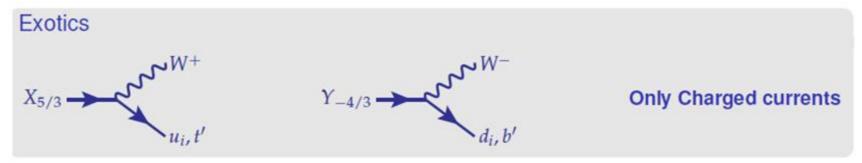


#### 2. What is a Vector-Like Quark?

## Decays

$$i = 1, 2, 3$$







- The branching ratios depend on the VLQ representations and masses
- For  $T_{2/3}$  and  $B_{-1/3}$  quarks, the Equivalence Theorem requires  $\mathsf{BR}(Q \to Zq) \simeq \mathsf{BR}(Q \to Hq) \simeq \mathsf{BR}(Q \to Wq)/2$

## Important remarks

Observation Branching ratios are never 100% in one channel.

| ť                        | Wb   | Zt  | ht  |
|--------------------------|------|-----|-----|
| Single, Triplet Y=2/3    | 50%  | 25% | 25% |
| Doublets, Triplet Y=-1/3 | ~ 0% | 50% | 50% |



3:

## Important remarks

Observation Branching ratios are never 100% in one channel.

| ť                        | Wb   | Zt  | ht  |
|--------------------------|------|-----|-----|
| Single, Triplet Y=2/3    | 50%  | 25% | 25% |
| Doublets, Triplet Y=-1/3 | ~ 0% | 50% | 50% |



VLQ interactions are allowed through arbitrary Yukawa couplings. Decays into light quarks may not be negligible (The BRs do not directly depend on the Yukawas).

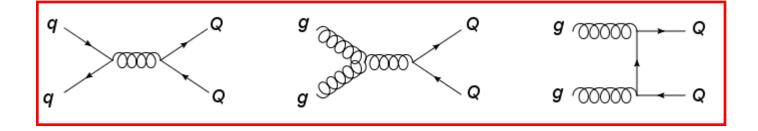
## Production

Vector-like quarks can be produced in the same way as SM quarks **plus** FCNCs channels

## Production

Vector-like quarks can be produced in the same way as SM quarks **plus** FCNCs channels

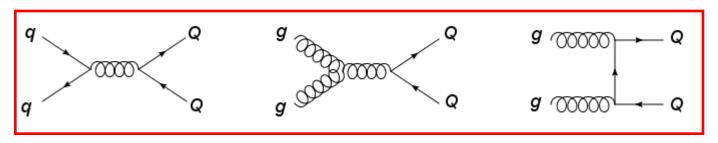
• Pair production: dominated by QCD and sensitive to the Q mass (model-independent).

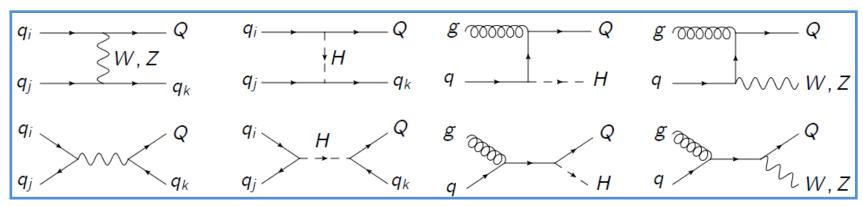


## Production

Vector-like quarks can be produced in the same way as SM quarks **plus** FCNCs channels

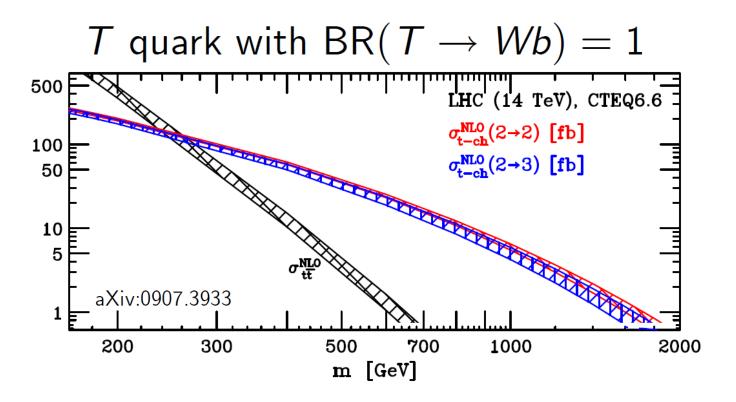
- Pair production: dominated by QCD and sensitive to the Q mass (model-independent).
- **Single production:** EW contributions are sensitive to both the Q mass and its mixing parameters (model-dependent).





- Introduction.
- Model-independent framework for VLQ searches.
- Benchmark scenarios from flavour bounds.
- Conclusions & prospects.

NLO cross sections (in fb) at the LHC 14 TeV Pair vs. t-channel single production  $(2 \rightarrow 2 \text{ and } 2 \rightarrow 3 \text{ schemes})$ 



QCD pair production decreases faster than EW single production due to different PDF scaling.

<u>ځ</u>.

