Gluons producing Higgs bosons in the SM and in the MSSM

Babis Anastasiou ETH Zurich

4 June 2008

In collaboration with:

Stefan Beerli, Stefan Bucherer, Alejandro Daleo, Zoltan Kunszt

Beerli, Bucherer, Daleo, Kunszt, CA, in preparation
Beerli, Daleo, CA, arXiv:0803.3065 (accepted in PRL)
Beerli, Daleo, CA, JHEP 0705:071,2007
Beerli, Bucherer, Daleo, Kunszt, CA, JHEP 0701:082,2007

 $M_{HIGGS} = ?$

BBC NEWS / NEWS FRONT PAGE

Graphics Version | Change to UK Version | BBC Sport Home

<u>News Front Page</u> | <u>Africa</u> | <u>Americas</u> | <u>Asia-Pacific</u> | <u>Europe</u> | <u>Middle East</u> | <u>South Asia</u> | <u>UK</u> | <u>Business</u> | <u>Health</u> | <u>Science/Nature</u> | <u>Technology</u> | <u>Entertainment</u> | <u>Also in the news</u> | <u>Video</u> and Audio | <u>Have Your Say</u> |

Page last updated at 20:18 GMT, Friday, 3 June 2011 21:18 UK

<u>Clinton fights on amid president Obama's first Iraq visit.</u> Democratic presidential hopeful Hillary Clinton's campaign chief denies she is to concede...

UN sets out food crisis measures

The UN secretary general calls for revitalising agriculture as a way of tackling the world's worsening food crisis.

Bardot fined over racial hatred

Former film star Brigitte Bardot is fined 15,000 euros by a French court for inciting racial hatred in a letter on her website.

God's particle found in Geneva

It is a relatively light particle with a mass of 116 GeV.

Just a number away...

- The mass of the Higgs boson may be the only parameter missing to explain everything that we will see at the LHC!
- If the SM is true, this will be the most spectacular triumph of the physicists of the 20th century.

BBC NEWS / NEWS FRONT PAGE

Graphics Version | Change to UK Version | BBC Sport Home

<u>News Front Page</u> | <u>Africa</u> | <u>Americas</u> | <u>Asia-Pacific</u> | <u>Europe</u> | <u>Middle East</u> | <u>South Asia</u> | <u>UK</u> | <u>Business</u> | <u>Health</u> | <u>Science/Nature</u> | <u>Technology</u> | <u>Entertainment</u> | <u>Also in the news</u> | <u>Video</u> and <u>Audio</u> | <u>Have Your Say</u> |

Page last updated at 20:18 GMT, Friday, 3 June 2011 21:18 UK

Clinton fights on amid president Obama's first Iraq visit.

Democratic presidential hopeful Hillary Clinton's campaign chief denies she is to concede...

UN sets out food crisis measures

The UN secretary general calls for revitalising agriculture as a way of tackling the world's worsening food crisis.

Bardot fined over racial hatred

Former film star Brigitte Bardot is fined 15,000 euros by a French court for inciting racial hatred in a letter on her website.

God's particle found in Geneva. It is not alone! It is a relatively light particle with a mass of 116 GeV. The top quark is antagonized by mystery particles. It produced only half the expected number of Higgs bosons.

What if $\sigma_{HIGGS} = 50\%\sigma_{SM}?$

- QCD? Cannot be...two decades long theoretical work must then be all wrong.
- Kaluza-Klein tower of 5-D quark? (Djouadi, Moreau; Falkowski,...)
- "Sweet-spot" supersymmetry? (Kitano, Nomura; Perelstein; Dermisek, Low; Cho;...)
- Higgs dependent Yukawa couplings?
 (Giudice, Lebedev)
- We shall need to check very many cases!

Gluon-fusion crosssection

- A new precision test for ALL models which aspire to explain LHC data...
- If SM cross-section estimate is roughly correct, then it may be measured with a 10-15% precision. Comparable to theory!
- We should be prepared for surprises in the Higgs sector! All SM extensions modify this one way or another! Can we achieve good enough theoretical precision in BSM?

How tough was the SM?

Starting with a loop already at leading order! A really tough two-loop calculation at NLO. Pioneering work by Spira, Djouadi, Gradenz, Zerwas. Large: (70-100%) x LO (Spira et al, Dawson)

NNLO only in the heavy top approximation (Guenther's talk)

How tough is BSM?

- New coloured and massive particles will circulate in the gluon-fusion loops
- Very heavy ones may decouple (not always)
- For topologically equivalent Feynman diagrams, results can be lifted from (or be computed a la) SM.
- BSM models can though be more complicated....

LHC Olympics... @ Hoenggerberg!

- Can we compute the the gluon fusion cross-section in the toughest BSM scenario that we can think of?
- Are known multi-loop methods up to the task?
- How well do we understand field theory aspects of new models and their symmetries which are relevant at higher orders? Renormalization?

