

Issues of FEE Designs Integrated in CMOS Pixel Sensors

Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg)

<u>Outline</u>

- Introduction to CMOS Pixel Sensors (CPS)
 - Twin, (triple), Quadruple well (deep P-well) processes
- Design criteria: S/N, power, ...
- A typical readout chain
 - Synchronous readout architecture: Rolling shutter readout
 - In-pixel pre-amplifier, filter
 - Column-level and pixel-level discriminator
 - Zero suppression logic & data transmission
 - Asynchronous readout architecture: ALPIDE
- Summary & Conclusion

CMOS Pixel Sensors

Standard Epitaxial Layer

- Standard CMOS OPTO Process: EPI $^{\sim}10~\Omega^*$ cm
- Charge collection: thermal diffusion
- Collection time: O(100 ns)

High resistivity Epitaxial Layer

- High resistivity >1 $k\Omega^*$ cm & thicker (~40 μ m) EPI layer
- Charge collection: drift/thermal diffusion
- Collection time faster, less recombination → radiation tolerant
- Depletion depth depends on bias
- Low signal value: $\sim 80 e^-h^+$ pairs/ $\mu m \rightarrow signal O(1 Ke^-)$ collected by a cluster of $\sim 3-5$ pixels
 - Need very low noise in-pixel front end circuitry
- High granularity → small pixel pitch → large number of pixels
 - Need low power consumption per pixel
 - ⋄ Require data compression
 - Call for high speed data transmission

Analogue signals have to be converted to digital signal (ADC)

CMOS Process Evolution

Twin well process: 0.6-0.35 μm

Use of PMOS in pixel array is not allowed because any additional N-well used to host PMOS would compete for charge collection with the sensing N-well diode v.. ⊢

- Limits choice of readout architecture strategy
- Already demonstrate excellent performances
 - STAR PXL detector: MIMOSA28 are designed in this AMS-0.35 μm process

$$\checkmark$$
 ε_{eff} > 99.5%, σ < 4 μ m

■ 1st CPS based VX detector at a collider experiment

Quadruple well process (deep P-well): 0.18 μm

- N-well used to host PMOS transistors is shielded by deep P-well
- ⋄ Both types of transistors can be used

- Widens choice of readout architecture strategies
 - Ex. ALICE ITS upgrade: 2 sensors R&D in // using TOWER CIS 0.18 μm process (quadruple well)
 - Synchronous Readout R&D:
 - √ proven architecture = safety
 - Asynchronous Readout R&D: challenging

Figure of Merit S/N vs Design Optimisation (1)

Signal:
$$S(v) = \frac{Q}{C}$$
 $C = C_{diode} + C_{Tin} + C_{connection}$

- Small collection electrode, small input transistor, short inter connection for low C
- BUT too small diode does not favour the charge collection

Noise:

Input Transistor in Weak inversion: $dv_{eq}^{\ 2} = (\frac{K_F}{WLC_{cx}^2 f^{\alpha}} + \frac{4K_B T \, n}{g_m}) df \qquad g_m \sim I$ Strong inversion $dv_{eq}^{\ 2} = (\frac{K_F}{WLC_{cx}^2 f^{\alpha}} + \frac{2K_B T \, \gamma}{g_m}) df \qquad g_m \sim \sqrt{I}$

- To minimise
 - Flicker noise: large input transistor \rightarrow large C_{Tin}
 - Thermal noise Large $g_{\scriptscriptstyle m}$, \rightarrow high power
 - Both of two noise: Use a filter (band-pass):

$$N \sim \frac{1}{\sqrt{g_m}}$$

- → 1. trade-off between Noise & Power
 - 2. need a filter

- Technology dependent constant
- W,L MOS transistor width and length
- Gate oxide capacitance per unit area
- Transistor transconductance g_m
- Boltzmann constant K_{R}
- Absolute temperature T
- Weak inversion slope
- Often around ½ 2/3 in strong inversion