Parametrisation: correlates directly the model parameters to the Branching Ratios of the VLQs

**L** 

Only required inputs

Parametrisation: correlates directly the model parameters to the Branching Ratios of the VLQs

Only required inputs

Example: a T(t') singlet coupling to Wb

$$L \supset \kappa_W V_L^{43} \frac{g}{\sqrt{2}} [\bar{T}_L W_\mu^+ \gamma^\mu b_L]$$

Parametrisation: correlates directly the model parameters to the Branching Ratios of the VLQs

Conly required inputs

Example: a T(t') singlet coupling to Wb

$$L\supset \kappa_W \, V_L^{43} \frac{g}{\sqrt{2}} [\, \bar{T}_L W_\mu^+ \gamma^\mu b_L ]$$

$$L\sim \kappa_T \, \sqrt{\xi_W \zeta_b} \, [\, \bar{T}_L W_\mu^+ \gamma^\mu b_L ]$$

$$TWb \text{ current}$$

$$\mathsf{BR}(T\to Wb)$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_T \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[ \bar{T}_L W_\mu^+ \gamma^\mu d_L^i \right]$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_T \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[ \bar{T}_L W_\mu^+ \gamma^\mu d_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[ \bar{T}_L Z_\mu \gamma^\mu u_L^i \right]$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[ \bar{T}_L W_\mu^+ \gamma^\mu d_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[ \bar{T}_L Z_\mu \gamma^\mu u_L^i \right] \right. \\ \left. - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_H^0}} \frac{M}{v} \left[ \bar{T}_R H u_L^i \right] - \sqrt{\frac{\zeta_3 \xi_H^T}{\Gamma_H^0}} \frac{m_t}{v} \left[ \bar{T}_L H t_R \right] \right\}$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[ \bar{T}_L W_\mu^+ \gamma^\mu d_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \left[ \bar{T}_L Z_\mu \gamma^\mu u_L^i \right] - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_H^0}} \frac{M}{v} \left[ \bar{T}_R H u_L^i \right] - \sqrt{\frac{\zeta_3 \xi_H^T}{\Gamma_H^0}} \frac{m_t}{v} \left[ \bar{T}_L H t_R \right] \right\} + \kappa_B \left\{ \sqrt{\frac{\zeta_i \xi_W^B}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \left[ \bar{B}_L W_\mu^- \gamma^\mu u_L^i \right] + \sqrt{\frac{\zeta_i \xi_Z^B}{\Gamma_Z^0}} \frac{g}{2c_W} \left[ \bar{B}_L Z_\mu \gamma^\mu d_L^i \right] - \sqrt{\frac{\zeta_i \xi_H^B}{\Gamma_H^0}} \frac{M}{v} \left[ \bar{B}_R H d_L^i \right] \right\}$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{T}_{L} W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{T}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{T}_{L} Z_{\mu} \gamma^{\mu} u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{T}}{\Gamma_{W}^{0}}} \frac{M}{v} \left[ \bar{T}_{R} H u_{L}^{i} \right] - \sqrt{\frac{\zeta_{3} \xi_{H}^{T}}{\Gamma_{W}^{0}}} \frac{m_{t}}{v} \left[ \bar{T}_{L} H t_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{B}_{L} W_{\mu}^{-} \gamma^{\mu} u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{B}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{B}_{L} Z_{\mu} \gamma^{\mu} d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{B}_{R} H d_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{X}_{L} W_{\mu}^{+} \gamma^{\mu} u_{L}^{i} \right] \right\}$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{T}_{L}W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{T}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{T}_{L}Z_{\mu}\gamma^{\mu}u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{T}_{R}Hu_{L}^{i} \right] - \sqrt{\frac{\zeta_{3}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{m_{t}}{v} \left[ \bar{T}_{L}Ht_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{B}_{L}W_{\mu}^{-}\gamma^{\mu}u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{B}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{B}_{L}Z_{\mu}\gamma^{\mu}d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{B}_{R}Hd_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{X}_{L}W_{\mu}^{+}\gamma^{\mu}u_{L}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{Y}_{L}W_{\mu}^{-}\gamma^{\mu}d_{L}^{i} \right] \right\} + h.c.$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{T}_{L} W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{T}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{T}_{L} Z_{\mu} \gamma^{\mu} u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{T}_{R} H u_{L}^{i} \right] - \sqrt{\frac{\zeta_{3} \xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{m_{t}}{v} \left[ \bar{T}_{L} H t_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i} \xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{B}_{L} W_{\mu}^{-} \gamma^{\mu} u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i} \xi_{Z}^{B}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{B}_{L} Z_{\mu} \gamma^{\mu} d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i} \xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{B}_{R} H d_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{X}_{L} W_{\mu}^{+} \gamma^{\mu} u_{L}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{Y}_{L} W_{\mu}^{-} \gamma^{\mu} d_{L}^{i} \right] \right\} + h.c.$$



Model-dependency "factored out"

$$BR(Q \to Vq_i) = \xi_V \zeta_i$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{T}_{L}W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{T}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{T}_{L}Z_{\mu}\gamma^{\mu}u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{T}_{R}Hu_{L}^{i} \right] - \sqrt{\frac{\zeta_{3}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{m_{t}}{v} \left[ \bar{T}_{L}Ht_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{B}_{L}W_{\mu}^{-}\gamma^{\mu}u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{B}}{\Gamma_{Z}^{0}}} \frac{g}{2c_{W}} \left[ \bar{B}_{L}Z_{\mu}\gamma^{\mu}d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{B}_{R}Hd_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{X}_{L}W_{\mu}^{+}\gamma^{\mu}u_{L}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{Y}_{L}W_{\mu}^{-}\gamma^{\mu}d_{L}^{i} \right] \right\} + h.c.$$



