Study of the Underlying Event at LHC

Markus Lichtnecker

LMU Munich, LS Schaile

LHC-D Workshop Zurich, 06/04/2008

Outline

- Introduction
 - ATLAS
 - Minimum Bias
 - Underlying Event
- Analysis Tools
- Studies of the UE
 - Characteristics
 - Subtraction Method
- Summary

The ATLAS Experiment at the LHC

- Universal Detector
- Width: 44 m
- Diameter: 22 m
- Weight: 7000 t

What happens at a bunch crossing?

- bunch crossing every 25 ns
- usually no hard interaction, but soft interactions between the hadrons:
 - no big change of the direction of the outgoing particles in comparison to the initial hadrons
 - small momentum transfer
 - soft inelastic interactions are called Minimum Bias (MB)
 - about 23 MB events per bunch crossing are expected!

Hard scattering

- particles from hard 2 Parton \rightarrow 2 Parton collision
- Initial and Final State Radiation
- additional, soft contributions the Underlying Event (UE)
 - Beam remnants
 - Multiple Interactions

PYTHIA

- MC Generator PYTHIA (6.4.10) was used for this analysis
- $\bullet\,$ perturbation theory can't be applied at low p_T
- models are needed to describe the Underlying Event
- different Tunes (set of parameters) which fit UE-data of previous collider experiments (at Tevatron) have been set up (by Rick Field) and extrapolated to LHC
- Tunes were obtained from "transverse region" in respect to leading jets at CDF run1 and run2:

Shape of the jets

- $\bullet\,$ hard scattering of $\mathrm{p_{Tmin}}=20~\text{GeV}$
- Hard and Tune A simulated at same time (Hard+Tune A)
- take single event
- assign particles to jets (same colour = same jet)

 $k_{\rm T}$ exclusive, $d_{\rm cut} = 400~GeV^2$

Number of jets

Hard alone has on average 2.1 ±0.4 jets, (Hard+Tune A) 2.9 ±1.3 $_{\rm 8/16}$ and (Hard+ATLAS Tune) 3.2 ±1.7 jets

$\mathsf{Jet}\text{-}\mathrm{p}_{\mathrm{T}}$

Cone 0,4

 $k_{\rm T}$ exclusive

Detectorlevel

PYTHIA

PYTHIA + ATLFAST

p_{T} (constituents)

Subtraction of UE: low- p_T -method

- (Hard+Tune A) Hard approximates the fraction of UE in a hard process
- How to describe the UE in a real event, when no possibility to get solely particles from hard scattering (without contribution of UE)?
- $\bullet~\mbox{idea:}~\mbox{UE}$ $\approx~\mbox{soft}~\mbox{collision}~\longrightarrow~\mbox{low-}p_T$ jets
- \bullet select low- $p_{\rm T}$ jets in hard collision:
 - $\bullet\,$ if only 2 jets in an event $\rightarrow\,$ force 3 jets
 - $\bullet\,$ jet with lowest p_T is called low- p_T jet

comparison: "low- $\rm p_{T}$ jets" to "UE \approx (Hard+Tune A) – Hard" scalefactor needed: low- $\rm p_{T}$ \times 1.7 $\,$ (ATLAS Tune: \times 2.75)

comparison: "(Hard+TuneA) – $(1.7 \times low-p_T)$ " to "Hard"

How to correct k_{T} jets for UE ?

- weight each particle in jet by probability not to come from UE
- weighing-factors from

 $[(\mathsf{Hard}{+}\mathsf{Tune}~\mathsf{A}){-}(1.7{\times}\mathsf{low}{-}\mathrm{p_T})]/(\mathsf{Hard}{+}\mathsf{Tune}~\mathsf{A})$

Summary

- $\bullet\,$ characteristics of the UE for $k_{\rm T}$ algorithm:
 - $\bullet~p_{\rm Tsum}$ of UE per event: 30-40 GeV
 - increase of jet- $\rm p_{T}$ (about 10 GeV) and number of jets (about 1 additional jet) due to UE
- $\bullet~{\sf low-p_T}{\sf -jets}$ describe UE
- \bullet weighting method corrects $k_{T}\mbox{-jets}$ for UE
- $\bullet\ k_T\mbox{-jets}$ can be used at hadron collider experiments