Figure of Merit S/N vs Design Optimisation (2)

- Collection diode: shot noise due to leakage current, especially after irradiation
 - ullet I_{leak} is proportional to diode dimensions $di_N^{-2}=2qI_{leak}df$
 - Leakage noise is proportional to integration time
 - \checkmark Negligible for very short integration time O(1 μ s)
- Reset noise: $v_N^2 = \frac{kT}{C}$
- Contributions from:
 - Other transistors in pre-amplifier stage is not negligible
 - Next stages

$$N_{total} = N_1 + \frac{N_2}{G_1} + \frac{N_3}{G_1 G_2} + \dots$$

- → High gain G1 in the first stage tends to mitigate the total noise
- ¬
 RTS (Random Telegraph Signal) noise
 - RTS noise increases as the feature size of the devices is scaled down
 - √ Impact on dimensions (W and L) of the in-pixel transistors
 - ✓ PMOS has better performance than NMOS
 - Negligible if integration time is small enough

A Typical Readout Chain

■ AMP: In-pixel low noise pre-amplifier

■ Filter: In-pixel filter

■ ADC: Analogue to digital conversion (1 bit: discriminator)

b it may be implemented in-pixel level or at column level underneath the pixel array

Zero suppression: Only hit pixels information is sent

Its location is usually at chip edge level underneath the pixel array but it may be implemented in-column level

■ Data transmission: ~Gbit/s link at chip edge level

- Readout: synchronous (Rolling Shutter) or asynchronous
- Using a twin-well process, the Rolling Shutter readout architecture is the best trade-off between performance, design complexity, pixel dimension, power, ...

⋄ MIMOSA26, MIMOSA28

Synchronous Readout Architecture: Rolling Shutter Mode

- Design addresses 3 issues:
 - ⋄ Increasing S/N at pixel-level
 - A to D Conversion: at column-level (twin well, 0.35 μm process) at pixel-level (quadruple well, 0.18 μm process)
 - ⋄ Zero suppression (SUZE) at chip edge level
- Power vs speed:
 - ♦ Power: only the selected rows (N=1, 2, ...) to be read out are powered ON
 - ♦ Speed: N rows pixels are read out in //
 - Integration time = frame readout time

$$t_{\text{int}} = \frac{\left(Row \ readout \ time\right) \times \left(No. \ of \ Rows\right)}{N}$$

- Mature & Validated architecture
 - 🤟 In 0.35 μm, twin well process :
 - MIMOSA26 equipping EUDET telescope
 - MIMOSA28 equipping STAR PXL detector
 - ⋄ In 0.18 μm, quadruple well process:
 - FSBB-M (for MISTRAL)
 - FSBB-A (for ASTRAL)

Synchronous Readout Architecture: AMP

Pre-amplifier:

- It is only active when the row is selected to be read
- ➡ High readout speed (~100 ns/row) → short time from start to steady
 - Requires current to drive → increase power consumption
 - Large bandwidth → noise
- Short start-up time leads to a moderate gain
 - Typical gain value: < 5
- Using a Twin-well process: only NMOS transistors can be used while in a process with deep P-well, both types of transistors (CMOS) can be used

Synchronous Readout Architecture: Filter

- Filter = cDS (correlated Double Sampling) in the design
 - Use the output voltage (or current) is sampled twice: once with signal and once with a reference, then the value from signal is subtracted from the value from the reference

- Signal is not affected by CDS operation
- ♥ For noise, CDS acts as a high pass filter
 - Low-freq. cut-off is promotional to the sample frequency ($^2 * f_{sample}$)
 - It can provide suppression of low frequency noise
 - ✓ ex. reset noise, 1/f noise, fixed pattern noise
 - White noise is sampled twice, their power is quadratically added
- Use cDS is achieved by a clamping technique which is implemented in each pixel
 - Simple design & layout
 - √ 1 capacitor + 1 switch
 - Need 2 phases to perform cDS
 - ✓ Phase 1: info. of the frame N-1 (V_{N-1}) stored in C
 - \vee Phase 2: signal is subtracted from charge previously stored (V_N V_{N-1})