# Model-dependency "factored out"

$$BR(Q \to Vq_i) = \xi_V \, \zeta_i$$

# of parameters:

$$\int T \cdot \mathbf{F}$$

$$\xi_W + \xi_Z + \xi_H = 1$$

$$\zeta_1 + \zeta_2 + \zeta_3 = 1$$

### Full Lagrangian for $X_{5/3}$ , T, B, $Y_{-4/3}$

$$\mathcal{L} = \kappa_{T} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{T}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{T}_{L}W_{\mu}^{+} \gamma^{\mu} d_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{T}}{\Gamma_{Q}^{0}}} \frac{g}{2c_{W}} \left[ \bar{T}_{L}Z_{\mu}\gamma^{\mu} u_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{T}_{R}H u_{L}^{i} \right] - \sqrt{\frac{\zeta_{3}\xi_{H}^{T}}{\Gamma_{H}^{0}}} \frac{m_{t}}{v} \left[ \bar{T}_{L}H t_{R} \right] \right\}$$

$$+ \kappa_{B} \left\{ \sqrt{\frac{\zeta_{i}\xi_{W}^{B}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{B}_{L}W_{\mu}^{-} \gamma^{\mu} u_{L}^{i} \right] + \sqrt{\frac{\zeta_{i}\xi_{Z}^{B}}{\Gamma_{Q}^{0}}} \frac{g}{2c_{W}} \left[ \bar{B}_{L}Z_{\mu}\gamma^{\mu} d_{L}^{i} \right] - \sqrt{\frac{\zeta_{i}\xi_{H}^{B}}{\Gamma_{H}^{0}}} \frac{M}{v} \left[ \bar{B}_{R}H d_{L}^{i} \right] \right\}$$

$$+ \kappa_{X} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{X}_{L}W_{\mu}^{+} \gamma^{\mu} u_{L}^{i} \right] \right\} + \kappa_{Y} \left\{ \sqrt{\frac{\zeta_{i}}{\Gamma_{W}^{0}}} \frac{g}{\sqrt{2}} \left[ \bar{Y}_{L}W_{\mu}^{-} \gamma^{\mu} d_{L}^{i} \right] \right\} + h.c.$$



### Model-dependency "factored out"

$$BR(Q \to Vq_i) = \xi_V \zeta_i$$

$$\xi_W + \xi_Z + \xi_H = 1$$

$$\zeta_1 + \zeta_2 + \zeta_3 = 1$$

Feynrules, MadGraph & CalcHEP public implementations:

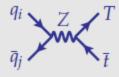
- $\bullet \ \, \mathsf{http:}//\mathsf{feynrules.irmp.ucl.ac.be}/$
- http://hepmdb.soton.ac.uk/

(complete model, and specific representations).

### Analytical cross-sections for the T quark (leading order)

In association with top

$$\sigma(T\bar{t}) = \kappa_T^2 \ \xi_Z \zeta_3 \ \bar{\sigma}_{Z3}^{T\bar{t}}$$



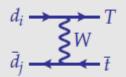
### Analytical cross-sections for the T quark (leading order)

5.

### Analytical cross-sections for the T quark (leading order)

#### In association with top

$$\sigma(T\bar{t}) = \kappa_T^2 \left( \xi_Z \zeta_3 \ \bar{\sigma}_{Z3}^{T\bar{t}} + \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Wi}^{T\bar{t}} \right) \qquad \qquad \bar{d}_j \qquad \bar{t}$$





#### In association with light quark

$$\sigma(Tj) = \kappa_T^2 \left( \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Wi}^{Tjet} + \xi_Z \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Zi}^{Tjet} \right) \qquad q_i \longrightarrow W, Z$$

$$q_i \xrightarrow{T} T$$
 $q_j \xrightarrow{W, Z} q_j$ 

$$q_i$$
 $Z$ 
 $q_j$ 
 $Z$ 
 $q_k$ 

### Analytical cross-sections for the T quark (leading order)

#### In association with top

$$\sigma(T\bar{t}) = \kappa_T^2 \left( \xi_Z \zeta_3 \ \bar{\sigma}_{Z3}^{T\bar{t}} + \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Wi}^{T\bar{t}} \right) \qquad \qquad \bar{d}_j \qquad \bar{t}$$





#### In association with light quark

$$\sigma(Tj) = \kappa_T^2 \left( \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Wi}^{Tjet} + \xi_Z \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_{Zi}^{Tjet} \right)$$

$$q_i \longrightarrow T$$

$$q_j \longrightarrow T$$





#### In association with gauge or Higgs boson

$$\sigma(T\{W,Z,H\}) = \kappa_T^2 \left( \xi_W \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_i^{TW} + \xi_Z \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_i^{TZ} + \xi_H \sum_{i=1}^3 \zeta_i \ \bar{\sigma}_i^{TH} \right)$$

$$g \longrightarrow q \qquad T \qquad g \longrightarrow W, Z \qquad g \longrightarrow W \qquad g \longrightarrow W, Z \qquad g \longrightarrow W \qquad g \longrightarrow$$

The  $\bar{\sigma}$  are model-independent coefficients: the model-dependency is factorised!

