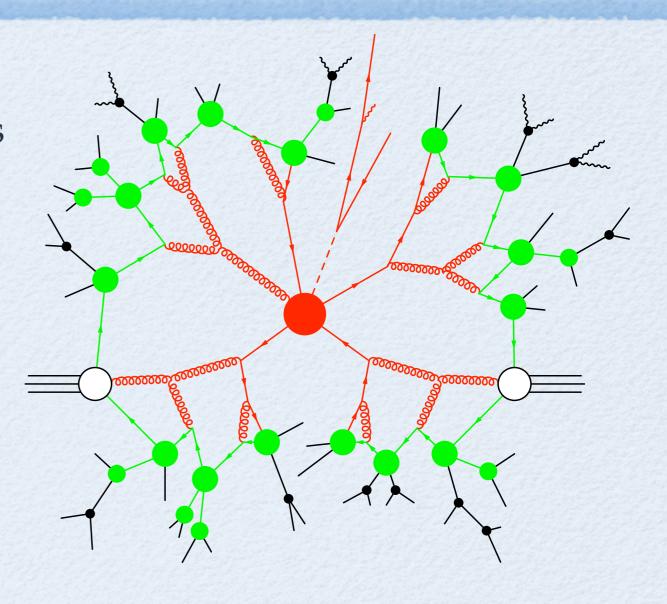
RECENT DEVELOPMENTS IN SHERPA

Stefan Höche¹
Institute for Particle Physics Phenomenology
Durham University

THE SHERPA FRAMEWORK


What is in the box?

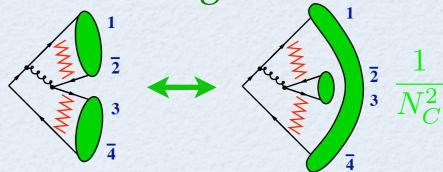
- Matrix element (ME) generators
- Shower (PS) generators
- Merging of ME & PS (CKKW)
- Cluster fragmentation
- Hadron decays
- Multiple parton interactions

Sherpa itself is the framework that combines all the above

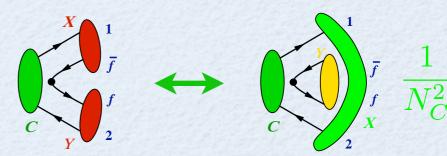
Latest version: Release 1.1.0 / 1.1.1

- Cluster fragmentation completed (remains to be tuned)
- Hadron decay module fully functional
- New module for soft photon radiation (YFS approach)

CLUSTER FRAGMENTATION


Eur. Phys. J. C36 (2004) 381

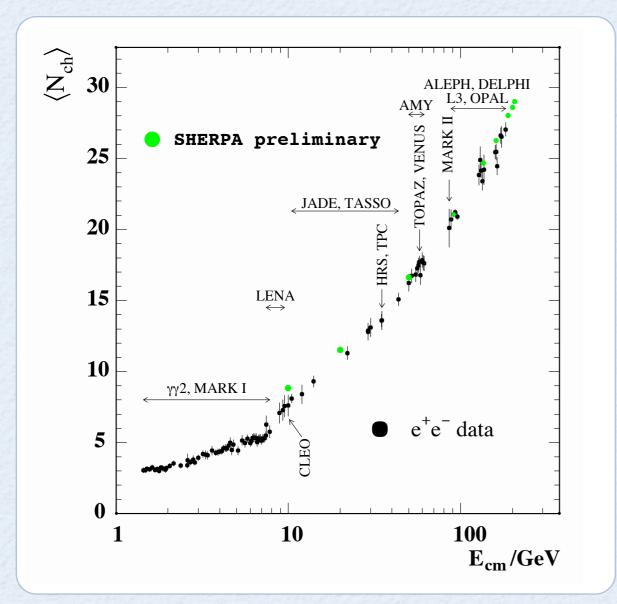
Sherpas previous cluster fragmentation model:


- Colour ordered partons transformed into primary clusters according to combination of
 - kinematical weight

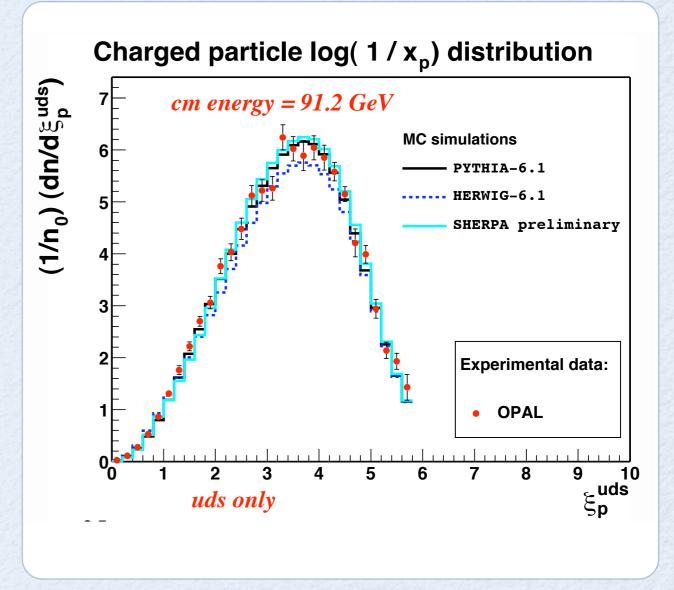
$$\mathbf{W_{ij,\,kl}} \,=\, \frac{\mathbf{t_0}}{\mathbf{t_0} + 4(\mathbf{w_{ij}} + \mathbf{w_{kl}})^2}$$

colour weight

- Clusters decayed according to overlap between cluster and hadron mass spectrum
 - cluster mass in hadron regime -> transition to hadron
 - else → 2-body decay
 C→HH, C→CH or C→CC
 combined weight applied again¹



CLUSTER FRAGMENTATION



Eur. Phys. J. C36 (2004) 381

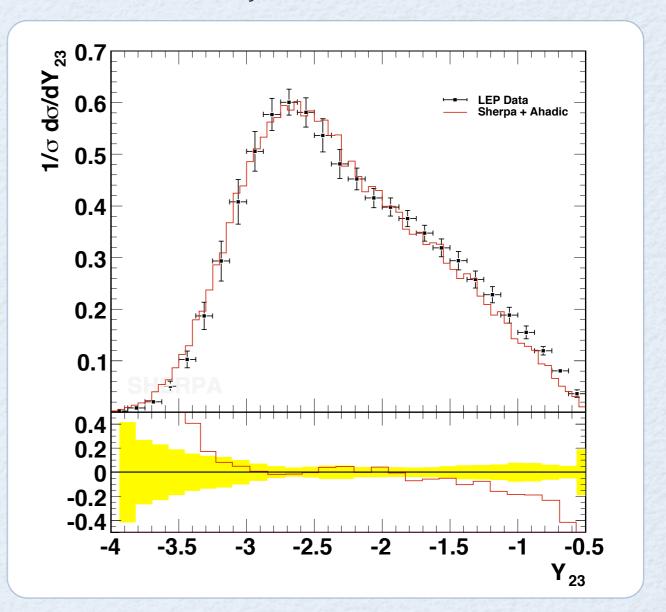
N_{charged} vs. E_{cms}

charged scaled momentum

CLUSTER FRAGMENTATION

F. Krauss, J. Winter; in preparation

Improvements over old model:


- Cluster splittings motivated by perturbative QCD
 - Massive dipole splitting kinematics with limited p_⊥
 - Splitting weight

$$w \propto \frac{\alpha_{\mathbf{s}}(\mathbf{p}_{\perp}^2)}{\mathbf{p}_{\perp}^2}$$

with non-perturbative tunable strong coupling

→ No dependence on unphysical constituent mass of the gluon!