Synchronous Readout Architecture: ADC

- Choice of number of ADC bits depends on the required spatial resolution and the pixel pitch
 - ⋄ Some applications → 1 bit ADC → discriminator
 - ⋄ R&D on 3-bit ADC both in pixel and column level
 - 3-4 bits suffice in achieving ~ analogue resolution (see talk by A. Besson)
 - Column-level discriminator
 - Developed in a twin-well process in which only NMOS can be used in pixel array
 - At periphery: CMOS circuitry admit
 - Less constraints in pixel layout
 - Need power to drive analogue signal to the bottom of the pixel array (~cm long)
 - Readout time may be relatively long due to analogue signal transfer
 - A-D conversion time ~200 ns/row

For N rows read out at once, one has to implement N discriminator per column

Pixel-level discriminator

- Thanks to the deep P-well, smaller feature size process, more complex designs may be implemented
- Pixel layout very compact
 - Analogue buffer driving the long distance column line is no longer needed
 - Static current consumption reduced from ~120 μA (in column-level discrimination) to ~15 μA per pixel

A-D conversion time can be halved down to 100 ns due to small local parasitics

Space dedicated for column-level discriminators is removed

Because the gain in the pre-amplifier stage is not high enough, both column and pixel level discriminators need to use an offset compensation technique

Synchronous Readout Architecture: In-Pixel Discriminator

- Structure selection: speed & power & offset mitigation vs area
 - Differential structure: preferable in mixed signal design
 - Two auto-zero amplifying stages + dynamic latch
 - ✓ OOS (Out Offset Storage) for the first stage and IOS (Input Offset Storage) for the second
 - Gain and power optimized amplifier
- Very careful layout design to mitigate cross coupling effects
- ♥ Conversion time: 100 ns; current: ~14 μA/discriminator

Test results of in-pixel discriminator:

- Discriminators alone: TN ~ 0.29 mV, FPN ~ 0.19 mV
- Discriminators + FEE: TN ~ 0.94 mV, FPN ~ 0.23 mV

Synchronous Readout Architecture: Zero Suppression Logic (SUZE)

 SUZE finds groups of hit pixels and sends their address and the corresponding encoded pattern

- 1st generation: SUZE-01
 - A hit is encoded in 1, 2, 3 even 4 states of 2 bits (up to 4 contiguous hit pixels)
 - 1 address for 1 state
 - More memory space
 - ✓ Redundant info. sent
 - Row by row readout: 200 ns/row
 - Simple design, compact layout
 - ⋄ Processing capability: 0.5x10⁶ hits /cm²/s

- 2nd generation: SUZE-02
 - A hit cluster is identified in a window of 4x5 pixels (20 bits)
 - Need only 1 address
 - ✓ Compact data
 - 2-row by 2-row readout: 100 ns/2-row
 - Space to implement the logic
 - Power to perform the logic
 - ♦ Processing capability: 15x10⁶ hits /cm²/s

SUZE-02

32 binary signals coming from A/D converters

- SUZE features a pipelined process organised in three stages :
 - Sparse Data Scan (SDS): searches windows of 4x5 pixels in 4 consecutive rows
 - The search is performed in // in banks of 32 columns and each bank can contain up to N windows
 - Concatenation: abuts the windows identified in all banks
 - It retains only M windows

N, M: according to the hit density defined by the estimated (simulated) amount of events

⋄ Storage: results of the second stage will be stored in the memories

N and M, the memory capacity and the transfer frequency must be customized for each application

Data Transmission

- Data transmission rate can reach up to several Gbit/s per sensor
- Choice of transmission technologies (LVDS, CML, ...) depends on system design
 - Number of transmission channels per sensor
 - ♥ Distance to drive
- ALICE-ITS Data Transmission Unit (DTU) developed by INFN Turin (G. Mazza)