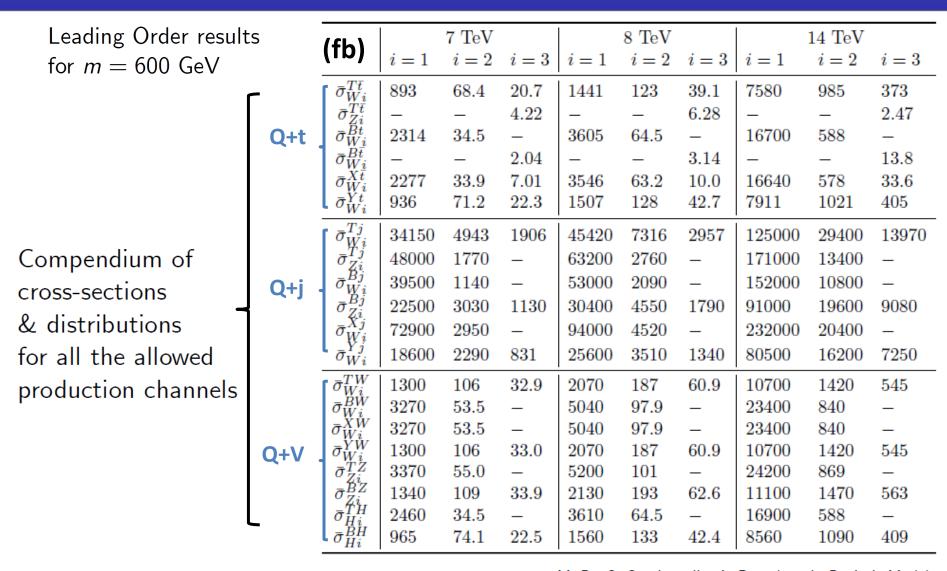
Leading Order results for m = 600 GeV

| (th)                                                                                                                                                                                        |       | 7 TeV |       |       | 8 TeV |       |        | 14 TeV |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------|-------|
| (fb)                                                                                                                                                                                        | i = 1 | i = 2 | i = 3 | i = 1 | i = 2 | i = 3 | i = 1  | i = 2  | i = 3 |
| $ar{\sigma}_{Wi}^{Tar{t}}$                                                                                                                                                                  | 893   | 68.4  | 20.7  | 1441  | 123   | 39.1  | 7580   | 985    | 373   |
| $ar{\sigma}_{Zi}^{Tar{t}}$                                                                                                                                                                  | _     | _     | 4.22  | _     | _     | 6.28  | _      | _      | 2.47  |
| $ar{\sigma}_{Zi}^{Tar{t}} \ ar{\sigma}_{Wi}^{Bt}$                                                                                                                                           | 2314  | 34.5  | _     | 3605  | 64.5  | _     | 16700  | 588    | _     |
| $\bar{\sigma}_{Wi}^{Bt}$                                                                                                                                                                    | _     | _     | 2.04  | _     | _     | 3.14  | _      | _      | 13.8  |
| $ar{\sigma}_{Wi}^{Xar{t}}$                                                                                                                                                                  | 2277  | 33.9  | 7.01  | 3546  | 63.2  | 10.0  | 16640  | 578    | 33.6  |
| $\bar{\sigma}_{Wi}^{Yt}$                                                                                                                                                                    | 936   | 71.2  | 22.3  | 1507  | 128   | 42.7  | 7911   | 1021   | 405   |
| $\bar{\sigma}_{W_i}^{T_j}$                                                                                                                                                                  | 34150 | 4943  | 1906  | 45420 | 7316  | 2957  | 125000 | 29400  | 13970 |
| $\bar{\sigma}_{Zi}^{Tj}$                                                                                                                                                                    | 48000 | 1770  | _     | 63200 | 2760  | _     | 171000 | 13400  | _     |
| $\bar{\sigma}_{W_i}^{B_j}$                                                                                                                                                                  | 39500 | 1140  | _     | 53000 | 2090  | _     | 152000 | 10800  | _     |
| $egin{array}{l} ar{\sigma}_{Wi}^{Tj} \ ar{\sigma}_{Zi}^{Tj} \ ar{\sigma}_{Wi}^{Bj} \ ar{\sigma}_{Zi}^{Bj} \ ar{\sigma}_{Zi}^{Sj} \ ar{\sigma}_{Xj}^{Tj} \ ar{\sigma}_{Xj}^{Tj} \end{array}$ | 22500 | 3030  | 1130  | 30400 | 4550  | 1790  | 91000  | 19600  | 9080  |
| $\bar{\sigma}_{Wi}^{Xj}$                                                                                                                                                                    | 72900 | 2950  | _     | 94000 | 4520  | _     | 232000 | 20400  | _     |
| $ar{\sigma}_{Wi}^{Yj}$                                                                                                                                                                      | 18600 | 2290  | 831   | 25600 | 3510  | 1340  | 80500  | 16200  | 7250  |
| $\bar{\sigma}_{Wi}^{TW}$                                                                                                                                                                    | 1300  | 106   | 32.9  | 2070  | 187   | 60.9  | 10700  | 1420   | 545   |
| $\bar{\sigma}_{Wi}^{BW}$                                                                                                                                                                    | 3270  | 53.5  | _     | 5040  | 97.9  | _     | 23400  | 840    | _     |
| $\bar{\sigma}^{XW}$                                                                                                                                                                         | 3270  | 53.5  | _     | 5040  | 97.9  | _     | 23400  | 840    | _     |
| $\bar{\sigma}_{Wi}^{YW}$                                                                                                                                                                    | 1300  | 106   | 33.0  | 2070  | 187   | 60.9  | 10700  | 1420   | 545   |
| $ar{\sigma}_{Zi}^{TZ}$                                                                                                                                                                      | 3370  | 55.0  | _     | 5200  | 101   | _     | 24200  | 869    | _     |
| $ar{\sigma}_{Zi}^{BZ}$                                                                                                                                                                      | 1340  | 109   | 33.9  | 2130  | 193   | 62.6  | 11100  | 1470   | 563   |
| $ar{\sigma}_{Hi}^{TH}$                                                                                                                                                                      | 2460  | 34.5  | _     | 3610  | 64.5  | _     | 16900  | 588    | _     |
| $\begin{array}{c} \sigma_{Wi} \\ \bar{\sigma}_{Wi}^{YW} \\ \bar{\sigma}_{Zi}^{TZ} \\ \bar{\sigma}_{Zi}^{BZ} \\ \bar{\sigma}_{Hi}^{TH} \\ \bar{\sigma}_{Hi}^{BH} \end{array}$                | 965   | 74.1  | 22.5  | 1560  | 133   | 42.4  | 8560   | 1090   | 409   |

Pair-production:

$$\sigma_{Qar{Q}}^{QCD}=$$
 109 (167) fb at LO (NLO).