MSSM: a computing nightmare

- QCD corrections should be large
- More than one massive particles may circulate in the loops.
- Consistent regularization/renormalization
- A challenge for any analytic computational method already at NLO
- Disparate mass-scales e,g, Mbottom, Mhiggs, Mgluino

Earlier calculations

- Effective theory for light Higgs boson with respect to quarks, squarks and gluino. Harlander, Steinhauser
- No ET for a heavy Higgs, large tanb.
- Two-loop amplitude with squarks and quarks only. CA, Beerli, Bucherer, Daleo, Kunszt; Aglieti, Bonciani, Degrassi, Vicini
- NLO cross-section with squark and quarks only Muhlleitner, Spira; Bonciani, Degrassi, Vicini

The difficult diagrams

Many different masses in propagators...no analytic approach Recall large mass hierarchy of bottom quark and sparticles

Numerical N...LO fully differential cross-sections

CA, Melnikov, Petriello; Lazopoulos, Melnikov, Petriello; CA, Beerli, Daleo

- Works in dimensional regularization
- Infrared divergences in phase-space integrals are found and simplified automatically. Integration boundaries are arbitrary.
- Loop amplitudes are computed (almost) the same. Automated contour deformation to avoid threshold singularities.
- Blind to the Lagrangian peculiarities

Phase-space integrations

- Singularities have a very complicated form in momentum space (beyond NLO)
- Map phase-space volume to the unit hypercube

- Simple geometry leads to simple mathematics and automatization
- Easy to spot the singularities (usually at the edges of phase-space)

Factorized singularities

Singularity due to a single variable reaching independently a boundary:

Can be expanded after a trivial subtraction

$$\int_0^1 d\lambda_1 \frac{f(\lambda_1, \ldots)}{\lambda_1^{1-\epsilon}} = \int_0^1 d\lambda_1 \frac{f(0, \ldots)}{\lambda_1^{1-\epsilon}} + \int_0^1 d\lambda_1 \lambda_1^{\epsilon} \left[\frac{f(\lambda_1, \ldots) - f(0, \ldots)}{\lambda_1} \right]$$
$$= \frac{f(0, \ldots)}{\epsilon} + \int_0^1 d\lambda_1 \lambda_1^{\epsilon} \left[\frac{f(\lambda_1, \ldots) - f(0, \ldots)}{\lambda_1} \right]$$

Overlapping singularities

$$\frac{\lambda_1^{\epsilon}\lambda_2^{\epsilon}}{(\lambda_1+\lambda_2)^2}f(\lambda_1,\lambda_2)$$

Binoth, Heinrich; Denner, Roth; Hepp

can be

factorized

80 · Threshold singularities 60 40 -20 Singular inside the integration 0.2 0.3 0.1 0.4 0.5 -20 region; not the edges -40-60 $I = \int_0^1 dx \frac{1}{x - a - i0},$ -80

- Regulator i0 is not good enough for a numerical evaluation.
- Choose a different contour $C: z = x i\lambda x(1 x)$

$$I = \int_{C} dz \frac{1}{z-a} = \int_{0}^{1} dx \frac{\partial z}{\partial x} \frac{1}{z-a}$$
$$= \int_{0}^{1} dx \left[1 + i\lambda \left(1 - \frac{x}{2} \right) \right] \frac{1}{x-a-i\lambda x(1-x)}$$

Suitable for numerical integration!

Contour deformation for Feynman parameters

Nagy, Soper

For a Feynman integral

$$\int_0^1 \frac{dx_1 \dots dx_n}{\left[Q(x_i) + i0\right]^{n+\epsilon}}$$

choose a path

$$C: \quad z_i = x_i + i\lambda x_i (1 - x_i) \frac{\partial Q}{\partial x_i},$$

• where Q has a positive imaginary part

$$Q(z_i) = Q(x_i) + \left(i\lambda x_i(1-x_i)\frac{\partial Q}{\partial x_i}\right)\frac{\partial Q}{\partial x_i} + \mathcal{O}(\lambda^2)$$

A "natural" MSSM scenario

Light stop; Large stop mass-splitting

$m_{\tilde{t}_1} = 150 \mathrm{GeV}$	$220\mathrm{GeV} < m_{\tilde{t}_2} < 570\mathrm{GeV}$
$m_{\tilde{b}_1} = 350 \mathrm{GeV}$	$m_{\tilde{b}_2} = 370 \mathrm{GeV}$
$m_{\tilde{g}} = 500 \mathrm{GeV}$	
$m_h = 115 \text{GeV}$	$280 {\rm GeV} < m_H < 450 {\rm GeV}$
$\tan\beta = 20$	$\mu = 300 \text{GeV}$

aka "gluophobic" Carena et al, Harlander, Steinhauser; Spira, Muhlleitner, Djouadi

Reduced fine-tuning in the MSSM (Dermisek, Low; Kitano, Nomura; Perelstein; ...)

MSSM ggh two-loop amplitude Beerli, Daleo, CA

Large stop mass splitting decreases the ggh interaction strength

MSSM ggH two-loop amplitude Beerli, Daleo, CA

Improved understanding of our numerical method.

Bottom contributions cannot be ignored

Renormalization schemes

- We used Dim Red due to A. Daleo with very minor help from the rest of us dimensional regularization, dimensional reduction, four dimensional helicity scheme
- Found universal shift needed in the higgssquark-squark coupling for dim. reg.
- Encountered new evanescent operator required in less symmetric theories, e.g. the SM
- Inconsistent result for the SM amplitude in FDH.

Total NLO cross-section Preliminary

σ **[pb]**

Inclusive NLO K-factor Preliminary

Stefan Bucherer

Total NLO cross-section Preliminary

σ **[pb]**

Heavy Higgs total crosssection Preliminary

Heavy Higgs K-factor

Stefan Bucherer

Preliminary

Outlook

- Monte-Carlo with matching to parton shower, and all non-hadronic decay channels (before 14 TeV collisions @ LHC)
- CP-odd+ charged Higgs
- Effective theory @ NNLO
- Further SM applications of our numerical method (2 to 2 processes) at NNLO