Asynchronous Readout Architecture: ALPIDE (ALice Pixel Detector)

- Design concept similar to hybrid pixel readout architecture thanks to availability of Tower
 CIS quadruple well process: both N & P MOS can be used in a pixel
- Each pixel features a continuously power active:
 - Low power consumption analogue front end (Power < 50 nW/pixel) based on a single stage amplifier with shaping / current comparator
 - High gain ~100
 - Shaping time few μs
 - Dynamic Memory Cell, ~80 fF storage capacitor which is discharged by an NMOS controlled by the Front-End
- Data driven readout of the pixel matrix, only zerosuppressed data are transferred to the periphery

Courtesy of W. Snoeys / TWEPP-2013

pALPIDE: Analogue Response & Noise and Threshold Distributions

- At nominal bias (20.5 nA/pixel) and threshold setting:
 - ⋄ Threshold spread 17 e-
 - ♦ Noise ~ 7 e-

ALPIDE: Priority Encoder readout

Courtesy of W. Snoeys / TWEPP-2013

- Hierarchical readout: 1 encoder per double column (2¹⁰ pixels)
- 4 inputs basic block repeated to create a larger encoder
- 1 pixel read per clock cycle
- Forward path (address encoder) in gray
- Feed-back path (pixel reset) in red
- Asynchronous (combinatorial) logic
- Clock only to periphery, synchronous select only to hit pixels

ALPIDE Top Level

Courtesy of W. Snoeys / TWEPP-2013

Summary & Conclusion

- Two readout architectures (synchronous and asynchronous) are being developed for CMOS Pixel Sensors adaptable to the ILC vertexing (& tracking)
- Synchronous (rolling shutter) readout architecture is a proven architecture
 - ⋄ MIMOSA26 = EUDET beam telescope
 - ♦ MIMOSA28 = STAR PXL detector
 - Still improving performances such as readout speed, power consumption, data compression efficiency ...
 - Double row readout, In-pixel ADC, New zero suppression logic
- Asynchronous readout architecture (ALPIDE) is an emerging architecture being developed
 - It would be a breakthrough in the development of CPS
 - b Low power front-end (20.5 nA/pixel) with data-driven readout, integration time of a few μs determined by shaping time of the front end
 - According to applications, it may need more than 1 in-pixel memory buffer to minimise dead time effects
- Significant work in CPS architecture design in progress
 - Attractive perspective for an ILC vertex detector (i.e. single bunch tagging)

BACK-UP SLIDES

Development of MAPS for Charged Particle Tracking

- In 1999, the IPHC CMOS sensor group proposed the first CMOS pixel sensor (MAPS) for future vertex detectors (ILC)
 - Numerous other applications of MAPS have emerged since then
 - ⋄ ~10-15 HEP groups in the USA & Europe are presently active in MAPS R&D

 Original aspect: integration sensitive volume (EPI layer) and front-end readout electronics on the same substrate

- - $Q = 80 e^{-h} / \mu m$ → signal < 1000 e^{-}
- ♥ Compact, flexible
- ♦ EPI layer ~10−15 μm thick
 - thinning to ~30–40 μm permitted
- ⋄ Standard CMOS fabrication technology
 - Cheap, fast multi-project run turn-around
- ♥ Room temperature operation

- BUT
- \lor Very thin sensitive volume \rightarrow impacts signal magnitude (mV!)
- Sensitive volume almost un-depleted → impacts radiation tolerance & speed
- ♥ Commercial fabrication (parameters) → impacts sensing performances & radiation tolerance
- \triangleright N_{WFII} used for charge collection \rightarrow restricts use of PMOS transistors

Starting point: Ultimate chip in STAR

(ULTIMATE)

Towards Higher Read-Out Speed and Radiation Tolerance

Next generation of experiments calls for improved sensor performances.