M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl.Phys. B876 (2013) 376-417, arXiv:1305.4172



Pair-production:

$$\sigma_{Qar{Q}}^{QCD}=$$
 109 (167) fb at LO (NLO).

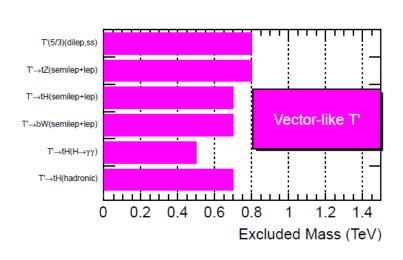
M. B., G. Cacciapaglia, A. Deandrea, L. Panizzi, *Model Independent Framework for Searches of Top Partners*, Nucl. Phys. B876 (2013) 376-417, arXiv:1305.4172

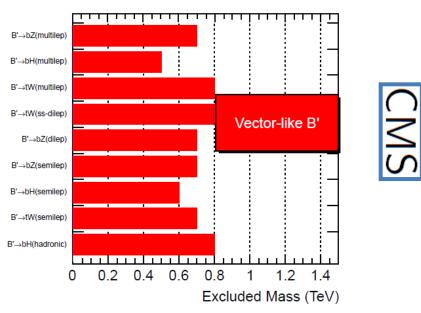
#### **Outline**

- Introduction.
- Model-independent framework for VLQ searches.
- Benchmark scenarios from flavour bounds.
- Conclusions & prospects.

### Current mass limits (direct searches, summer 2014)

- Main assumptions: pair-production + decays to  $3^{rd}$  generation quarks
- Upcoming searches: also single-production + decays to light quarks





|                 | Model                                     | $\ell$ , $\gamma$ | Jets                                  | E <sub>T</sub> miss | ∫£ dt[fb | <sup>-1</sup> ] | Mass limit |                    | Reference           |
|-----------------|-------------------------------------------|-------------------|---------------------------------------|---------------------|----------|-----------------|------------|--------------------|---------------------|
|                 |                                           |                   |                                       |                     |          | 1 1 1 1 1       |            |                    |                     |
|                 | Vector-like quark $TT \rightarrow Ht + X$ | 1 e, μ            | $\geq 2 \text{ b, } \geq 4 \text{ j}$ | Yes                 | 14.3     | T mass          | 790 GeV    | T in (T,B) doublet | ATLAS-CONF-2013-018 |
| Heavy<br>quarks | Vector-like quark $TT \rightarrow Wb + X$ | 1 e, μ            | $\geq 1$ b, $\geq 3$ j                | Yes                 | 14.3     | T mass          | 670 GeV    | isospin singlet    | ATLAS-CONF-2013-060 |
| ea<br>Iar       | Vector-like quark $TT \rightarrow Zt + X$ | 2/≥3 e, μ         | ≥2/≥1 b                               | _                   | 20.3     | T mass          | 735 GeV    | T in (T,B) doublet | ATLAS-CONF-2014-036 |
| H B             | Vector-like quark $BB \rightarrow Zb + X$ | 2/≥3 e, μ         | ≥2/≥1 b                               | -                   | 20.3     | B mass          | 755 GeV    | B in (B,Y) doublet | ATLAS-CONF-2014-036 |
|                 | Vector-like quark $BB \rightarrow Wt + X$ | 2 e,μ (SS)        | $\geq$ 1 b, $\geq$ 1 j                | Yes                 | 14.3     | B mass          | 720 GeV    | B in (T,B) doublet | ATLAS-CONF-2013-051 |



Besides the mass limits set from the direct searches, the VLQ parameters are constrained by many observables:

- Flavour Changing Neutral Currents.
- Meson mixing and decays ( $\Delta F = 2, 1$ ).
- Rare top decays.
- $Zu\bar{u}$ , and  $Zd\bar{d}$  couplings from APV.
- $Zs\bar{s}$ ,  $Zc\bar{c}$ , and  $Zb\bar{b}$  couplings from LEP.
- EW precision tests.
- Higgs physics at the LHC.

#### **Constraints** have been investigated thoroughly in:

- J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, M. Perez-Victoria, PRD 88 (2013) 094010
- G. Cacciapaglia, A. Deandrea, D. Harada, Y. Okada, JHEP 11 (2010) 159
- G. Isidori, Y. Nir, G. Perez, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355

 $oldsymbol{0}$  Model-independent bounds from  $\Delta F=2$  operators.

$$(\bar{s}_{L}\gamma^{\mu}d_{L})^{2} \Rightarrow \kappa^{4}\zeta_{1}\zeta_{2} < 5.5 \cdot 10^{-8} \Rightarrow \kappa < \frac{0.015}{\sqrt[4]{\zeta_{1}\zeta_{2}}}$$

$$(\bar{b}_{L}\gamma^{\mu}d_{L})^{2} \Rightarrow \kappa^{4}\zeta_{1}\zeta_{3} < 2.0 \cdot 10^{-7} \Rightarrow \kappa < \frac{0.02}{\sqrt[4]{\zeta_{1}\zeta_{3}}}$$

$$(\bar{b}_{L}\gamma^{\mu}s_{L})^{2} \Rightarrow \kappa^{4}\zeta_{1}\zeta_{2} < 4.6 \cdot 10^{-6} \Rightarrow \kappa < \frac{0.045}{\sqrt[4]{\zeta_{2}\zeta_{3}}}$$

