

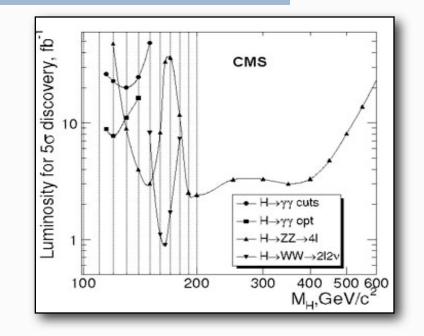
QCD radiation effects on Higgs boson searches in the WW channel at the LHC

Günther Dissertori Institute for Particle Physics, ETH Zurich

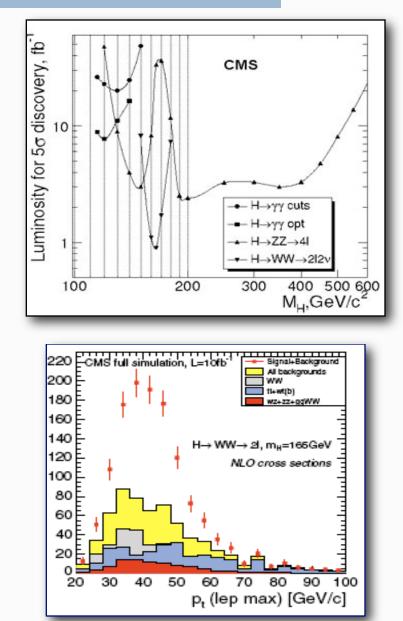
together with Charalampos Anastasiou, Fabian Stöckli and Bryan Webber

KET Workshop, Zurich, June 2008

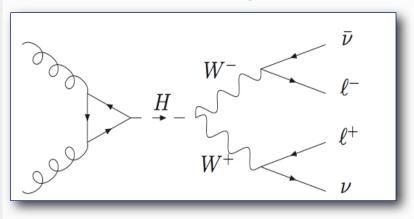
G. Dissertori - KET Workshop - Zurich


Outline

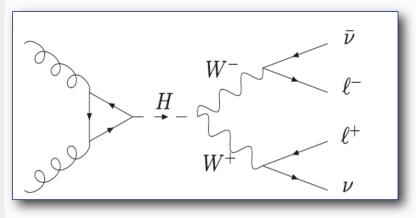
- Importance of the WW channel and selection cuts
- calculating the Higgs boson cross-section
 - from LO to NNLO cross-sections
 - from inclusive to differential cross-sections
- NNLO results for the signal cross-section
- Second comparison of fixed-order results with parton-shower algorithms and the resummed Higgs p_T-spectrum
- sensitivity to jet algorithms and the underlying event
- Conclusions

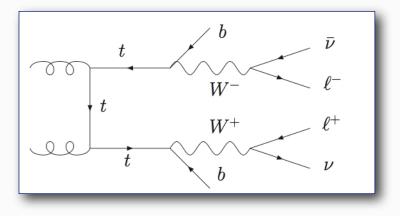

Higgs discovery in the WW channel Φ ETH Institute for Particle Physics

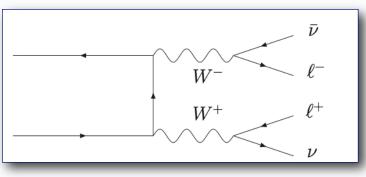
- many channels are exploited to discover the Higgs at the LHC
- in the mass region ~2 m_W the H→WW channel is most promising (BR(H→WW)~1)
- but... in the leptonic W decay modes there are neutrinos in the final state

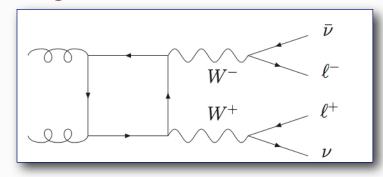


Higgs discovery in the WW channel Φ ETH Institute for Particle Physics

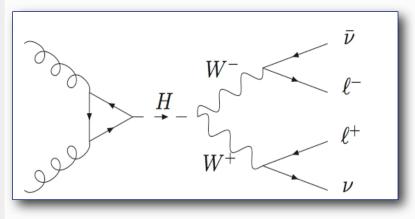

- many channels are exploited to discover the Higgs at the LHC
- in the mass region ~2 m_W the H→WW channel is most promising (BR(H→WW)~1)
- but... in the leptonic W decay modes there are neutrinos in the final state
- no invariant mass peak can be reconstructed
- an 'excess' only detectable via counting experiment
- understanding of signal and background properties is essential


