Searches for vector-like quarks in dilepton/multilepton final states in ATLAS

Duc Bao Ta – Michigan State University Vector-like quark workshop Hamburg 2014

reminder from Clement's talk

Vector like quark searches in different final states

T->Zt, B->Zb pair and single T production ATLAS-CONF-2014-0 d Economonomo Conomonomo Conomo Cono Conomo T \overline{h} Phys. Rev. D86, 075017(2012). arXiv:1207.0830 10 σ [fb] $pp \rightarrow Q\overline{Q} (Top++)$ $\rightarrow T\overline{b}q, \lambda_{T} = 2 (MG)$ 10⁴ $pp \rightarrow T\overline{b}q, V_{TL} = 0.1 (PROTOS)$ $pp \rightarrow B\overline{b}q, X_{ph} = 0.1 (PROTOS)$ 10^{3} 10 10 √s = 8 TeV 400 500 600 700 800 900 1000 m_o [GeV]

• Search in dilepton or trilepton final states using full 8TeV dataset, target T/B pair and single production

- Signal models and MCs ۰
 - T/B pair production generated using Protos, cross section from Top++
 - single T production: Madgraph for composite Higgs model with coupling parameter λ_{T} parameter, kinematics comparable with Protos
 - single production B using Protos with mixing parameter • V_{Tb} and X_{Bb} at the upper bound from precision EW measurements
 - BR from Protos with benchmark models with mixings close to the upper bound from EW precision measurements
- Background modelling
 - Z+jets and Z+HF, diboson: Sherpa, ttV: Madgraph, ttbar: Powheg+Pythia, single top: MC@NLO/AcerMC, fake or mis-id leptons negligible

- Search in dilepton or trilepton final states using full 8TeV dataset, target T/B pair and single production
- Signal models and MCs
 - T/B pair production generated using Protos, cross section from Top++
 - single T production: Madgraph for composite Higgs model with coupling parameter $\lambda_{\rm T}$ parameter, kinematics comparable with Protos
 - single production B using Protos with mixing parameter $V_{\rm Tb}$ and $X_{\rm Bb}$ at the upper bound from precision EW measurements
 - BR from Protos with benchmark models with mixings close to the upper bound from EW precision measurements
- Background modelling
 - Z+jets and Z+HF, diboson: Sherpa, ttV: Madgraph, ttbar: Powheg+Pythia, single top: MC@NLO/AcerMC, fake or mis-id leptons negligible

- Object selection
 - Electron selection, central electron, requirements on EM cluster and associated track, track and calorimeter isolation required
 - **Muon selection,** central muon, p_T dependent track isolation
 - Lepton p_T>25GeV
 - looser selection for electrons from Z, no isolation required
 - **Jet selection**, anti-k_T0.4, central jets, p_T>25 GeV
 - overlap removal between jets and lepton in small cone, between electron and jet in larger cone
 - **b-tagging**, 70% efficiency, 130 (5) light (charm) rejection factor

- Background corrections and control region: dilepton
 - signal region with 2-btags
 - scaling factor for Z+jets from region p_T(Z)<100GeV separately for 1-tagged and >1-tagged events

- reweighting $p_T(Z)$ by polynomial fit function on residual (N_{data} - N_{bkg})/ N_Z of 1-bragged events
- other control regions: 0-tag events

- Control region: trilepton
 - signal region with 1-brag
 - generally well modelled distributions invariant m_{ll} mass, $p_T(Z)$, jet and b-tag multiplicities, no correction needed

• o-tag control region also well modelled

ATLAS

1.2 Preliminary

Simulation

Trilepton

Ldt = 20.3 fb

s = 8 TeV

Dilepton

≥ 1 fwd jet

1 b-tag

400 600

800

1000 1200

m(Zb) [GeV]

∖s=8 TeV

Fraction of events

0.8

0.6

0.2

220

200E

180

160E

140E

120E

100E

80

60 40

0 200

Data / bkg

Events / 150 Ge/

0

ATLAS

Preliminary

- Control region: single production
 - single production seems to favour forward jets compared to background (and pair production)
 - check forward jet modelling and distributions after forward jet requirement
 - generally well modelled distributions, no corrections needed