$$(\bar{c}_{L}\gamma^{\mu}u_{L})^{2} \Rightarrow \kappa^{4}\zeta_{1}\zeta_{2} < 3.4 \cdot 10^{-8} \Rightarrow \kappa < \frac{0.014}{\sqrt[4]{\zeta_{1}\zeta_{2}}}$$



applies to the product of the coupling to two generations (stronger)

$$Z\bar{u}u\left(APV\right) \Rightarrow |\delta g_{L/R}| < 3 \times 0.00069 \rightarrow \kappa < 0.074/\sqrt{\zeta_1} \qquad Z\bar{d}d\left(APV\right) \Rightarrow |\delta g_{L/R}| < 3 \times 0.00062 \rightarrow \kappa < 0.07/\sqrt{\zeta_1}$$

$$Z\bar{s}s\left(LEP\right) \Rightarrow |\delta g_L| < 3 \times 0.012 \rightarrow \kappa < 0.3/\sqrt{\zeta_2} \qquad Z\bar{c}c\left(LEP\right) \Rightarrow |\delta g_L| < 3 \times 0.0036 \rightarrow \kappa < 0.17/\sqrt{\zeta_2}$$

$$|\delta g_R| < 3 \times 0.005 \rightarrow \kappa < 0.6/\sqrt{\zeta_2} \qquad Z\bar{c}c\left(LEP\right) \Rightarrow |\delta g_R| < 3 \times 0.0051 \rightarrow \kappa < 0.20/\sqrt{\zeta_2}$$

$$Z\bar{b}b\left(LEP\right) \Rightarrow |\delta g_L| < 3 \times 0.0015 \rightarrow \kappa < 0.11/\sqrt{\zeta_3}$$

$$|\delta g_R| < 3 \times 0.0063 \rightarrow \kappa < 0.23/\sqrt{\zeta_3} \qquad Z\bar{t}t\left(T, \delta g_{Wtb}\right) \Rightarrow \kappa < 0.1 \div 0.3/\sqrt{\zeta_3}$$



applies to the coupling to a single generation (milder)

**Result:** selection of **6** benchmark scenarios, obtained by saturating the couplings with the current Flavour & Electroweak precision bounds.

| Benchmark 1 $\kappa = 0.02$ | Benchmark 2 $\kappa = 0.07$ | Benchmark 3 $\kappa = 0.2$ | Benchmark 4 $\kappa = 0.3$ | Benchmark 5 $\kappa = 0.1$ | Benchmark 6 $\kappa = 0.3$ |
|-----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $\zeta_1 = \zeta_2 = 1/3$   | $\zeta_1 = 1$               | $\zeta_2 = 1$              | $\zeta_3 = 1$              | $\zeta_1 = \zeta_3 = 1/2$  | $\zeta_2 = \zeta_3 = 1/2$  |

 $\kappa \Longrightarrow Max$ . value of the VLQ coupling strength

 $\zeta_{1,2,3} \Longrightarrow \text{Branching Ratio to } 1^{st}, \, 2^{nd} \, \text{and/or } 3^{rd} \, \text{generation quarks}$ 

**Result:** selection of **6** benchmark scenarios, obtained by saturating the couplings with the current Flavour & Electroweak precision bounds.

 $M=600~{
m GeV}$  ;  $\sqrt{s}=8~{
m TeV}$  ;  $\sigma(Qar Q)\simeq 109~(167)$  fb at LO (NLO)

|                                                                 |   | Benchmark 1 $\kappa = 0.02$ $\zeta_1 = \zeta_2 = 1/3$ | Benchmark 2 $\kappa = 0.07$ $\zeta_1 = 1$ | Benchmark 3 $\kappa = 0.2$ $\zeta_2 = 1$ | Benchmark 4 $\kappa = 0.3$ $\zeta_3 = 1$ | Benchmark 5 $\kappa = 0.1$ $\zeta_1 = \zeta_3 = 1/2$ | Benchmark 6 $\kappa = 0.3$ $\zeta_2 = \zeta_3 = 1/2$ |
|-----------------------------------------------------------------|---|-------------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| (1,2/3)                                                         | T | 15                                                    | 464                                       | 564                                      | 399                                      | 495                                                  | 834                                                  |
| (1, -1/3)                                                       | В | 14                                                    | 455                                       | 457                                      | 167                                      | -                                                    | -                                                    |
|                                                                 | T | 5.6                                                   | 191                                       | 114                                      | 0.6                                      | 195                                                  | 128                                                  |
|                                                                 | B | 10                                                    | 351                                       | 267                                      | 1.1                                      | 358                                                  | 301                                                  |
| $(2,1/6) \\ \lambda_{\mathcal{U}} = 0$                          | T | 9.5                                                   | 272                                       | 451                                      | 398                                      | -                                                    | -                                                    |
|                                                                 | B | 3.7                                                   | 103                                       | 190                                      | 166                                      | -                                                    | -                                                    |
| $\begin{array}{l} (2,1/6) \\ \lambda_d = \lambda_u \end{array}$ | T | 15                                                    | 464                                       | 564                                      | 399                                      | -                                                    | -                                                    |
|                                                                 | B | 14                                                    | 455                                       | 457                                      | 167                                      | -                                                    | -                                                    |
| (2,7/6)                                                         | X | 15                                                    | 528                                       | 272                                      | 1.2                                      | 538                                                  | 307                                                  |
|                                                                 | T | 5.6                                                   | 191                                       | 114                                      | 0.6                                      | 195                                                  | 128                                                  |
| (2, -5/6)                                                       | B | 3.7                                                   | 103                                       | 190                                      | 166                                      | -                                                    | -                                                    |
|                                                                 | Y | 7.6                                                   | 205                                       | 443                                      | 388                                      | -                                                    | -                                                    |

**Result:** selection of **6** benchmark scenarios, obtained by saturating the couplings with the current Flavour & Electroweak precision bounds.