Gluon-Fusion Signal

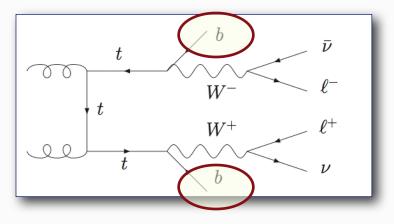

Gluon-Fusion Signal

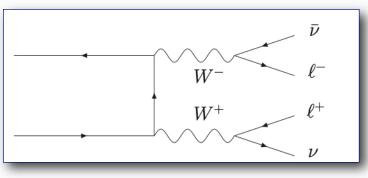


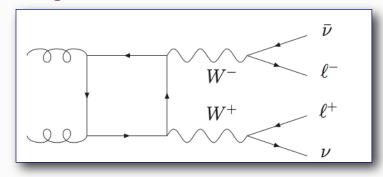
Top-Pair Background



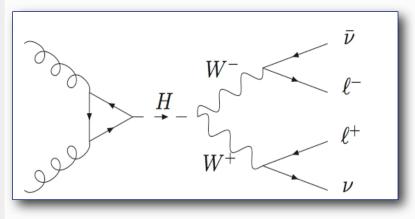
WW irreducible Background



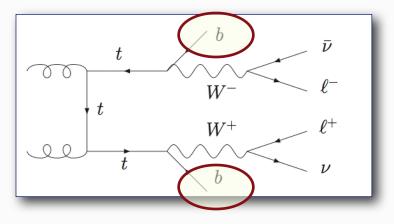

Gluon-Fusion Signal

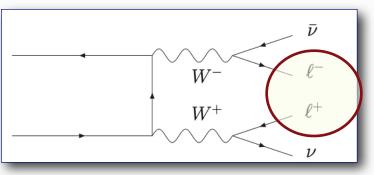


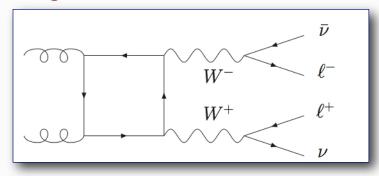
Top-Pair Background



WW irreducible Background




Gluon-Fusion Signal



Top-Pair Background

WW irreducible Background

Magnitude of Signal & Background D Particle Physics

Cross-sections after basic selection:

 $\stackrel{\scriptstyle <}{_{\scriptstyle =}}$ 2 isolated high p_T (> 20 GeV) opposite charge leptons (e,µ)

process	m _H =165 GeV	tt	qq→WW	gg→WW
σ [<mark>pb</mark>]	0.4	15.7	1.4	0.1

- Signal/Background ratio ~ 2 %
 - need very restricting additional cuts to improve this ratio
 - ➡ Dittmar & Dreiner 1997
 - angular correlations to reduce WW backgrounds
 - jet-veto to reduce Top-Pair background

Magnitude of Signal & Background D Particle Physics

Cross-sections after basic selection:

 \therefore 2 isolated high p_T (> 20 GeV) opposite charge leptons (e,µ)

process	m _H =165 GeV	tt	qq→WW	gg→WW
σ [<mark>pb</mark>]	0.4	15.7	1.4	0.1

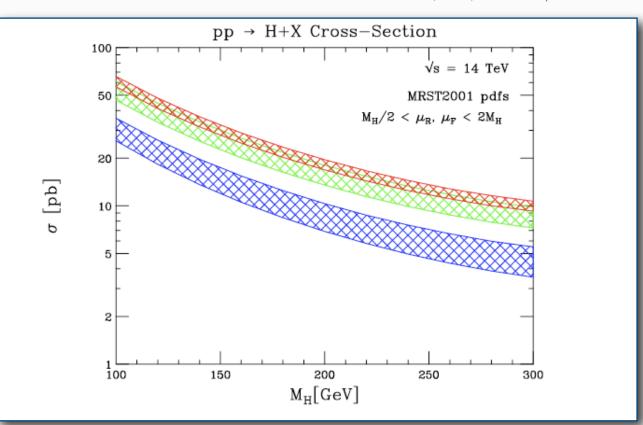
- Signal/Background ratio ~ 2 %
 - need very restricting additional cuts to improve this ratio
 - Dittmar & Dreiner 1997
 - angular correlations to reduce WW backgrounds
 - jet-veto to reduce Top-Pair background

process	m _H =165 GeV	tt	qq→WW	gg→WW
σ [<mark>fb</mark>]	46	10	12	4

very severe cuts: only about 2% of the initially produced Higgs events survive: Do we understand these cross-sections in such a small region of phase-space?

"Scary" cut efficiencies

- Cut efficiencies for all process are of the order or less than 1%
- What is the impact of QCD radiation corrections on these efficiencies?
- Theoretical work was/is needed in all four processes
- In a real experiment:
 - Background events can be measured in signal-free regions and extrapolated into the 'signal-region'
- The signal can only be studied theoretically!