Durham jet rate at LEP I

HADRON DECAYS

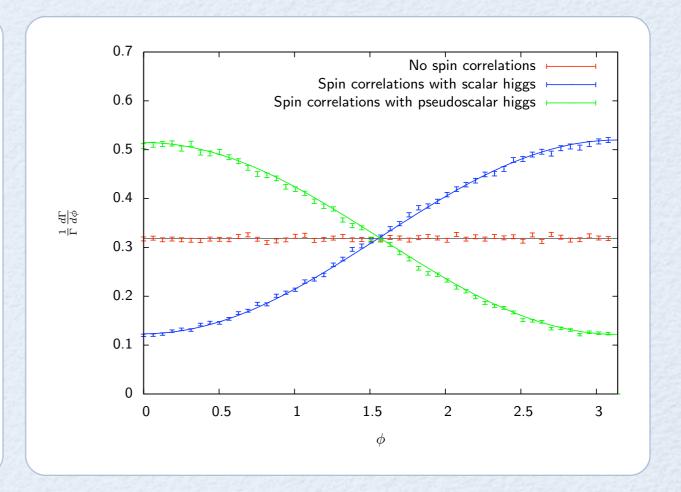
F. Krauss, T. Laubrich, F. Siegert: in preparation

Main features of Sherpas decay package

- Decay kinematics according to ME's with form factors
- Treatment of neutral meson mixing and related CP violation
- Partonic decays for incomplete decay tables
- Spin correlation algorithm with full spin information from AMEGIC++ matrix element

Current status

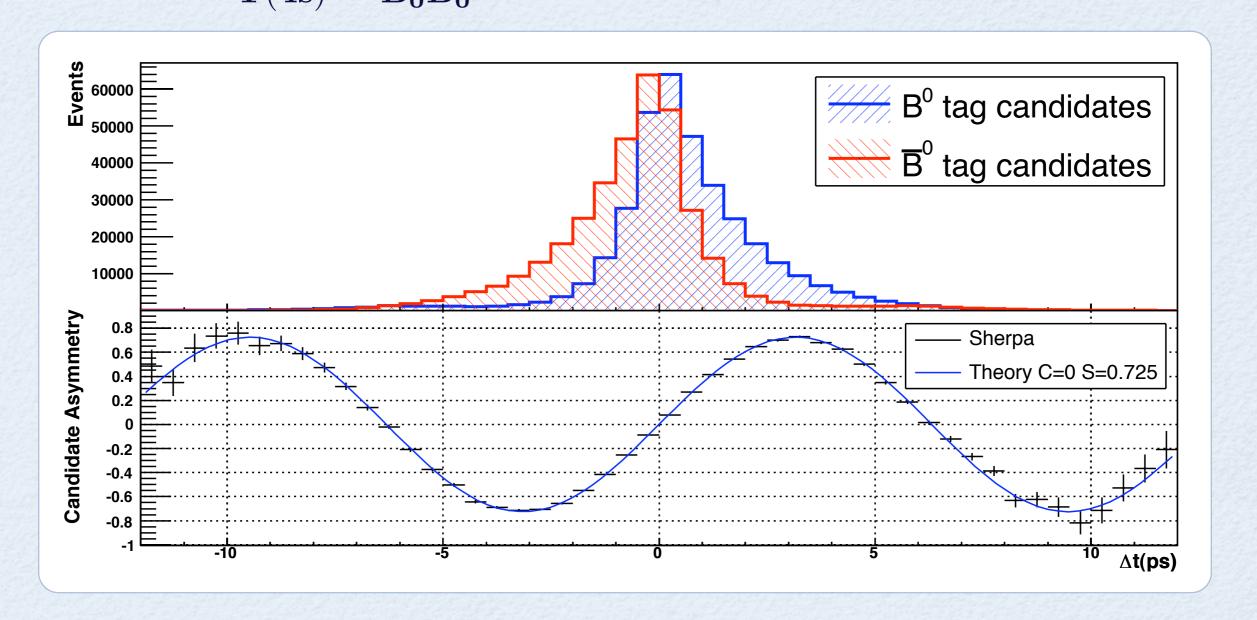
- Decay tables for ~ 400 particles
- ~ 2500 decay channels
- ~ 400 decay channels with form factors



HADRON DECAYS

F. Krauss, T. Laubrich, F. Siegert: in preparation SC analytical: Acta Phys.Polon.B34(2003)4549

- Matrix Elements and form factors: e.g. in $\mathbf{B} \to \pi \nu_1 \overline{\mathbf{l}}$
- 0.07 0.06 0.02 0.03 0.02 0.04 0.03 0.02 0.04 0.09 0.01 0.02 0.02 0.04 0.04 0.05 0.09
- Spin correlations: e.g. in $\mathbf{h} \to \tau^+ \tau^- \to \pi^- \nu_\tau \pi^+ \overline{\nu}_\tau$



HADRON DECAYS

F. Krauss, T. Laubrich, F. Siegert: in preparation

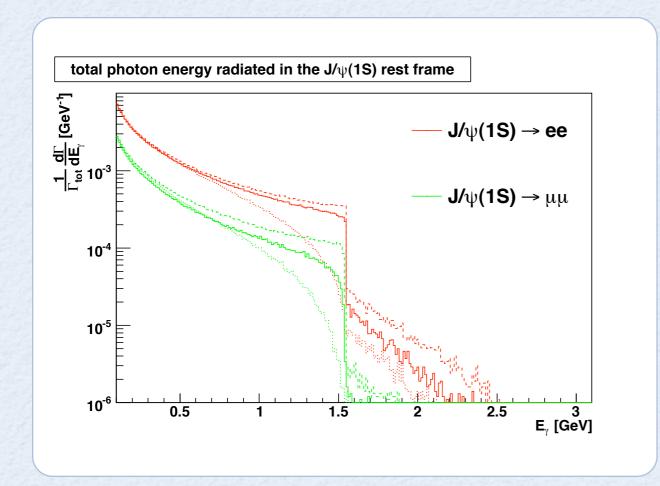
• **B-mixing**: e.g. Decay rate asymmetry $B_0 \to J/\Psi K_s \longleftrightarrow \bar{B}_0 \to J/\Psi K_s$ in $\Upsilon(4s) \to B_0 \bar{B}_0$ events