Backup

Exclusive k_T -algorithm, ΔR -scheme

- *d_{min}*: smallest value among
 d_{kB} and *d_{kl}*
- d_{Cut} : cut-off parameter until jets are merged (here: d_{Cut} =400 GeV)
- $d_{\min} > d_{Cut}$: all remaining objects are classified as jets
- if d_{kl} is smallest, k and l are combined
- if *d_{kB}* is smallest, k is included in beam jet
- jet-size is dynamic, no overlapping jets

Simulated processes

hard scattering:							
PARAMETER	Process						
MSUB (53,1)	$g+g ightarrow f+ar{f}$						
MSUB (11,1)	f + f' o f + f'(QCD)						
MSUB (12,1)	$f+ar{f} ightarrow f'+ar{f}'$						
MSUB (13,1)	$f+ar{f} ightarrow g+g$						
MSUB (28,1)	f+g ightarrow f+g						
MSUB (68,1)	g+g ightarrow g+g						
CKIN(3,20)	p_{Tmin} in hard 2 \rightarrow 2 scattering (20 GeV)						

PARAMETER	Tune A	TUNE ATLAS
PARP 82	2.0	1.8
PARP 83	0.5	0.5
PARP 84	0.4	0.5
PARP 85	0.9	0.33
PARP 86	0.95	0.66
PARP 89	1800	1000
PARP 90	0.25	0.16
PARP 62	1.0	1.0
PARP 64	1.0	1.0
PARP 67	4.0	1.0
MSTP 91	1	1
PARP 91	1.0	1.0
PARP 93	5.0	5.0

- MSTP(51,1): chosen PDF (CETEQ 5L)
- MSTP(81,1): MPI on
- MSTP(82,4): further MPI switches on

UE-Parameter ISR-Parameter intrinsic k_T

Explanation of some parameters

double Gaussian matter distribution inside proton: $\rho(r) \propto \frac{1-\beta}{a_1^3} exp(-\frac{r^2}{a_1^2}) + \frac{\beta}{a_2^3} exp(-\frac{r^2}{a_2^2})$

Proton

$$\beta = PARP(83)$$

 $a_2/a_1 = PARP(84)$

Energy-dependency of p_{T0} $p_{T0}(E_{cm}) = p_{T0}(\frac{E_{cm}}{E_0})^{\epsilon}$ with p_{T0} =PARP(82), E_0 =PARP(89), $\epsilon = PARP(90)$

Particles from UE

How does the UE in a hard process look like? \rightarrow assumption: UE in a hard process fits (Hard+Tune A) - Hard

- check: backtrack final particles to find out origin
- method works until string
- problem: information about motherparticle of "first particle after string" gets lost due to hadronisation

I	particle/jet	K (J	(, 3)	K(I,4)				
1	!p+!		0	0				
2	[p+!		0	0				
10.00 00 00 00 00 00 00 00 00 00 00 00 00	Int		1	0				
4	al		2	ō				
5	lul		3	0				
6	lg!		4	0				
7	lul		0	0				
8	!g!		0	0				
			19685 7	c AT				
10	(a)	Ŧ	2	54	\$54	(string)	9	55
11	(g)	Ť	7	54	55	(p10)	54	156
12	(a)	ī	7	54	50	(omega)	54	156
13	(q)	I	0	54	5/	(Derca++)	54	101
14	(g)	I	0	54	50	(Deltabar)	54	165
15	(g)	I	8	54	60	(K*+)	54	168
16	(g)	I	8	54	61	(Kbar0)	54	170
17	(g)	I	8	54	62	(omega)	54	171
18	(g)	1	8	54	63	(omega)	54	174
19	(g)	÷	š	54	64	pi-	54	C
20	(g)	÷	ŝ	54	65	(pi0)	54	177
21	(9)	÷	0	54	66	pi+	54	c
22	(g) (a)	Ť	0	54	67	(eta)	54	179
23	(g) (n)	Ť	ñ	54	68	(p10)	54	182
25	(0)	τ ²	õ	54	69	(rno-)	54	185
26	(a)	ī	Ó	54	70	p+ phar0	54	
27	(a)	Ĩ	Ó	54		maro	54	
28	(g)	I	0	54				
29	(g)	I	0	54				
30	(uu_1)	V	2	54				

idea: associate "first particle after string" with particle in string via certain criteria:

 $(\Delta R * (\Delta p_T)^2)_{min} \leq 25$

 \rightarrow subtraction of UE-particles from (Hard+TuneA) and comparison to Hard:

UE-particles are in good agreement with (Hard+Tune A) - Hard