Inclusive Higgs cross-section

Higgs cross-section in the Gluon-Fusion channel receives large pertubative corrections:

 $\sigma(NLO) \sim 1.7 \times \sigma(LO)$ $\sigma(NNLO) \sim 2.0 \times \sigma(LO)$

(Dawson; Spira, Djouadi, Zerwas)

(Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven)

ETH Institute for Particle Physics

Differential cross-sections

- need fully differential cross-sections in order to impose experimental cuts
- at NLO any cross-section can be computed if the virtual amplitudes are known Giele, Glover, Kosower; Frixione, Kunszt, Signer; Catani, Seymour ...
- for NNLO collider processes the list is rather short:
 - Drell-Yan rapidity distribution Anastasiou, Dixon, Melnikov, Petriello (03)
 - $ee \rightarrow 2 jets$ Anastasiou, Melnikov, Petrielle (04); Gehrmann, Gehrmann, Glover (04); Weinzierl (06)
 - $P \to H + X$ Anastasiou, Melnikov, Petriello (04)
 - $Pp \rightarrow H + X \rightarrow \gamma \gamma + X$ Anastasiou, Melnikov, Petriello (04), Catani, Grazzini (07)
 - $P \to W, Z+X$ Melnikov, Petriello (06)
 - $pp \longrightarrow H + X \longrightarrow WW + X \longrightarrow |_{V}|_{V} + X$ Anastasiou, GD, Stöckli (07), Grazzini (08)
 - $ee \rightarrow 3$ jets Gehrmann, Gehrmann, Glover, Heinrich (07)

Set used the fully differential NNLO program FEHiP for pp→H+X
Anastasiou, Melnikov, Petriello

$H \rightarrow WW at NNLO$

- Set used the fully differential NNLO program FEHiP for pp→H+X
 Anastasiou, Melnikov, Petriello
- Set added decay matrix-element for the process
 H→WW→IvIv

$H \rightarrow WW at NNLO$

- Set used the fully differential NNLO program FEHiP for pp→H+X
 Anastasiou, Melnikov, Petriello
- Set added decay matrix-element for the process
 H→WW→lvlv
- Iarge phase-space rejection required remodeling the numerical integration strategy
 - independent, parallelized VEGAS integration for individual sectors (FEHiP is based on Sector Decomposition)
 - Iarge improvement of integration adaptation (from no-adaptation to adaptation within a few VEGAS iterations)
 - easy exploitation of cluster computing

$H \rightarrow WW at NNLO$

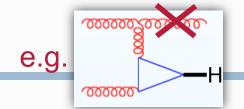
- Set used the fully differential NNLO program FEHiP for pp→H+X
 Anastasiou, Melnikov, Petriello
- Set added decay matrix-element for the process
 H→WW→IvIv
- Iarge phase-space rejection required remodeling the numerical integration strategy
 - independent, parallelized VEGAS integration for individual sectors (FEHiP is based on Sector Decomposition)
 - Iarge improvement of integration adaptation (from no-adaptation to adaptation within a few VEGAS iterations)
 - easy exploitation of cluster computing
- all numbers/plots in the paper required about one week of running time on an average of 450 CPU's

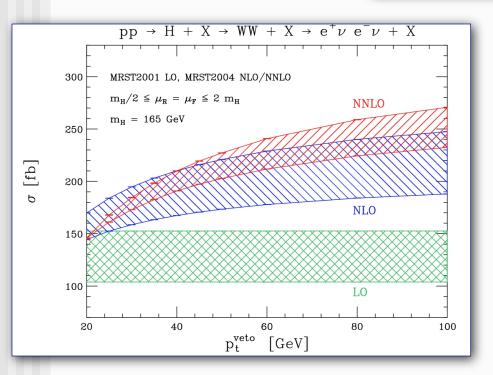
$H \rightarrow WW$: selection cuts

- we investigate the higher-order corrections on the cross-section after experimental cuts on the following variables:
 - angle between the charged leptons in the transverse plane
 - *missing transverse energy*
 - *maximum transverse energy of the harder lepton*
 - invariant mass of the charged lepton-pair