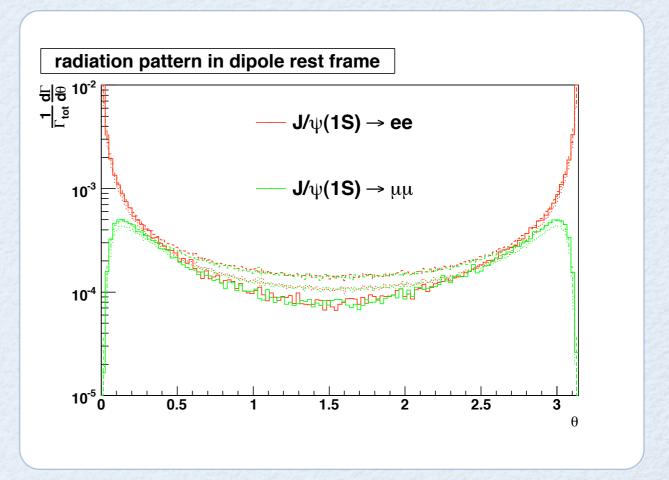
SOFT PHOTON RADIATION

F. Krauss, M. Schönherr: in preparation

YFS simulation with the PHOTONS++ module

- Sums all contributions of soft photon radiation exact in soft limit, perturbative series for hard emissions
- Hard emission effects up to $O(\alpha)$ incorporated generally via approximated ME in quasi-collinear limit
- Important cases with $\mathcal{O}(\alpha)$ real and/or virtual exact ME's $\mathbf{V} \to \mathbf{FF}, \ \mathbf{V} \to \mathbf{SS}, \ \mathbf{S} \to \mathbf{FF}, \ \mathbf{S} \to \mathbf{SS}, \ \tau \to \mathbf{l}\nu_{\mathbf{l}}\nu_{\tau}$
- ME corrections for radiative semi-leptonic meson decays (form factor model) under way
- Implemented for hadron and τ decays, but no limitation on final state and/or its complexity

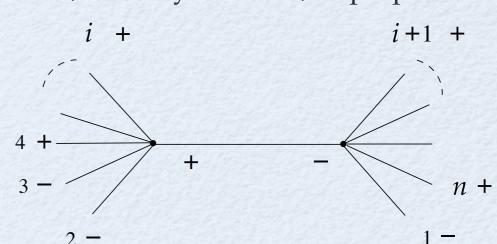



SOFT PHOTON RADIATION

F. Krauss, M. Schönherr: in preparation

- **Example:** Decay $J/\psi \rightarrow l\bar{l}$
 - soft radiation only (dotted)
 - collinear approximated ME (dashed)
 - exact ME (solid)

THE IMMEDIATE FUTURE



HIGH-MULTI ME'S WITHCSW

T. Gleisberg, SH, F. Krauss, R. Matyskiewicz; in preparation

- Twistor-inspired techniques (CSW rules) speed up calculation of pure QCD ME's for medium multiplicites
- Advantage: Up to $N_{out} = 7$ only up to 3 MHV-amplitudes must be sewed together

Process	Time [s] for 10^5 points		Time [s] for 10^5 points		Conventional /		
	Convention	nal	CSW rules		CSW-rules		
$2g \rightarrow 4g$	1977		19			104.1	
$2g \rightarrow 5g$	n/a		429		n/a	K	
$2q \rightarrow 4g$	124		14			8.9	
$2q \rightarrow 5g$	43636	NI azuzi	290			148.4	
$2q \rightarrow 2q' + 2g$	8	New]	·	6		1.33	
$2q \rightarrow 2q' + 3g$	810	accessi	ble	74		10.8	
$2q \rightarrow 2q + 2g$	24	proces	ses	10		2.4	
$2q \rightarrow 2q + 3g$	3923		118		33	K	
$2j \rightarrow 4j$	4082		202		20.2		
$2j \rightarrow 5j$	n/a		$\begin{array}{c} 12103 \end{array}$		n/a		

Significant speedup

VERY HIGH-MULTI ME'S: COMIX

T. Gleisberg, SH: in preparation

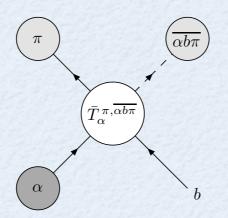
- Revisited "old-fashioned" Berends-Giele recursion JHEP 08(2006)062
 - → New ME generator **COMIX**
- Fully general implementation of SM interactions
- Key point: Vertex decomposition of all four-particle vertices (Growth in computational complexity at tree-level determined solely by number of external legs at vertices)
- The ME is ticked off, but how about the phasespace?
 - Recursive method analogous to ME calculation Gives reasonable performance (e.g. MC4LHC setup¹)

efficiency	Number of jets					
$e^+\nu_e + \text{QCD jets}$	0	1	2	3	4	5
$\varepsilon = 10^{-3}$	$1.5 \cdot 10^{-1}$	$2.4 \cdot 10^{-2}$	$9.1 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	$6.7 \cdot 10^{-4}$	$1.0 \cdot 10^{-4}$
$\varepsilon = 10^{-6}$	$1.6 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$	$3.3 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	$4.3 \cdot 10^{-4}$	$7.5 \cdot 10^{-5}$

eff. =
$$\langle \mathbf{w} \rangle / \mathbf{w}_{\text{max}}^{\varepsilon}$$
 where $1 - \langle \min(\mathbf{w}, \mathbf{w}_{\text{max}}^{\varepsilon}) \rangle / \langle \mathbf{w} \rangle = \varepsilon \ll 1$

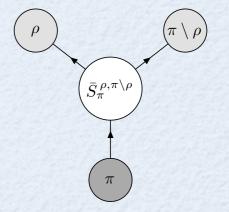
COMIX: PHASESPACE RECURSION

Basics: Nucl. Phys. B9 (1969) 568


State-of-the art approach for general phasespace generation:
 Factorise PS using

$$d\Phi_{\mathbf{n}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{n}\right) = d\Phi_{\mathbf{m}}\left(\mathbf{a},\mathbf{b};\mathbf{1},\ldots,\mathbf{m},\bar{\pi}\right) \, \mathbf{ds}_{\pi} \, d\Phi_{\mathbf{n}-\mathbf{m}}\left(\pi;\mathbf{m}+\mathbf{1},\ldots,\mathbf{n}\right)$$

Remaining basic building blocks of the phasespace:


$$ightharpoonup$$
 "Propagators" $\mathbf{P}_{\pi} = \left\{ \begin{array}{ll} 1 & \text{if } \pi \text{ or } \overline{\pi} \text{ external} \\ \mathbf{d}s_{\pi} & \text{else} \end{array} \right.$

→ Decay "vertices"

$$\mathbf{T}_{\alpha}^{\pi,\overline{\alpha \mathbf{b}\pi}} = \frac{\lambda(\mathbf{s}_{\alpha \mathbf{b}}, \mathbf{s}_{\pi}, \mathbf{s} \,\overline{\alpha \mathbf{b}\pi})}{8 \,\mathbf{s}_{\alpha \mathbf{b}}} \,\mathrm{d} \cos \theta_{\pi} \,\mathrm{d} \phi_{\pi}$$

$$\mathbf{S}_{\pi}^{\pi,\pi\backslash\rho} = \frac{\lambda(\mathbf{s}_{\pi},\mathbf{s}_{\rho},\mathbf{s}_{\pi\backslash\rho})}{8\,\mathbf{s}_{\pi}}\,\mathrm{d}\cos\theta_{\rho}\,\mathrm{d}\phi_{\rho}$$