 $M=600~{
m GeV}$  ;  $\sqrt{s}=8~{
m TeV}$  ;  $\sigma(Qar{Q})\simeq 109~(167)$  fb at LO (NLO)

|                                                                   |        | Benchmark 1 $\kappa = 0.02$ $\zeta_1 = \zeta_2 = 1/3$ | Benchmark 2 $\kappa = 0.07$ $\zeta_1 = 1$ | Benchmark 3 $\kappa = 0.2$ $\zeta_2 = 1$ | Benchmark 4 $\kappa = 0.3$ $\zeta_3 = 1$ | Benchmark 5 $\kappa = 0.1$ $\zeta_1 = \zeta_3 = 1/2$ | Benchmark 6 $\kappa = 0.3$ $\zeta_2 = \zeta_3 = 1/2$ |
|-------------------------------------------------------------------|--------|-------------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| (1,2/3)                                                           | T      | 15                                                    | 464                                       | 564                                      | 399                                      | 495                                                  | 834                                                  |
| (1, -1/3)                                                         | В      | 14                                                    | 455                                       | 457                                      | 167                                      | -                                                    | -                                                    |
| $ \begin{array}{c} (2,1/6) \\ \lambda_d = 0 \end{array} $         | T<br>B | 5.6<br>10                                             | 191<br>351                                | 114<br>267                               | 0.6<br>1.1                               | 195<br>358                                           | 128<br>301                                           |
| $(2,1/6) \\ \lambda u = 0$                                        | T<br>B | 9.5<br>3.7                                            | 272<br>103                                | 451<br>190                               | 398<br>166                               | -<br>-                                               | -<br>-                                               |
| $ \begin{array}{l} (2,1/6) \\ \lambda_d = \lambda_u \end{array} $ | T<br>B | 15<br>14                                              | 464<br>455                                | 564<br>457                               | 399<br>167                               |                                                      | -<br>-                                               |
| (2,7/6)                                                           | X<br>T | 15<br>5.6                                             | 528<br>191                                | 272<br>114                               | 1.2<br>0.6                               | 538<br>195                                           | 307<br>128                                           |
| (2, -5/6)                                                         | B<br>Y | 3.7<br>7.6                                            | 103<br>205                                | 190<br>443                               | 166<br>388                               |                                                      | -<br>-                                               |

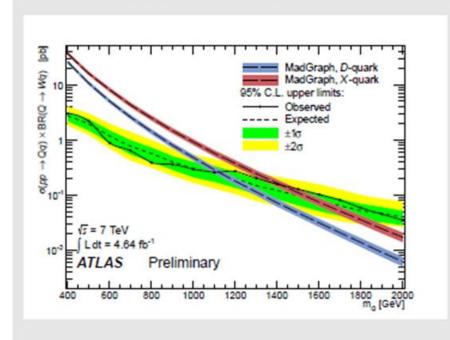
#### Observation:

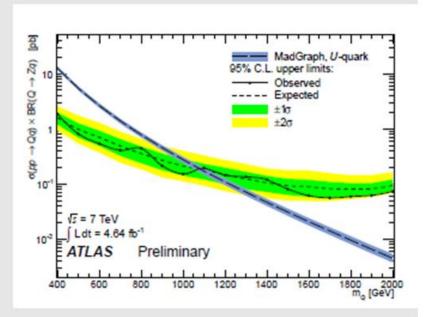
Cross-sections of similar order of magnitude are obtained in most scenarios:

- due to the valence PDFs  $(1^{st}/2^{nd}$  generation couplings).
- due to weaker constraints on  $\kappa$  (3<sup>rd</sup> generation couplings).

Relevance of single production: the benchmark scenarios obtained by saturating the couplings with the constraints from precision physics indicate that the flavour bounds are competitive with the current direct searches.

#### ATLAS search in the CC and NC channels

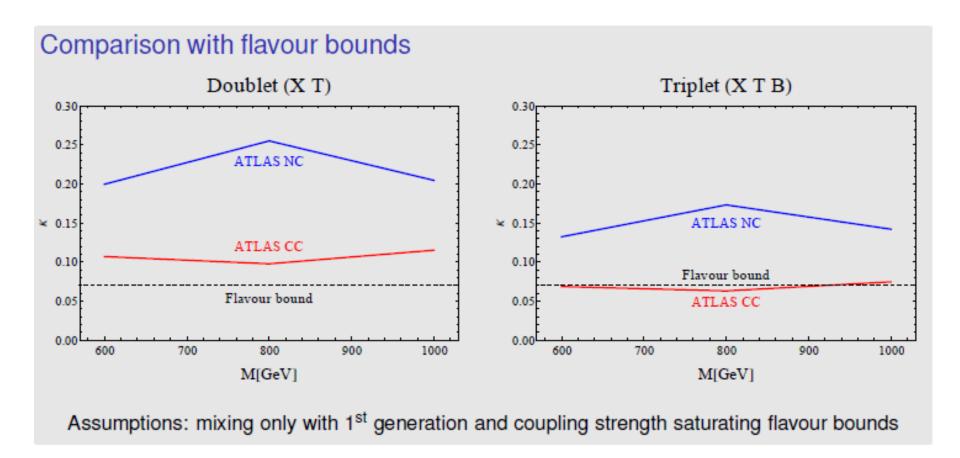




Assumptions: mixing only with 1st generation and coupling strength  $\kappa = \frac{v}{M_{VL}}$ 

**ATLAS-CONF-2012-137** 

Relevance of single production: the benchmark scenarios obtained by saturating the couplings with the constraints from precision physics indicate that the flavour bounds are competitive with the current direct searches.