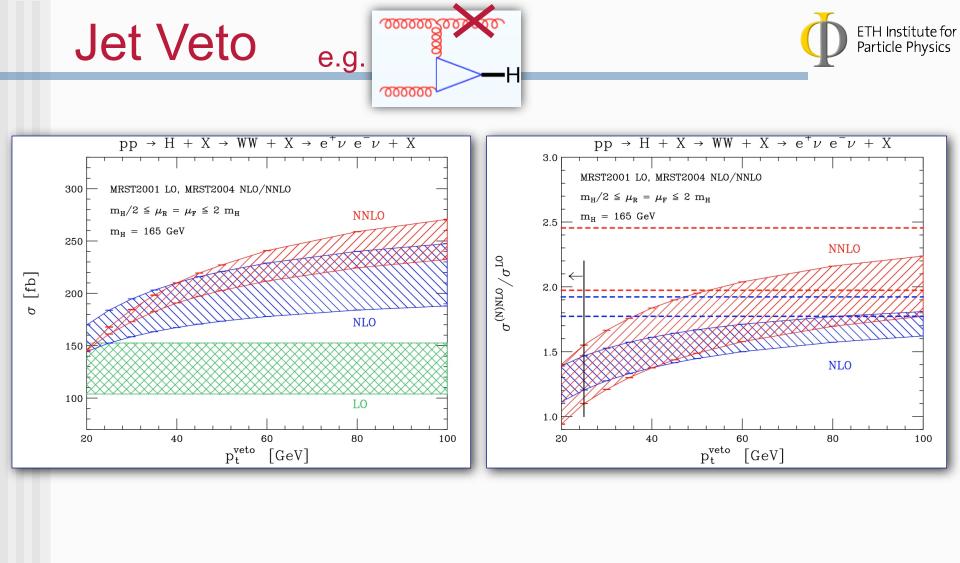
$H \rightarrow WW$: selection cuts

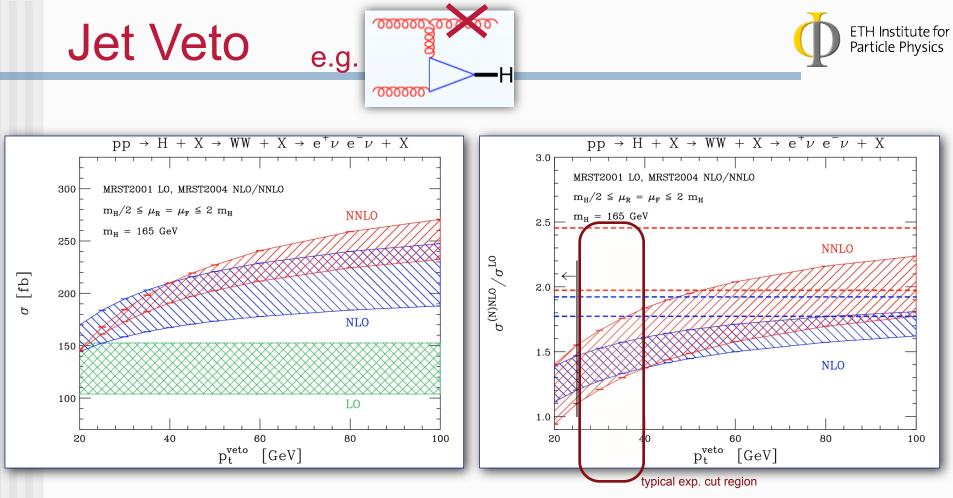
- we investigate the higher-order corrections on the cross-section after experimental cuts on the following variables:
 - angle between the charged leptons in the transverse plane
 - *missing transverse energy*
 - *maximum transverse energy of the harder lepton*
 - invariant mass of the charged lepton-pair
 - *jet-veto* (= do not allow jets with $p_T > p_T^{veto}$)


$H \rightarrow WW$: selection cuts

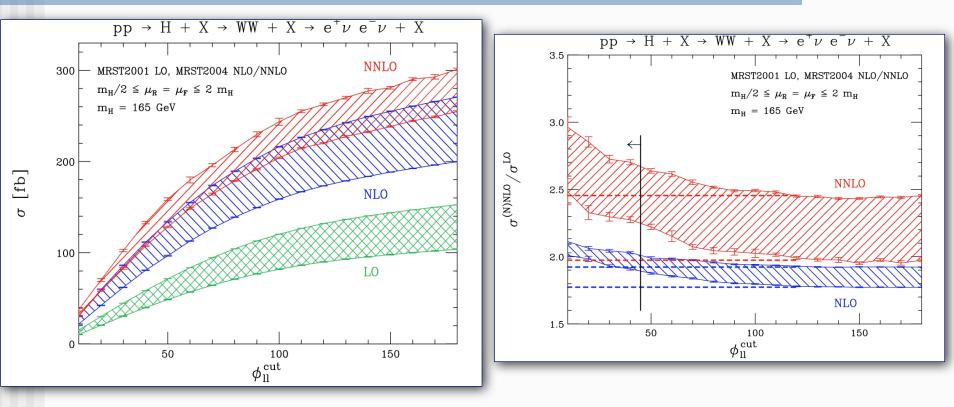

- we investigate the higher-order corrections on the cross-section after experimental cuts on the following variables:
 - angle between the charged leptons in the transverse plane
 - *missing transverse energy*
 - *maximum transverse energy of the harder lepton*
 - invariant mass of the charged lepton-pair
 - *jet-veto* (= do not allow jets with $p_T > p_T^{veto}$)
- we study the cumulative cross-section in the variable X as $c X^{\text{cut}}$