Arrows - Momentum flow

COMIX: PHASESPACE RECURSION

T. Gleisberg, SH: in preparation

Basic idea: Take above recursion literally and "turn it around" S-channel phasespace (schematically)

$$egin{aligned} \mathrm{d}\Phi_{S}\left(\pi
ight) &= \left[\sum_{\alpha} \left(S_{\pi}^{
ho,\piackslash
ho}
ight)
ight]^{-1} \ & imes \left[\sum_{\alpha} \left(S_{\pi}^{
ho,\piackslash
ho}
ight)S_{\pi}^{
ho,\piackslash
ho}P_{
ho}\,\mathrm{d}\Phi_{S}\left(
ho
ight)P_{\piackslash
ho}\,\mathrm{d}\Phi_{S}\left(\piackslash
ho
ight)
ight] \end{aligned}$$

T-channel phasespace (schematically)

Weights for adaptive multichanneling

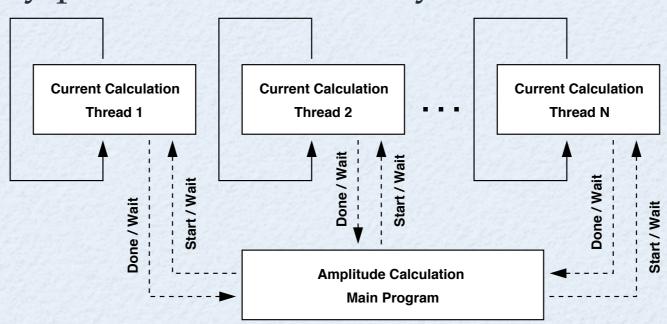
$$d\Phi_{\mathbf{F}}^{(b)}(\alpha) = \left[\sum_{\alpha} \alpha \left(T_{\alpha}^{\pi, \overline{\alpha b \pi}}\right)\right]^{-1} \\ \times \left[\sum_{\alpha} \alpha \left(T_{\alpha}^{\pi, \overline{\alpha b \pi}}\right) T_{\alpha}^{\pi, \overline{\alpha b \pi}} P_{\pi} d\Phi_{S}(\pi) P_{\overline{\alpha b \pi}} d\Phi_{\mathbf{F}}^{(b)}(\alpha \pi)\right] \xrightarrow{\alpha} \hat{T}_{\alpha}^{\overline{\alpha b \pi}} d\Phi_{\mathbf{F}}^{(b)}(\alpha \pi)$$
b" is fixed \Rightarrow Every PS-weight is unique!

"b" is fixed → Every PS-weight is unique!

Arrows → Weight flow!

Factorial growth of PS-channels tamed

COMIX: TECHNICALITIES


T. Gleisberg, SH: in preparation

General structure of recursion (ME and phasespace):

$$\mathcal{J}_{\alpha}\left(\pi\right) = P_{\alpha}\left(\pi\right) \sum_{\mathcal{V}_{\alpha}^{\alpha_{1}, \alpha_{2}}} \sum_{\mathcal{P}_{2}\left(\pi\right)} \mathcal{S}\left(\pi_{1}, \pi_{2}\right) \; \mathcal{V}_{\alpha}^{\alpha_{1}, \alpha_{2}}\left(\pi_{1}, \pi_{2}\right) \; \mathcal{J}_{\alpha_{1}}\left(\pi_{1}\right) \mathcal{J}_{\alpha_{2}}\left(\pi_{2}\right)$$

n-particle currents only depend on m<n-particle currents

→ Straightforward multithreading algorithm (use as many processors/cores as you like)

Identical procedure for ME and phasespace due to same recursion!

COMIX: PERFORMANCE

T. Gleisberg, SH: in preparation

Performance in QCD benchmarks

World record!

$gg \rightarrow ng$		Cı	ross section [p	ob]	1
n	8	9	10	11	12
$\sqrt{s} \; [\mathrm{GeV}]$	1500	2000	2500	3500	5000
Comix	0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.026(1)
Phys. Rev. D67(2003)014026	0.70(4)	0.30(2)	0.097(6)		
Nucl. Phys. B539(1999)215	0.719(19)				

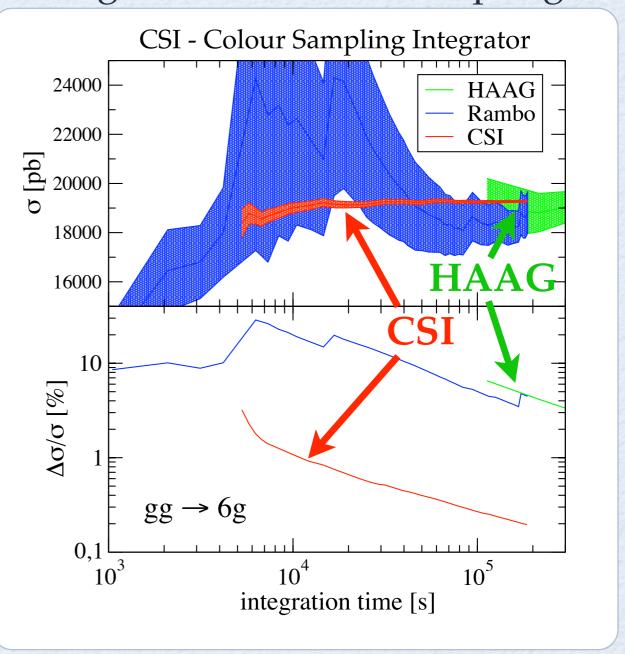
"Real life" example: Drell-Yan pair + jets comparison with other ME generators

All partons!

σ [pb]	Number of jets						
$e^-e^+ + \text{QCD jets}$	0	1	2	3	4	5	6
Comix	723.5(4)	187.9(3)	69.7(2)	27.14(7)	11.09(4)	4.68(2)	2.02(2)
ALPGEN	723.4(9)	188.3(3)	69.9(3)	27.2(1)	10.95(5)	4.6(1)	1.85(1)
AMEGIC++	723.0(8)	188.2(3)	69.6(2)	27.21(6)	11.1(1)		

Setup: http://mlm.home.cern.ch/mlm/mcwshop03/mcwshop.html

COMIX: PERFORMANCE



 Subprocess cross sections for 7- and 8-jet production in MC4LHC comparison setup

σ [nb]	Number of jets n				
QCD jets	7	8			
gg o ng	48.9(6)	14.8(3)			
$gg \rightarrow (n-2)g 2q$	17.0(1)	5.9(1)			
$gg \rightarrow (n-4)g 4q$	1.69(2)	0.72(1)			
$gg \rightarrow (n-6)g 6q$	0.0404(3)	0.0290(4)			
$gg \rightarrow 8q$	<u>-</u>	0.000169(3)			
$gq \rightarrow (n-1)g 1q$	30.4(2)	9.9(2)			
$gq \rightarrow (n-3)g 3q$	8.5(1)	3.33(8)			
$gq \rightarrow (n-5)g5q$	0.569(5)	0.300(6)			
$gq \rightarrow (n-7)g7q$	0.00483(5)	0.0068(2)			
$qq \rightarrow ng$	0.0209(2)	0.0068(1)			
$qq \rightarrow (n-2)g 2q$	5.06(5)	1.76(3)			
$qq \rightarrow (n-4)g 4q$	1.01(1)	0.47(1)			
$qq \rightarrow (n-6)g 6q$	0.0372(5)	0.029(1)			
qq o 8q	_	0.00017(2)			

T. Gleisberg, SH: in preparation

Also new: HAAG-based QCD integrator for colour sampling

Stefan Höche, LHC-D Workshop Zürich, 3.6.2008

BRIEF REVIEW: WHY CKKW?