Z boson candidate preselection				ق _{0.4} – ATLAS Si
\geq 2 central jets				Preliminary ¹ S
	$p_{\mathrm{T}}(Z) \geq 1$	50 GeV		
Dilepton	channel	Trilepto	on channel	
= 2 le	ptons	≥ 3	leptons	<u>ک</u> 0.25
$\geq 2 b$ -tagged jets		$\geq 1 b$ -tagged jet		
Pair production	Single production	Pair production	Single production	
$H_{\rm T}({\rm jets}) \ge 600~{ m GeV}$	\geq 1 fwd. jet	_	\geq 1 fwd. jet	0.15
	Final discr	iminant		
m(2	(b)	$H_{\rm T}({\rm jets})$	+leptons)	0.05
	dilenton ev	ent vields		0 200 400
	uneptonev	cife yields		

Event selection

.. .

T->Zt, B->Zb pair and single T production

	900 ± 210	63 ± 14	4.0 ± 1.3
	4420 ± 300	382 ± 49	19.3 ± 3.6
	2190 ± 230	33.0 ± 8.0	4.6 ± 1.5
	270 ± 70	42 ± 11	4.0 ± 1.1
	7780 ± 440	519 ± 53	32.0 ± 4.2
	7790	542	31
)	18.7 ± 1.5	16.5 ± 1.4	14.2 ± 1.3
)	12.1 ± 0.8	10.0 ± 0.7	8.6 ± 0.7

 $Z+ \geq 2$ jets ($N_{\text{tag}} \geq 2$) $p_{\text{T}}(Z) \geq 150 \text{ GeV}$ $H_{\text{T}}(\text{jets}) \geq 600 \text{ GeV}$

H_T(jets+leptons) [GeV]

Z+light

Z+bottom

tī

Other SM

Total SM

Data

ATLAS-CONF-2014-0

T->Zt, B->Zb pair and single T production ATLAS-CONF-2014-0

Event selection						
Z boson candidate preselection						
	\geq 2 centr	al jets				
	$p_{\mathrm{T}}(Z) \geq 1$	50 GeV				
Dilepton	channel	Trilepto	n channel			
= 2 leptons		\geq 3 leptons				
$\geq 2 b$ -tag	ged jets	$\geq 1 b$ -tagged jet				
Pair production	Single production	Pair production	Single production			
$H_{\rm T}({\rm jets}) \ge 600 {\rm GeV}$	\geq 1 fwd. jet	$- \ge 1$ fwd. jet				
Final discriminant						
<i>m</i> (Z	<i>(b)</i>	$H_{\rm T}({\rm jets})$	+leptons)			

trilepton event yields

	Trilepton ch.	\geq 2 central jets	$p_{\rm T}(Z) > 150 { m ~GeV}$	$N_{ m tag} \ge 1$
WZ	1170 ± 130	219 ± 32	51.5 ± 8.9	5.8 ± 1.4
$t\bar{t}+X$	23.5 ± 6.7	22.0 ± 6.3	7.0 ± 2.1	5.8 ± 1.8
Other SM	435 ± 50	67 ± 13	10.4 ± 9.2	2.6 ± 1.3
Total SM	1630 ± 170	309 ± 39	69 ± 14	14.3 ± 2.6
Data	1760	334	78	16
$B\bar{B} (m_B = 650 \text{ GeV})$	5.8 ± 0.4	5.7 ± 0.4	4.75 ± 0.31	4.17 ± 0.30
$T\bar{T} (m_T=650 \text{ GeV})$	7.4 ± 0.5	7.4 ± 0.5	6.1 ± 0.5	$5.5\!\pm\!0.4$