**ATLAS-CONF-2012-137** 

#### **Outline**

- Introduction.
- Model-independent framework for VLQ searches.
- Benchmark scenarios from flavour bounds.
- Conclusions & prospects.

1 Relevance of single production: VLQ production rates are sizeable regardless of their mixing structure with 1<sup>st</sup>, 2<sup>nd</sup> or 3<sup>rd</sup> generation quarks. Single production followed by decays to light and third generations should therefore be considered.

- 1 Relevance of single production: VLQ production rates are sizeable regardless of their mixing structure with  $\mathbf{1}^{st}$ ,  $\mathbf{2}^{nd}$  or  $\mathbf{3}^{rd}$  generation quarks. Single production followed by decays to light and third generations should therefore be considered.
- Exclusive mixing hypotheses: assuming exclusive (100%) branching ratios may forbid some VLQ single production channels.

|        |                      | $BR(Q 	o 1^{st}, 2^{nd}) = 1$                                           | $BR(Q \to 3^{rd}) = 1$                                         |
|--------|----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| BR(Q - | $\rightarrow W) = 1$ | $TZ,TH \ Bar{t},BZ,BH$                                                  | $TZ, TH \\ Bj, B\bar{t}, BW, BZ, BH$                           |
| BR(Q-  | $\rightarrow Z)=1$   | $Tar{t},TW,TH \ Bt,Bar{t},BW,BH$                                        | Tj, TW, TZ, TH<br>$Bt, B\bar{t}, BW, BH$                       |
| BR(Q-  | $\rightarrow H) = 1$ | all channels but $TH$ are forbidden all channels but $BH$ are forbidden | all channels are forbidden all channels but $BH$ are forbidden |

Forbidden channels for single production with exclusive (100%) mixing patterns. (E.g., avoid looking for  $pp \to TH \to tHH$  with BR( $T \to tH$ ) = 100 %)

Relevance of "mixed" scenarios: many final states provide very interesting, yet uncovered signatures! Ex:  $\zeta_1 = \zeta_3 = 50\%$ 

$$pp(uu) \rightarrow Tu \rightarrow tZu \rightarrow bWZj$$
  
 $pp(uu) \rightarrow Tu \rightarrow tHu \rightarrow bWHj$ 

3 Relevance of "mixed" scenarios: many final states provide very interesting, yet uncovered signatures! Ex:  $\zeta_1 = \zeta_3 = 50\%$   $pp(uu) \rightarrow Tu \rightarrow tZu \rightarrow bWZj$   $pp(uu) \rightarrow Tu \rightarrow tHu \rightarrow bWHj$ 

Relevance of "same-sign" pair production signatures: FCNC allow for largish QQ electroweak pair production (now used to constrain the anomalous tHu & tHc top couplings).

$$\mathsf{Ex}: pp(uu) \to TT \to tZtZ$$
,  $tHtH$ , ...  $q_i \to Q$ 

Relevance of "mixed" scenarios: many final states provide very interesting, yet uncovered signatures! Ex:  $\zeta_1 = \zeta_3 = 50\%$   $pp(uu) \rightarrow Tu \rightarrow tZu \rightarrow bWZj$   $pp(uu) \rightarrow Tu \rightarrow tHu \rightarrow bWHj$ 

Relevance of "same-sign" pair production signatures: FCNC allow for largish QQ electroweak pair production (now used to constrain the anomalous tHu & tHc top couplings).

$$\mathsf{Ex}: pp(uu) o TT o tZtZ$$
,  $tHtH$ , ...  $q_i o Q$ 

Associated production with top quarks:  $pp \rightarrow Qt$  provides a very interesting final state and is worth exploring even in case of zero  $3^{rd}$  generation mixing.

 Model-independent parametrisation has been implemented for pairand singly- produced VLQs coupling to the SM quarks (BRs = inputs)

- Model-independent parametrisation has been implemented for pairand singly- produced VLQs coupling to the SM quarks (BRs = inputs)
- A systematic study of the precision bounds on the VLQ mixings has been performed model-independently (update is planned).

- Model-independent parametrisation has been implemented for pairand singly- produced VLQs coupling to the SM quarks (BRs = inputs)
- A systematic study of the precision bounds on the VLQ mixings has been performed model-independently (update is planned).
- Although only at Leading Order, a compendium of the relevant production cross-sections & distributions has been provided for the forthcoming searches.

- Model-independent parametrisation has been implemented for pairand singly- produced VLQs coupling to the SM quarks (BRs = inputs)
- A systematic study of the precision bounds on the VLQ mixings has been performed model-independently (update is planned).
- Although only at Leading Order, a compendium of the relevant production cross-sections & distributions has been provided for the forthcoming searches.
- MadGraph & CalcHEP models can be found at
  - http://feynrules.irmp.ucl.ac.be/wiki/VLQ
  - http://hepmdb.soton.ac.uk/hepmdb:0414.0165

- Model-independent parametrisation has been implemented for pairand singly- produced VLQs coupling to the SM quarks (BRs = inputs)
- A systematic study of the precision bounds on the VLQ mixings has been performed model-independently (update is planned).
- Although only at Leading Order, a compendium of the relevant production cross-sections & distributions has been provided for the forthcoming searches.
- MadGraph & CalcHEP models can be found at
  - http://feynrules.irmp.ucl.ac.be/wiki/VLQ
  - http://hepmdb.soton.ac.uk/hepmdb:0414.0165
- New model-independent tools are already available