Matrix Elements

Advantage

- Exact to fixed order
- Include all interferences

Drawback

Calculable only for low
 FS multiplicity (n≤6-8)

Parton Showers

Advantage

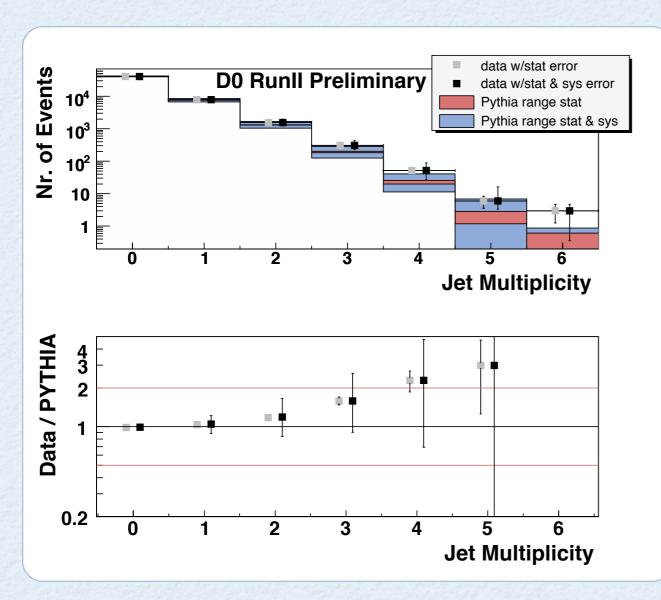
Resum all (next-to) leading logarithms to all orders

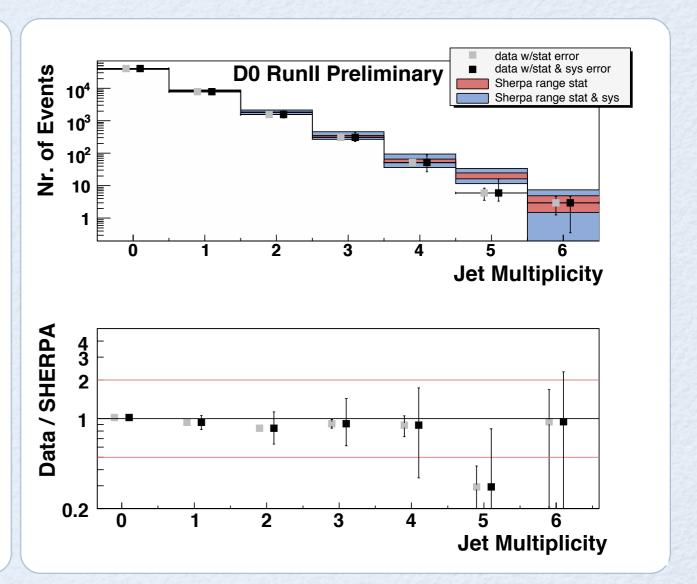
Drawback

 Interference effects only through angular ordering

Combine both approaches: CKKW

- Good description of hard radiation (ME)
- Correct intrajet evolution (PS)
- Strategy: Separate phase space Jet production region ME
 - Intrajet evolution region → PS
- Free parameter: Separation cut Q_{cut} (K_T-type jet measure)

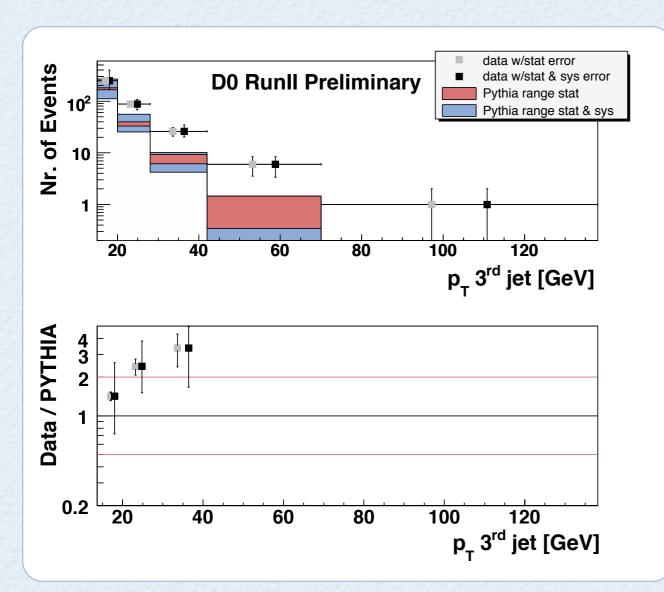



CKKW: Z+JETS @ TEVATRON

Jet multiplicity

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2 normalized to data Sherpa 1.0 normalized to data


Stefan Höche, LHC-D Workshop Zürich, 3.6.2008

CKKW: Z+JETS @ TEVATRON

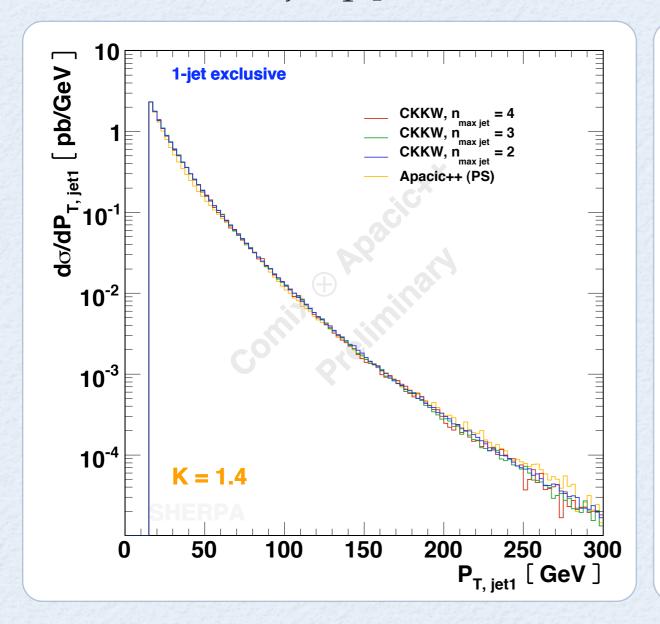
Jet- p_T , jet 3

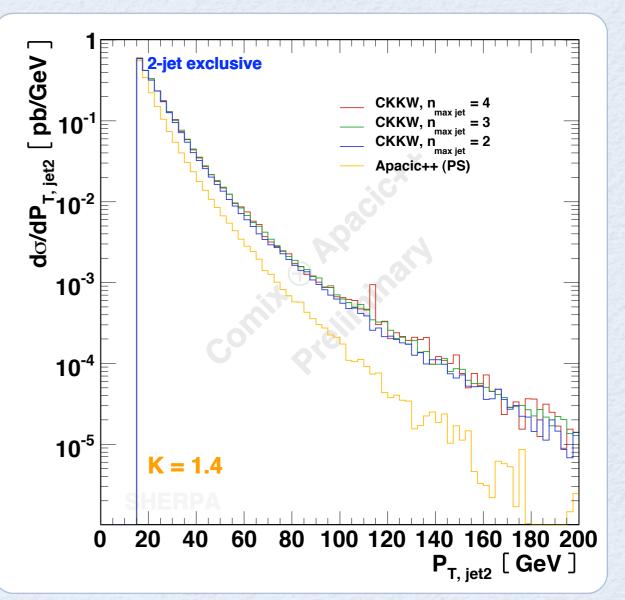
Nr. of Events data w/stat error **D0 Runll Preliminary** data w/stat & sys error Sherpa range stat Sherpa range stat & sys 80 120 20 40 60 100 p_T 3rd jet [GeV] Data / SHERPA 5 4 3 2 0.2 20 60 80 120 40 100 p_T 3rd jet [GeV]