T->Zt, B->Zb pair and single T production ATLAS-CONF-2014-0

Event selection						
	Z boson candidate preselection					
	\geq 2 centr	al jets				
	$p_{\mathrm{T}}(Z) \geq 1$	50 GeV				
Dilepton	channel	Trilepto	n channel			
=2 le	ptons	\geq 3 leptons				
$\geq 2 b$ -tag	ged jets	$\geq 1 b$ -tagged jet				
Pair production	Single production	Pair production	Single production			
$H_{\rm T}({\rm jets}) \ge 600 {\rm ~GeV}$	\geq 1 fwd. jet	$- \ge 1 \text{ fwd. jet}$				
Final discriminant						
m(Z	Ľb)	$H_{\rm T}({\rm jets})$	+leptons)			

single production event yields

Dilepton channel		Trilepton channel		
Z+light	7.3 ± 2.0	WZ	0.62 ± 0.27	
Z+bottom	40 ± 10	$t\bar{t}+V$	0.74 ± 0.24	
tī	5.2 ± 2.1			
Other SM	3.8 ± 1.3	Other SM	0.07 ± 0.10	
Total SM	56 ± 12	Total SM	1.4 ± 0.4	
Data	57	Data	2	
$B\bar{b}q \ (m_B = 650 \text{ GeV}, X_{bB} = 0.5)$	1.88 ± 0.27			
$T\bar{b}q~(m_T=650~{ m GeV},\lambda_T=2)$	7.7 ± 1.0	$T\bar{b}q \ (m_T=650 \text{ GeV}, \lambda_T=2)$	3.1 ± 0.5	
$B\bar{B} \ (m_B = 650 \text{ GeV})$	1.53 ± 0.24	$B\bar{B} (m_B = 650 \text{ GeV})$	0.45 ± 0.10	
$T\bar{T}~(m_T=650~{ m GeV})$	$T\bar{T} (m_T = 650 \text{ GeV})$ 1.08±0.15		0.50 ± 0.10	

Single production selection

• Systematics

- dominant systematics: cross section uncertainties
 - ttV: 30%
 - WZ+jets: 50% HT/1TeV
 - other processes theoretical uncertainties

Fractional uncertainties (%): dilepton channel							
	Z+jets	tī	Other bkg.	Total bkg.	₿Ē	$T\bar{T}$	
Luminosity	1.4	2.8	2.8	0.3	2.8	2.8	
Cross section	5.5	6.4	29	0.7	-	-	
Jet reconstruction	13	10	14	11	2.0	2.1	
<i>b</i> -tagging	9.1	13	9.9	5.7	7.2	5.9	
e reconstruction	2.9	16	5.9	4.6	2.5	1.5	
μ reconstruction	3.8	7.8	7.2	4.2	3.2	1.3	
Z+jets $p_{\rm T}(Z)$ correction	9.0	-	-	6.5	-	-	
Z+jets rate correction	6.9	-	-	5.0	-	-	
MC statistics	5.0	25	12	5.4	2.4	2.9	

Fractional uncertainties (%): trilepton channel							
	WZ	$t\bar{t}+V$	Other bkg.	Total bkg.	₿Ē	$T\bar{T}$	
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8	
Cross section	17	30	8.9	21	-	-	
Jet reconstruction	5.4	1.2	8.1	3.1	4.0	1.8	
<i>b</i> -tagging	13	3.6	13	6.7	5.6	5.5	
e reconstruction	9.3	3.9	37	11	5.9	12	
μ reconstruction	14	3.9	18	4.2	6.2	5.7	
MC statistics	11	3.1	27	6.6	4.8	8.3	

T->Zt, B->Zb pair and single T production ATLAS-CONF-2014-0

- Limits on VLQ pair production
 - m(B singlet)>685GeV (670 GeV)
 - m(B doublet)>755GeV (755 GeV) (B,Y)
 - m(T singlet)>655GeV • (625 GeV)
 - m(T doublet)> 735GeV • $(720 \, \text{GeV}) (T,B)$

 10^{2}

- Limits on VLQ pair single production
 - Limit on Bbq production from dilepton channel only
 - No sensitivity for single T production for $\lambda_T < 1.5$
 - Mostly no sensitivity for single T production for V_{Tb}<1, but for V_{Tb}<0.7 in mass range 450-650GeV (downward fluctuation of data)
 - Mostly no sensitivity for single B production for V_{Bb}<0.5