$$\sigma_{\rm cum}(X^{\rm cut}) = \int_0^\Lambda \frac{d\sigma}{dX} \, dX$$

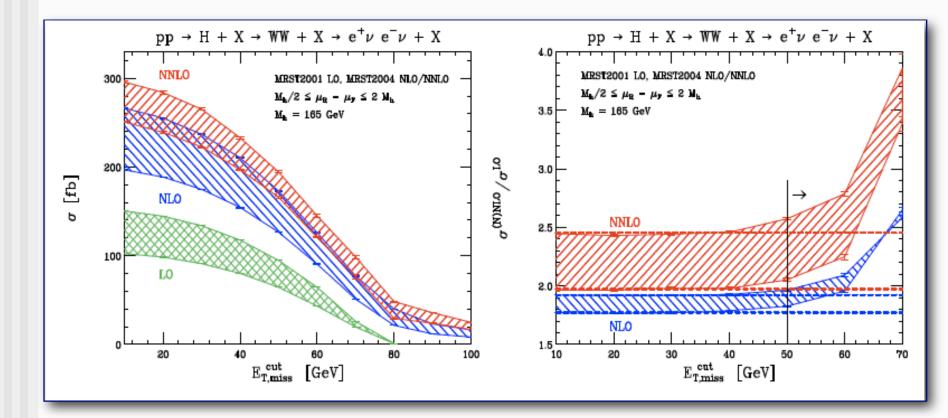

i.e. we integrate the differential cross-section up to some cut-off value X^{cut}, which mimics an experimental cut



Jet Veto



- jet-veto has no impact at LO (no partons in final state)
- jet-veto decreases the NLO and NNLO corrections
- jet-veto at NLO corresponds to cut on Higgs transverse momentum
- Solution K-factors ($\sigma^{(N)NLO}/\sigma^{LO}$) depend heavily on cut-value!
 - inclusive K-factors would fail to describe the picture reliably


Transverse lepton angle

- in contrast to the jet-veto:
 the K-factors increase when lowering the cut value on the lepton angle
- cut is placed where the NNLO and NLO corrections are approximated by the K-factor for the total cross section

Missing Transverse Energy

- The cut removes a significant part of the two-loop contribution
- The LO phase-space is below 80 GeV

ETH Institute for Particle Physics

Signal cross-section after cuts

$\sigma({\rm fb})$	LO	NLO	NNLO
$\mu = \frac{M_{\rm h}}{2}$	21.002 ± 0.021	22.47 ± 0.11	18.45 ± 0.54
$\mu = M_{\rm h}$	17.413 ± 0.017	21.07 ± 0.11	18.75 ± 0.37
$\mu = 2M_{\rm h}$	14.529 ± 0.014	19.50 ± 0.10	19.01 ± 0.27

- K-factors are at the order of 1
 - depending on scale choice even < 1 \mathbf{I}
 - Inclusive K-factors predict an increase by a factors of 2 !
- very small scale variation after cuts are applied
- Is this a very precise prediction for the cross-section?

Are these results reliable?

- We could hurry and declare "victory" of the fixed-order perturbation theory for the signal cross-section:
 - smaller higher-order corrections after cuts
 - smaller scale variation after cuts
- But...
 - is this accidental?

Are these results reliable?

- We could hurry and declare "victory" of the fixed-order perturbation theory for the signal cross-section:
 - smaller higher-order corrections after cuts
 - smaller scale variation after cuts
- But...
 - is this accidental?
 - are effects beyond NNLO important?

Are these results reliable?

- We could hurry and declare "victory" of the fixed-order perturbation theory for the signal cross-section:
 - smaller higher-order corrections after cuts
 - smaller scale variation after cuts
- But...
 - is this accidental?
 - are effects beyond NNLO important?
- The cuts restrict the phase-space significantly, especially the jet-veto (but not exclusively) restricts the Higgs boson phase-space to the low transverse momentum region...
- … where fixed-order theory might break down!
- In do we need resummation for an accurate prediction?

We compare our fixed-order prediction to

- We compare our fixed-order prediction to
 - the LO parton shower event generator HERWIG
 - incorporates LO hard-scattering amplitudes with parton-shower, includes leading logs to all orders and LO color resummation

- We compare our fixed-order prediction to
 - the LO parton shower event generator HERWIG
 - incorporates LO hard-scattering amplitudes with parton-shower, includes leading logs to all orders and LO color resummation
 - MC@NLO (Frixione, Webber)
 - incorporates NLO matrix elements with the parton shower from HERWIG

- We compare our fixed-order prediction to
 - the LO parton shower event generator HERWIG
 - incorporates LO hard-scattering amplitudes with parton-shower, includes leading logs to all orders and LO color resummation
 - MC@NLO (Frixione, Webber)
 - incorporates NLO matrix elements with the parton shower from HERWIG
 - resummed Higgs p_T distribution (Bozzi, Catani, de Florian, Grazzini)
 - matches NNLO with NNLL
 - combines to the 'highest posssible' accuracy fixed order and resummation effects
 - but available only for this distribution, not for any variable and after cuts