Expt-System	$\sigma_{_{t}}$	$\sigma_{_{sp}}$	TID	Fluence	T _{op}
STAR-PXL	<~ 200 μs	~ 5 μm	150 kRad	$3x10^{12} n_{eq}/cm^2$	30 °C
ALICE-ITS	10-30 μs	~ 5 μm	700 kRad	10 ¹³ n _{eq} /cm²	30 °C
CBM-MVD	10-30 μs	~ 5 μm	<~10 MRad	$< \sim 10^{14} n_{eq} / cm^2$	<<0 °C
ILD-VXD	<~2 μs	<~ 3 μm	O(100) kRad	$O(10^{11} n_{eq}/cm^2)$	<~30 °C

- Main improvements required while remaining inside the virtuous circle of spatial resolution, speed, material budget, radiation tolerance \rightarrow move to 0.18 μ m process
 - > To enhance the radiation tolerance
 - High resistivity epitaxial layer
 - Smaller feature size process
 - > To accelerate the readout speed
 - More parallelised read-out
 - Optimised number of pixels per column
 - New pixel array architectures
 - Smaller feature size process

Sensors R&D for the upgrade of the ITS: Our Strategy

R&D of up- & down-stream of sensors performed in parallel at IPHC in order to match the ITS timescale

for 2 final sensors (~3x1.3 cm²)

- Mature architecture: MISTRAL = MIMOSA Sensor for the inner TRacker of ALICE
 - Relatively moderate readout speed (200 ns/ 2rows)
 - \sim 200 mW/cm² , σ_{so} \sim 5 μm for inner layers
 - $\sim 100 \text{ mW/cm}^2$, $\sigma_{sp} \sim 10 \text{ }\mu\text{m}$ for outer layers
- Improved architecture: ASTRAL = AROM Sensor for the inner TRacker of ALICE
 - Higher speed (100 ns/ 2rows) + Lower power
 - \sim 85 mW/cm², $\sigma_{sn} \sim$ 5 μ m for inner layers
 - $\,\,\Box\,\,$ ~ 60 mW/cm², σ_{sp} ~ 10 μm for outer layers
- Modular design + reused parts → optimising R&D time
- Several groups involved in the ITS design
 - → see Magnus Mager (CERN) talk in this conference

Upstream of MISTRAL Sensor

- Discriminator: similar schematic as in MIMOSA26 & 28
 - Offset compensated amplifier stage + DS (double sampling)
 - 200 ns per conversion
- ightharpoonup Read out 2 rows simultaneously ightharpoonup 2 discriminators per column (22 μ m)

Chain opt. => 2 D/col

Test Results of the Upstream Part of MISTRAL Sensor

- Lab test results @ 30 °C (MIMOSA22-THRa1 & 2, MIMOSA22-THRb) :
 - Diode optimisation
 - CCE optimisation: surface diode of 8-11 μm² (22x33 μm²)
 - > In-pixel amplification optimisation
 - Reduction of RTS noise by a factor of 10 to 100
 - MISTRAL RO Architecture: (single & double raw RO)
 - 2-row RO increases FPN by ~1 e⁻ ENC → negligible impact on ENC_{total} os 1 is 2 25 3 35 4
 - → Design of the upstream of MISTRAL validated

L_{in}xW_{in} = 0.36 μm²

0.0717

 $L_{in}xW_{in} = 0.72 \mu m^2$

0.3058

 $L_{in}xW_{in} = 0.18 \mu m^2$

- Beam test results (DESY):
 - > SNR for MIMOSA-22THRa close to MIMOSA 34 result
 - 8 µm² diode features nearly 20 % higher SNR (MPV)
 - \triangleright Detection efficiency ≥ 99.8% while Fake hit rate ≤ O(10⁻⁵)
 - > 22×33 μm² binary pixel resolution: ~5 μm as expected from former studies
 - Final ionisation radiation tolerance assessment under way