- SS lepton selection in 14.3fb⁻¹ 8 TeV data where SM has small contribution
- Analysis has multiple interpretations
 - chiral b'->Wt pair production
 - non-resonant four-top (sgluon pair, KK excitation in 2UED/RPP model)
 - SS top (uu->tt via heavy particle)
 - VLQ T/B pair production (e.g. B->Wt, T->Zt, T->Ht, all decay modes considered)
 - NNLO cross section for b'/VLQ pair production from Hathor
 - BR according to Protos calculation

- Signal models and MCs (b'/VLQ)
 - T/B pair production with Protos
- Background modelling
 - ttV/WW, WW+jj: Madgraph, WZ/ZZ+HF Sherpa
 - data driven method for fakes/mis-id: matrix method
 - measure selection efficiency $\varepsilon_{fake,real}$ of loose->tight selection of single real/fake leptons in dedicated control regions
 - construct number of *tight selected leptons* N_{fake}^{tight} (lepton pairs) containing fake leptons (at least one fake lepton) from a selection of *tight and loose leptons* ($N^{tight, loose}$)
 - charge mis-id
 - for electrons using Z->ee data events, for high $p_{\rm T}$ electrons using ttbar MC scaled to match low $p_{\rm T}$ Z->ee data rate
 - remove trident events covered by fakes estimation
 - Validation regions
 - no req. on E_T^{Miss} and 100 < H_T < 400GeV, no req. on H_T and E_T^{-} <40GeV, zero b-tag region

 $N_{\text{fake,real}}^{\text{tight}} = \epsilon_{\text{fake,real}} \cdot N_{\text{fake,real}}^{\text{loose}}$

$$N^{\text{tight,loose}} = N_{\text{fake}}^{\text{tight,loose}} + N_{\text{real}}^{\text{tight,loose}}$$

- Object selection
 - follow the same object selection as previous analyses
- Event selection
 - one SS lepton pair, at least one b-tag
 - E_T^{Miss} >40GeV, m_{ll} >15GeV, outside of Z peak, H_T >550
 - H_T >650 GeV for b', VLQ (singlet)
 - other selection cuts for different interpretations

Backgrounds	Channel					
Samples	ee	еµ	μμ			
Charge misidentification	$0.6 \pm 0.1 \pm 0.2$	$0.9 \pm 0.1 \pm 0.3$	_			
Fakes	$0.8 \pm 0.4 \pm 0.3$	$0.2 \pm 0.4 \pm 0.1$	< 1.1			
Diboson						
• WZ/ZZ+jets	$0.3 \pm 0.2 \pm 0.1$	$0.3 \pm 0.1^{+0.4}_{-0.2}$	$0.4\pm0.2\pm0.1$			
• $W^{\pm}W^{\pm}+2$ jets	$0.17 \pm 0.09 \pm 0.05$	$0.3 \pm 0.2 \pm 0.1$	$0.2 \pm 0.1 \pm 0.1$			
$t\bar{t} + W/Z$						
• $t\bar{t}W(+jet(s))$	$0.6 \pm 0.2 \pm 0.3$	$1.9\pm0.2\pm0.6$	$1.3 \pm 0.2 \pm 0.4$			
• $t\bar{t}Z(+jet(s))$	$0.18 \pm 0.03 \pm 0.06$	$0.66 \pm 0.05 \pm 0.22$	$0.31 \pm 0.04 \pm 0.10$			
• $t\bar{t}W^+W^-$	$0.024 \pm 0.003^{+0.010}_{-0.007}$	$0.072 \pm 0.005^{+0.028}_{-0.020}$	$0.055 \pm 0.004^{+0.022}_{-0.016}$			
Total expected background	$2.7 \pm 0.5 \pm 0.4$	$4.4 \pm 0.5^{+0.9}_{-0.7}$	$2.3 \pm 1.2 \pm 0.5$			
Observed	3	10	2			