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2 normalized to data Sherpa 1.0 normalized to data

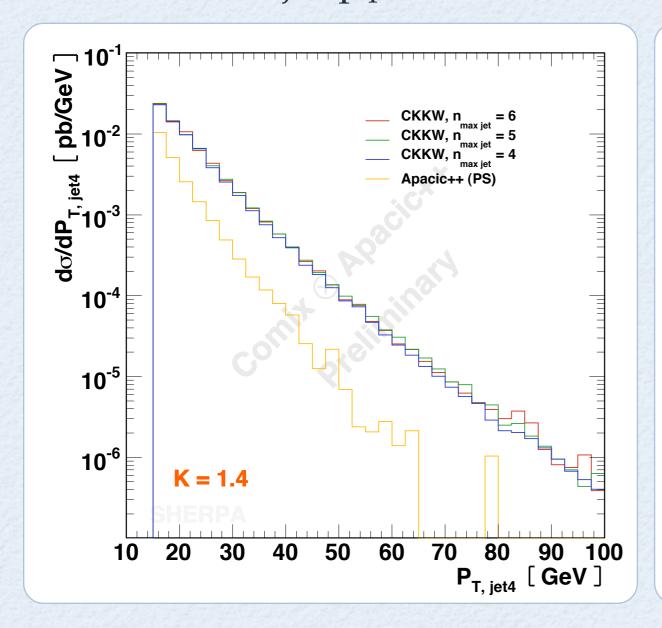
Stefan Höche, LHC-D Workshop Zürich, 3.6.2008

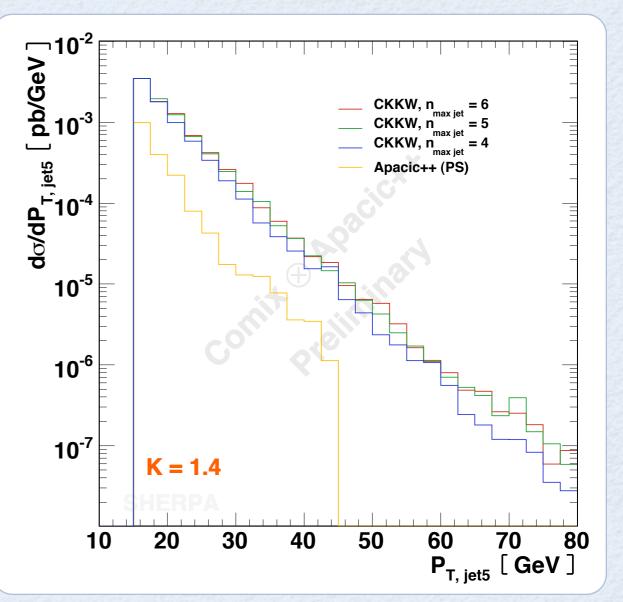



CKKW WITH COMIX

F. Krauss, SH, S.Schumann, F. Siegert: in preparation

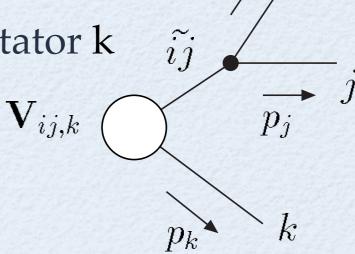
pp→ll+jets at the Tevatron exclusive jet-p_T




CKKW WITH COMIX

F. Krauss, SH, S.Schumann, F. Siegert: in preparation

pp→ll+jets at the Tevatron inclusive jet-p_T



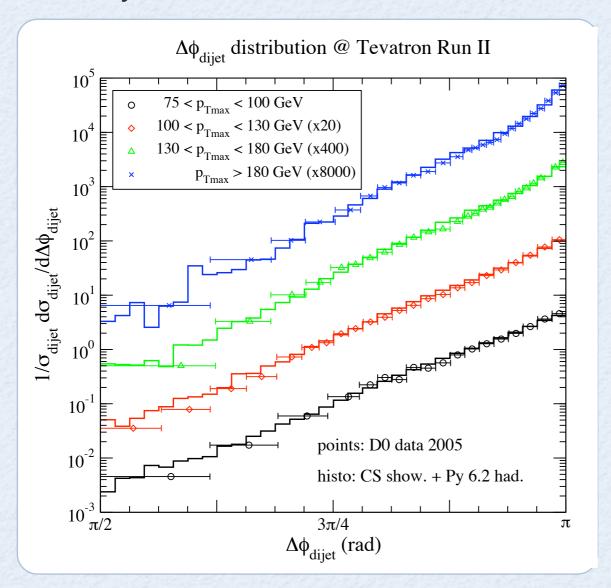
CS-SUBTRACTION BASED SHOWER

JHEP03(2008)038

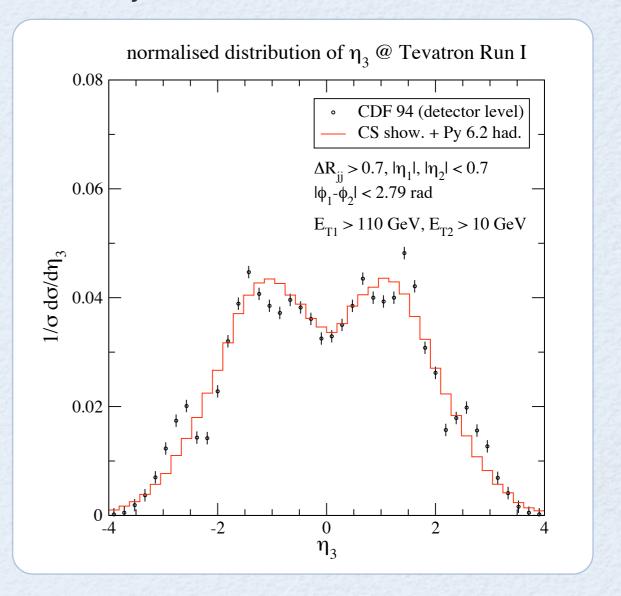
- Catani-Seymour subtraction terms
 - → General framework for QCD NLO calculations
- Splitting of parton ij into partons i and j, spectator k
- Advantages over Parton Shower
 - → Full phasespace coverage
 - → Good approximation of ME
 - → Better analytic control
- Implementation into Sherpa for the general case, i.e. final-final initial-final and initial-initial dipoles

e.g. final-final splitting:

$$\begin{split} \left\langle V_{q_i,g_j,k} \right\rangle \left(\tilde{\mathbf{z}}_i, y_{ij}, k \right) = \\ C_F \left(\frac{2}{1 - \tilde{\mathbf{z}}_i + \tilde{\mathbf{z}}_i y_{ij,k}} - (1 + \tilde{\mathbf{z}}_i) \right) \\ y_{ij,k} = \frac{p_i p_j}{p_i p_k + p_j p_k + p_i p_j} \\ \mathbf{z}_i = \frac{p_i p_k}{p_i p_k + p_j p_k} \end{split}$$