Upstream of ASTRAL sensor

- Thanks to the quadruple-well technology, discriminator integrated inside each pixel
 - Analogue buffer driving the long distance column line is no longer needed
 - Static current consumption reduced from ~120 μA up to ~14 μA per pixel
 - Readout time per row can be halved down to 100 ns (still with 2 rows at once) due to small local parasitics
- Sensing node & in-pixel pre-amplification as in MISTRAL sensors
- In-pixel discrimination
 - Topology selected among 3 topologies implemented in the 1st prototype AROM-0
 - Several optimisations on the 2 most promising topologies in AROM-1
 - One third of final sensor (FSBB_A0) coming back this week from dicing/thinning

AROM-1a 2x2 pixels

AROM-1b 2x2 pixels

Horizontal controls shared between 2 rows

Horizontal controls in each row

AROM-0

AROM-1

Summary of the AROM-1 development

AROM-0 submission Feb. 2013

32 x32 pixels (22x33 μm²) Single row readout

- 32 x32 pixels (22x33 μm²) Single row readout
- 16 x16 pixels (22x33 μm²) Double row readout

AROM-1_e/f
More stable
Less compact → more noise

AROM-1_a/b/c
More compact
Less stable → more noise

AROM-1e/f submission Nov. 2013

- 64 x64 pixels Double row readout
 - e: 22x33 μm²
 - f: 27x27 μm²
- Noise and power consumption optimized
- Slightly different timing configuration
- Tests in progress

AROM-1a/b/c submission Aug. 2013

- 64 x64 pixels Double row readout
 - a: 22x33 μm² (similar layout as AROM-0v2)
 - b: 22x33 μm² (optimized layout)
 - c: 24x33 μm² (study impact of pixel pitch)
- RTS noise mitigated
- Thermal noise from switches optimized
- Optimized layout to minimize cross talk and asymmetry
- Performance validated already in laboratory

Test Results of the Upstream Part of ASTRAL Sensor

- Preliminary lab test results @ 30 °C and @ 100 MHz (instead of 160 MHz)
 - Current acquisition board limitation
- AROM-1b/c
 - Discri alone: TN ~ 0.75 mV, FPN ~ 0.63mV
 - Discri+pixel: TN ~ 1.1 mV, FPN ~ 0.66mV

- AROM-1e tests are ongoing
 - Discri alone: TN ~ 0.29 mV, FPN ~ 0.19mV
 - Discri+pixel: TN ~ 0.94 mV, FPN ~ 0.23mV

AROM-1e optimisation is validated Some residual coupling effects are investigated

Power density, Integration time and Spatial resolution

- Effect of pixel pitches on these 3 factors:
 - Assumptions
 - MISTRAL for outer layers
 - Same sensitive area (1.3x3 cm²)
 - 1 SUZE per final sensor
 - Constant power consumption for digital
 - NC=Number of Columns (modulo 32)
 - NFSBB= Number of FSBBs per final sensor
 - NC/NFSBB = Number of rows
 - Row pitch (RP) has an effect on Readout time (RT)
 - $RP = 30000 \, \mu \text{m} / NC$
 - RT = (NC / NFSBB) / 2 x 200 ns
 - Column pitch (CP) has an effect on Power density (PD)
 - $CP = 13000 \, \mu \text{m} / (NC / NFSBB)$
 - PD = (60 mA + 0,117 mA x NC x 2) x 1.8 V
 - PDopt = (60 mA + 0,09 mA x NC x 2) x 1.8 V
 - Both pitches have an effect on Spatial resolution (SR)
 - SR = $7\mu m (RP \times CP / (22 \times 66 \mu m^2))^{1/2 \text{ or } 1}$
 - Empirical formula for a specific technology and architecture based on the spatial resolution of tested chip with an area of 22 x 66 μm²

Total of NC columns for NFSBB pixel arrays