Systematic uncertainties

- ttbar+V PDF and scales: 30%
- WZ/ZZ scales: 34%
- WWjj scales: 25%
- ttWW scales: -26%/+38%

	Uncertainty in %					
	65	0 GeV	' b'	Background		
Source	ee	eμ	$\mu\mu$	ee	eμ	$\mu\mu$
Cross section	_	_	_	14.4	25.4	32.9
Fakes	_	_	_	9.7	1.4	10.1
Charge misidentification	_	_	_	7.2	7.1	_
Jet energy scale	4.6	2.5	0.2	3.5	10.2	4.4
ISR/FSR	6.0	6.0	6.0	2.6	4.5	4.0
b-tagging efficiency	4.6	3.1	3.0	2.1	4.4	4.0
Lepton ID efficiency	5.3	4.9	8.2	2.2	3.6	5.4
Jet energy resolution	0.8	0.9	0.3	0.9	2.7	2.0
Luminosity	3.6	3.6	3.6	1.6	2.7	3.6
Lepton energy scale	0.8	0.4	0.0	1.4	0.9	0.1
JVF selection efficiency	2.5	2.9	2.6	1.1	1.5	1.4

Summary

- Vector-like quark searches in dilepton/multilepton final states
 - Specific analysis for T->Zt, B->Zb pair and single T production search
 - Generic same-sign lepton search interpretation for VLQ
- Limits for pair production at mixing values close to limit from EW measurement
 - up to 755 GeV(B doublet)
 - also limits for different BRs
 - analysis not yet sensitive to single production, more specific analyses should take advantage of higher cross section at higher masses

Backup

Same-sign dilepton

• chiral B limit

Same-sign dilepton

Limits on SS top-pair production

Same-sign dilepton **Effective four-top coupling** $\mathcal{L} = \mathcal{L}_{SM} + \frac{C}{\Lambda^2} (\bar{t}_R \gamma^{\mu} t_R) (\bar{t}_R \gamma_{\mu} t_R)$ $\sigma \times BR [pb]$ $\sigma \times BR(t\bar{t}t\bar{t}\bar{t})$ [pb] Expected limit at 95 % CL ATLAS Preliminary 10 Expected limit ± 1σ Ldt = 14.3 fb⁻¹,√s = 8 TeV Expected limit $\pm 2\sigma$ Theory (NLO) 10 Observed limit at 95 % CL 10⁻¹ 10⁻² ----· Expected limit at 95% CL Expected limit ± 1 σ Expected limit ± 2 σ **ATLAS** Preliminary 10⁻³ 10-2 Theory approx. LO Observed limit at 95% CL Ldt = 14.3 fb⁻¹ √s = 8 TeV 0.3 0.5 0.6 0.7 0.8 0.9 0.8 0.9 1.2 0.4 0.6 0.7 1.1 1 Sqluon mass [TeV] m_{KK} [TeV] 100 0 90 80 ATLAS Preliminary Ldt =14.3 fb⁻¹ 70 (s = 8 TeV 60 Excluded region at 95% CL 50 bserved limit at 95% CI Expected limit at 95% CL Expected limit ± 1 σ 40 Expected limit ± 2σ 30^ℤ 2.2 2.8 3.4 2.4 2.6 3 3.2 Λ [TeV] 30

Excited b*->Wt search

search for excited b* using full 7TeV dataset

- strong production of excited b*, coupling to third generation quarks, decay weakly to Wt
- not directly a VLQ search, but also investigated right/left handed couplings
- Interpretation for VLQ models as in the other analysis possible
- dilepton and single lepton combined analysis
 - single lepton selection, exactly three jets, exactly one b-tag
 - dilepton selection, exactly one jet, no b-tag requirement
 - sensitive distribution dilepton: H_T , single lepton: reconstructed mass of three jets, lepton and neutrino
- Limits @95%CL on mass for maximally left- or/and right-handed coupling and coupling itself
 - m(b*_{LH})>870(910)GeV, m(b*_{LH})>920(950)GeV, m(b*_{LH/} _{RH})>1030(1030)GeV

Excited b* search

Combination VLQ T

Combination VLQ B