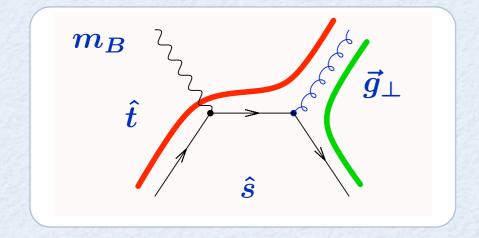
CS-SUBTRACTION BASED SHOWER

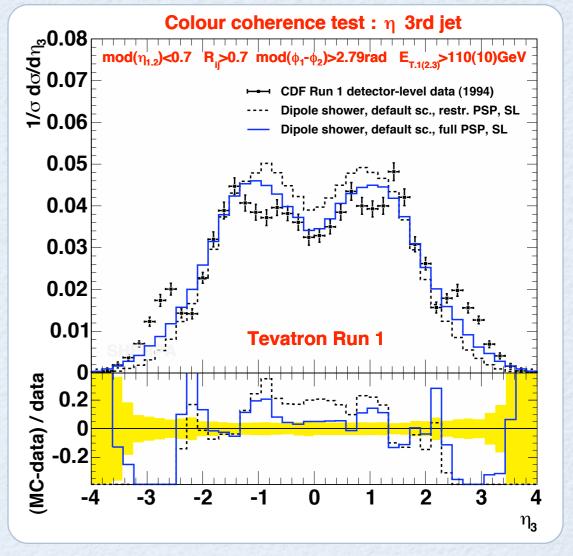


JHEP03(2008)038

pp→jetsPhys. Rev. Lett. 94 (2005) 221801

pp→jetsPhys. Rev. D50 (1994) 5562


DIPOLE SHOWER FOR HADRON COLLISIONS

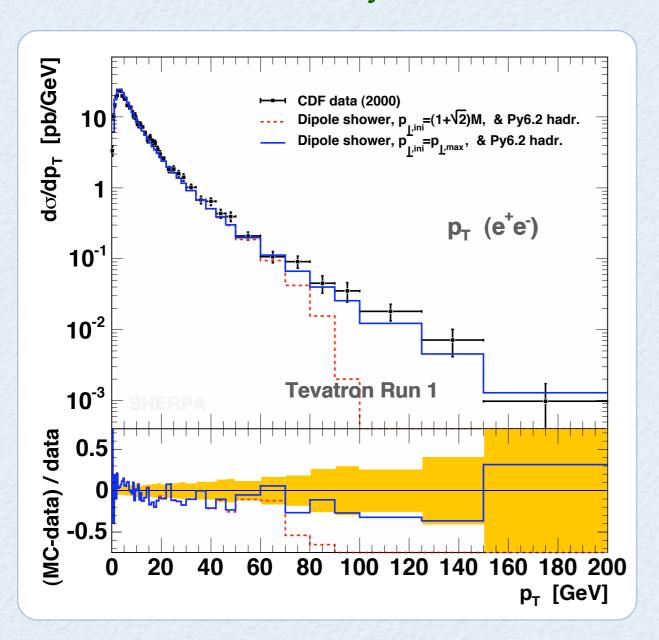

arXiv: 0712.3913 [hep-ph]

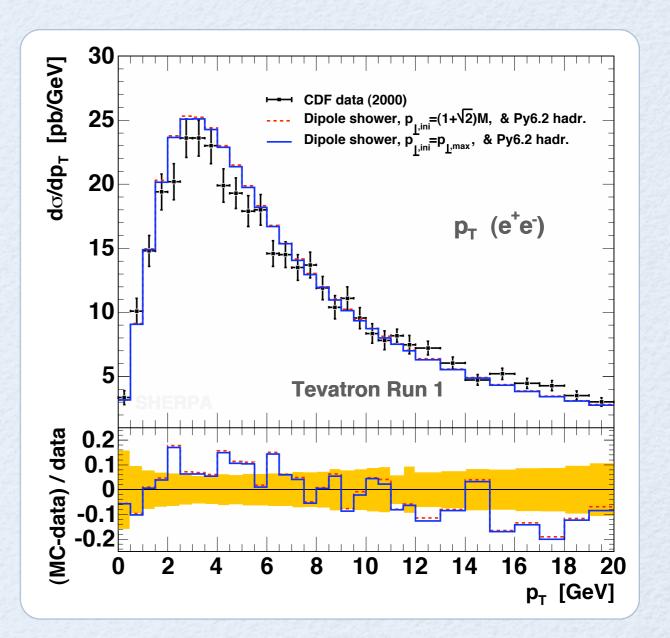
- IS emission formulated completely perturbative
- Radiation associated to inital-inital, initial-final and final-final colour lines (dipoles)
- Beam remnants kept outside
- Transverse momentum and rapidity defined through invariants, e.g. Drell-Yan:

$$\mathbf{p}_{\perp}^{\mathbf{2}} = rac{\hat{\mathbf{u}}\hat{\mathbf{t}}}{\mathbf{m}_{\mathbf{B}}^{\mathbf{2}}} \quad \mathbf{y} = rac{1}{2}\lnrac{\hat{\mathbf{u}}}{\hat{\mathbf{t}}}$$

pp→jets Phys. Rev. D50 (1994) 5562

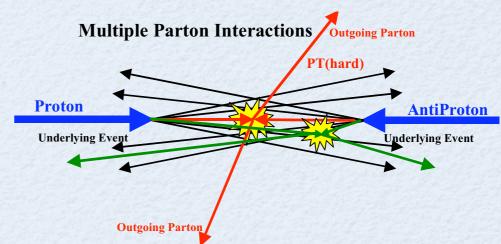
Stefan Höche, LHC-D Workshop Zürich, 3.6.2008




DIPOLE SHOWER FOR HADRON COLLISIONS

arXiv: 0712.3913 [hep-ph]

First emission by construction ME-corrected


MPI SIMULATION IN SHERPA

hep-ph/0601012

Sherpas current multiple parton interaction (MPI) module

- Based on the PYTHIA model
 T. Sjöstrand & M. van Zijl, PRD36(1987)2019
- Parton showers (PS) attached to secondary interactions