Earlier comparisons

Solution NNLO vs MC@NLO for pp \rightarrow H \rightarrow $\gamma\gamma$ (G

(GD, Holzner, Stöckli)

● NNLO vs MC@NLO for pp→W→ev (M

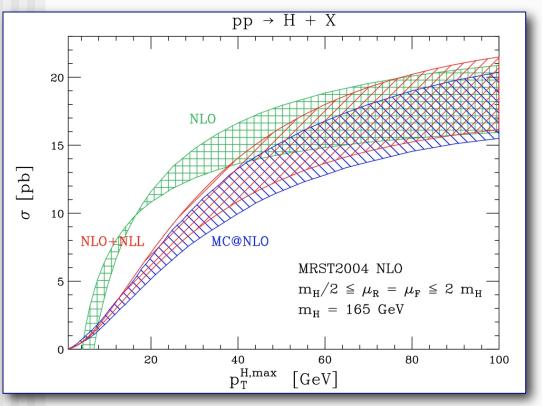
(Melnikov, Petriello; Frixione, Mangano)

- In both cases very good agreement for the cut efficiencies
- But cuts for these processes restrict the Higgs / W boson phase-space 'democratically', i.e. not explicitly to the low transverse momentum region

What can we learn?

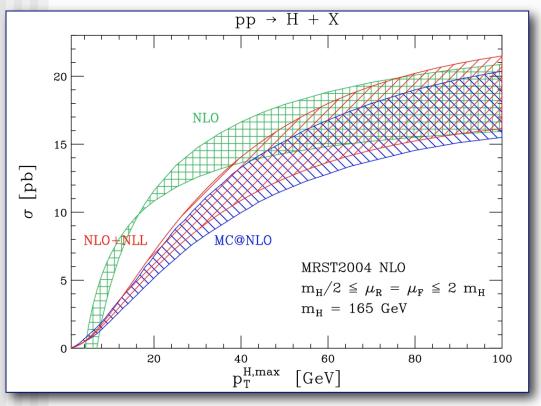
- It is not obvious from first principles that the efficiencies in the event generators and the fixedorder prediction agree:
- The physics approximations in fixed-order and parton showers are different; therefore ...
 - In a disagreement would mean that at least one of these approaches does not describe the physics process correctly in the signal phasespace (i.e. after the selection cuts)
- On the other hand: A good agreement would give confidence in our tools

Higgs p_T spectrum



- we know that if we integrate the fixed-order cross-section over a large enough region the effects of multiple soft and collinear radiation become negligible... But how 'large'?
- \odot we compare the cumulative cross-section in $p_T^H \dots$

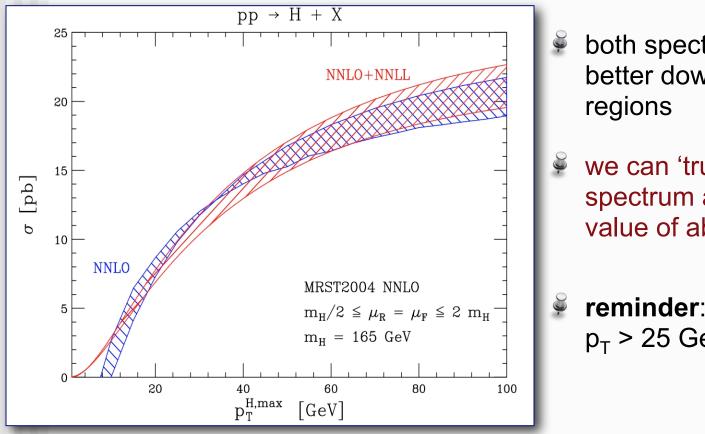
Higgs p_T spectrum



- we know that if we integrate the fixed-order cross-section over a large enough region the effects of multiple soft and collinear radiation become negligible... But how 'large'?
- \odot we compare the cumulative cross-section in $p_T^H \dots$
- ... at NLO:

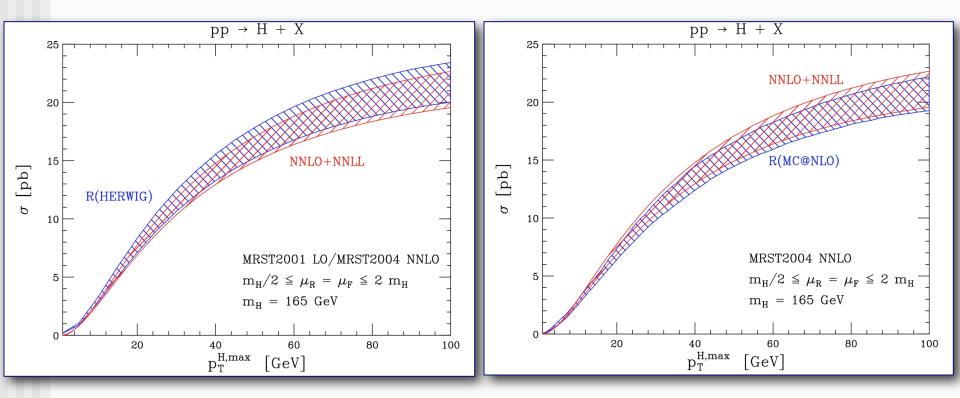
Higgs p_T spectrum

- ETH Institute for Particle Physics
- we know that if we integrate the fixed-order cross-section over a large enough region the effects of multiple soft and collinear radiation become negligible... But how 'large'?
- \odot we compare the cumulative cross-section in $p_T^H \dots$
- ... at NLO:



- NLO+NLL and MC@NLO agree very well
- need to integrate the fixedorder NLO spectrum up to about 70 GeV to get an agreement
- NLO prediction will fail when restricting to smaller regions!

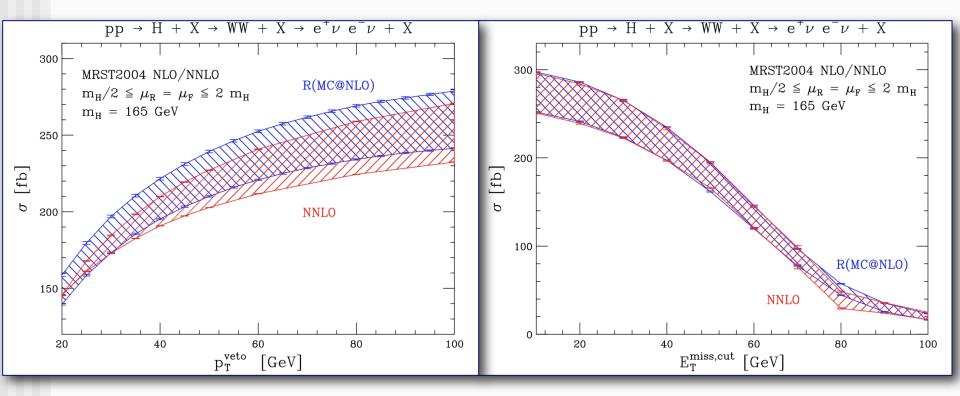
Higgs p_T spectrum...



- both spectra agree much better down to much smaller regions
- we can 'trust' the NNLO spectrum already for a p_T^{max} value of about **20 GeV**!
- reminder: we veto on jets with p_T > 25 GeV

Rescaled generator spectra

we also compare the inclusively rescaled generator spectra (HERWIG, MC@NLO) to the 'best' prediction:



both agree nicely, with HERWIG slightly over- and MC@NLO slightly under-estimating the cross-section

Cut variables: NNLO vs MC@NLO D ETH Institute for Particle Physics

inclusively rescaling MC@NLO, now after applying cuts:

Note : can not compare to NNLO+NNLL any more

jet-veto: especially in the region where we are cutting very good agreement

all other variables agree 'perfectly'

$\sigma_{\rm acc}$ [fb]	$\mu = \frac{m_{\rm H}}{2}$		$\mu = 2 m_{\rm H}$	
jet algorithm	SISCone	k_{T}	SISCone	k_{T}
LO	21.00	± 0.02	14.53 :	± 0.01
HERWIG	11.16 ± 0.04	11.59 ± 0.04	7.60 ± 0.03	7.89 ± 0.03
NLO	22.40 ± 0.06		19.52 ± 0.05	
MC@NLO	17.42 ± 0.08	18.42 ± 0.08	13.60 ± 0.06	14.39 ± 0.06
$R^{\rm NLO}({\rm HERWIG})$	19.79 ± 0.07	20.56 ± 0.07	14.61 ± 0.05	15.17 ± 0.05
NNLO	18.84 ± 0.59	18.45 ± 0.54	18.76 ± 0.31	19.01 ± 0.27
$R^{\rm NNLO}(MC@NLO)$	19.33 ± 0.09	20.43 ± 0.09	17.24 ± 0.07	18.24 ± 0.07
$R^{\rm NNLO}({\rm HERWIG})$	22.02 ± 0.08	22.88 ± 0.08	18.65 ± 0.07	19.38 ± 0.07

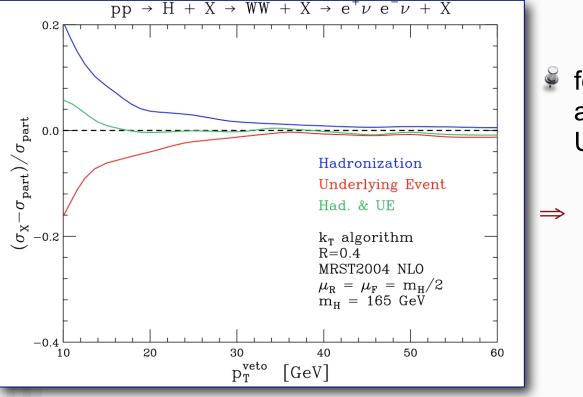
$\sigma_{\rm acc}$ [fb]	$\mu = \frac{m_{\rm H}}{2}$		$\mu = 2 m_{\rm H}$	
jet algorithm	SISCone	k_{T}	SISCone	k_{T}
LO	21.00 :	± 0.02	14.53 :	± 0.01
HERWIG	11.16 ± 0.04	11.59 ± 0.04	7.60 ± 0.03	7.89 ± 0.03
NLO	22.40 ± 0.06		19.52 ± 0.05	
MC@NLO	17.42 ± 0.08	18.42 ± 0.08	13.60 ± 0.06	14.39 ± 0.06
$R^{\rm NLO}({\rm HERWIG})$	19.79 ± 0.07	20.56 ± 0.07	14.61 ± 0.05	15.17 ± 0.05
NNLO	18.84 ± 0.59	18.45 ± 0.54	18.76 ± 0.31	19.01 ± 0.27
$R^{\rm NNLO}(MC@NLO)$	19.33 ± 0.09	20.43 ± 0.09	17.24 ± 0.07	18.24 ± 0.07
$R^{\rm NNLO}({\rm HERWIG})$	22.02 ± 0.08	22.88 ± 0.08	18.65 ± 0.07	19.38 ± 0.07

Signal cross-section

$\sigma_{\rm acc}$ [fb]	$\mu = \frac{m_{\rm H}}{2}$		$\mu = 2 m_{\rm H}$	
jet algorithm	SISCone	k_{T}	SISCone	k_{T}
LO	21.00	± 0.02	14.53 :	± 0.01
HERWIG	11.16 ± 0.04	11.59 ± 0.04	7.60 ± 0.03	7.89 ± 0.03
NLO	22.40 ± 0.06		19.52 ± 0.05	
MC@NLO	17.42 ± 0.08	18.42 ± 0.08	13.60 ± 0.06	14.39 ± 0.06
$R^{\rm NLO}({\rm HERWIG})$	19.79 ± 0.07	20.56 ± 0.07	14.61 ± 0.05	15.17 ± 0.05
NNLO	18.84 ± 0.59	18.45 ± 0.54	18.76 ± 0.31	19.01 ± 0.27
$R^{\rm NNLO}(MC@NLO)$	19.33 ± 0.09	20.43 ± 0.09	17.24 ± 0.07	18.24 ± 0.07
$R^{\rm NNLO}({\rm HERWIG})$	22.02 ± 0.08	22.88 ± 0.08	18.65 ± 0.07	19.38 ± 0.07

Signal cross-section

$\sigma_{\rm acc}$ [fb]	$\mu = \frac{m_{\rm H}}{2}$		$\mu = 2 m_{\rm H}$	
jet algorithm	SISCone	k_{T}	SISCone	k_{T}
LO	21.00 ± 0.02		14.53 ± 0.01	
HERWIG	11.16 ± 0.04	11.59 ± 0.04	7.60 ± 0.03	7.89 ± 0.03
NLO	22.40 ± 0.06		19.52 ± 0.05	
MC@NLO	17.42 ± 0.08	18.42 ± 0.08	13.60 ± 0.06	14.39 ± 0.06
$R^{\rm NLO}({\rm HERWIG})$	19.79 ± 0.07	20.56 ± 0.07	14.61 ± 0.05	15.17 ± 0.05
NNLO	18.84 ± 0.59	18.45 ± 0.54	18.76 ± 0.31	19.01 ± 0.27
$R^{\rm NNLO}(MC@NLO)$	19.33 ± 0.09	20.43 ± 0.09	17.24 ± 0.07	18.24 ± 0.07
$R^{\rm NNLO}({\rm HERWIG})$	22.02 ± 0.08	22.88 ± 0.08	18.65 ± 0.07	19.38 ± 0.07



- all studies performed at parton level
- hadronization and UE will change the jet-veto efficiency
- we use a k_T algorithm with R=0.4 and **JIMMY** for the UE model

- all studies performed at parton level
- hadronization and UE will change the jet-veto efficiency
- we use a k_T algorithm with R=0.4 and **JIMMY** for the UE model

- for a given cone-size, there is a veto value where had. and UE effect cancel
- ⇒ for a give veto, there should be a cone-size to make the effects cancel each other!

Conclusions

- a difficult, fully differential NNLO computation is available for the signal cross-section in the H→WW→IvIv channel
- a unique validation opportunity for LO event generators, MC@NLO and NNLO for a process with large perturbative corrections and a largely reduced, 'tricky' final state phasespace
- very good agreement between MC@NLO and NNLO, while fixed-order NLO fails to predict the cross-section reliably
- robust theoretical prediction for the signal cross-section at the LHC (even with respect to had. and UE effects)
- working on the Tevatron numbers...