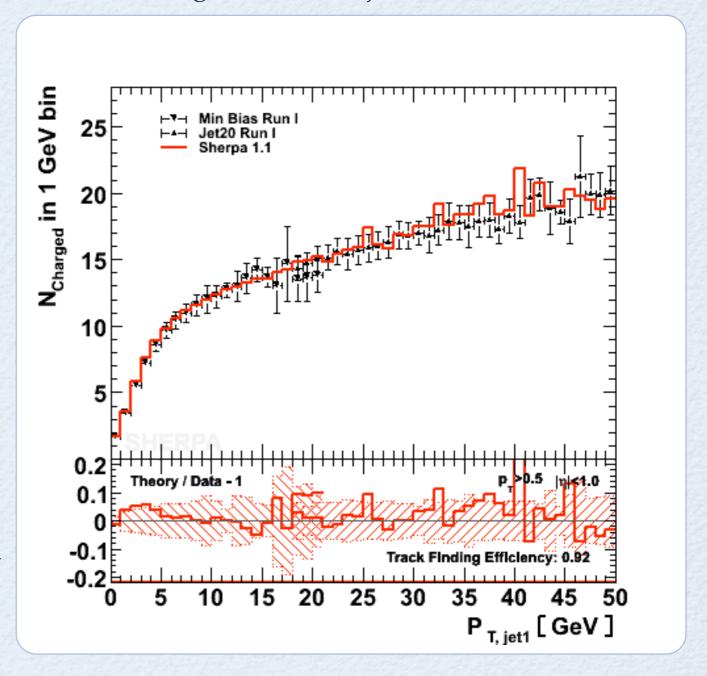
Combination of MPI's with hard processes and CKKW matching

- Hard processes with final state multiplicity different from two require unique definition of starting scale for MI evolution, $\mu_{\rm MI}$
- Sherpa algorithm (works for arbitrary n-jet ME):
 - Employ K_T -algorithm to define 2→2 core process
 - Set starting scale $\mu_{\rm MI}$ to $p_{\rm T}$ of final state QCD parton(s) from this process and veto partons harder than $\mu_{\rm MI}$ (from PS) in secondary interactions

MPI RESULTS FROM SHERPA

hep-ph/0601012

Our current "best fit" for CDF


- Lower p_T cutoff
 - ightharpoonup $\mathbf{p}_{\mathrm{T,min}} pprox \mathbf{2.4}~\mathrm{GeV}$
- Moderate interaction number due to additional multiplicity from PS

 $ightharpoonup < \mathrm{N_{hard}^{2
ightarrow 2}} > pprox 2.08$

To take home ...

- Highly dependent on p_{T,min} and PDF
- Does not give any prediction for the LHC (naive scaling)

N_{Charged} vs. p_{T,jet1} in CTC

TOWARDS A NEW MPI MODEL

arXiv: 0705.4577 [hep-ph]

Shortcomings of the current MPI model

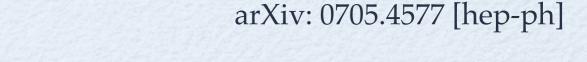
- Lower p_T cutoff defines total cross section
- Energy extrapolation depends on tuning parameter

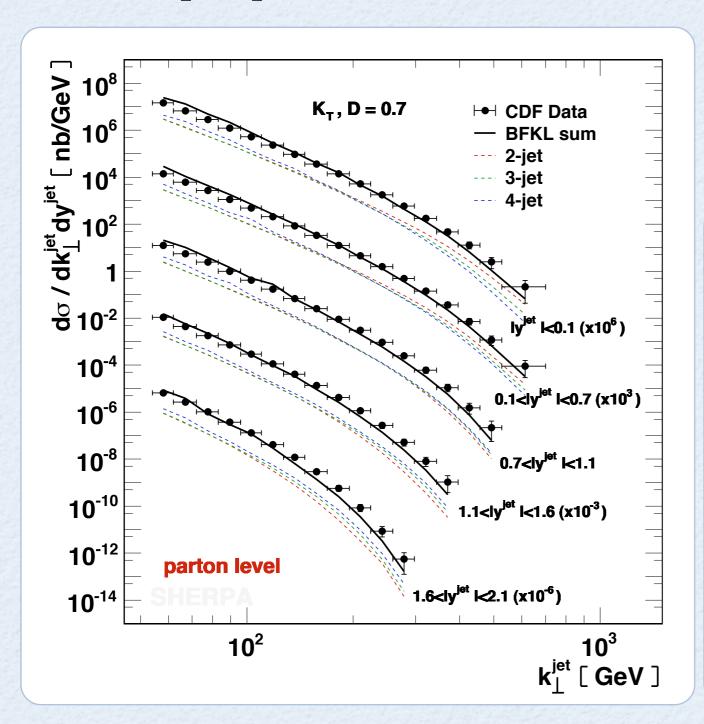
We try to solve part of this by ...

 Definition of hard cross section through BFKL kernel convoluted with DUPDF's → can be extended into diffractive region

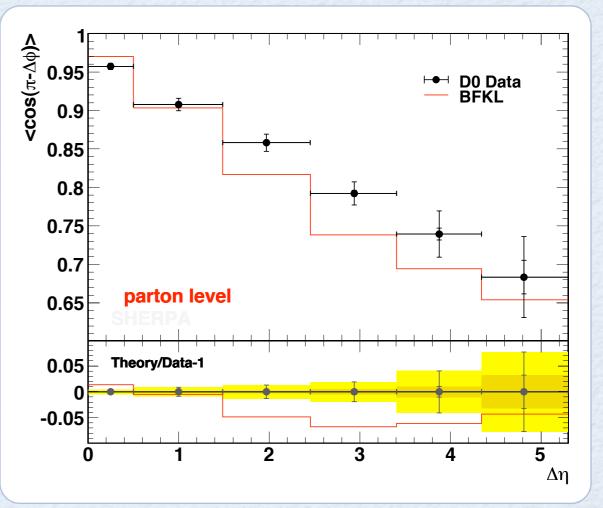
$$\begin{split} \sigma &= \frac{\pi^2}{2S} \sum_{a^{(1)}} \int \mathrm{d}y_1 \int \mathrm{d}k_{1\perp}^2 \int \mathrm{d}\phi_1 \int \mathrm{d}y_n \\ &\times f^{(1)}(x^{(1)}, z^{(1)}, \mathbf{k}_{1\perp}^2, \bar{\mathbf{k}}_{2\perp}^{(1)2}) \, f^{(2)}(x^{(2)}, z^{(2)}, \mathbf{k}_{n\perp}^2, \bar{\mathbf{k}}_{n-1\perp}^{(2)2}) \, \frac{1}{2\xi^{(1)} \, {}^2\xi^{(2)} \, {}^2S} \frac{1}{\Delta_{a_1}(y_1, y_2)} \\ &\times \left[\prod_{i=2}^n \int \frac{\mathrm{d}\phi_i}{2\pi} \, \int \mathrm{d}y_i \int \frac{\mathrm{d}\mathbf{k}_{i\perp}^2}{\mathbf{k}_{i\perp}^2} \frac{\alpha_s(\mathbf{k}_{i\perp}^2)}{\pi} \sum_{a_i} C_{a_{i-1}a_i}(\mathbf{q}_{i-1}, \mathbf{k}_i) \, \Delta_{a_i}(y_i, y_{i-1}) \, \right] \end{split}$$

Markovian algorithm to generate splittings from $\Delta_{a_i}(y_i, y_{i-1})$ in the spirit of a parton shower


number of emissions determined on the flight



TOWARDS A NEW MPI MODEL



Jet - p_T spectra PRD75(2007)092006

 Azimuthal decorrelation of widely separated jets PRL77(1996)595

Stefan Höche, LHC-D Workshop Zürich, 3.6.2008

SUMMARY AND OUTLOOK

Sherpa is much more than what I talked about ...

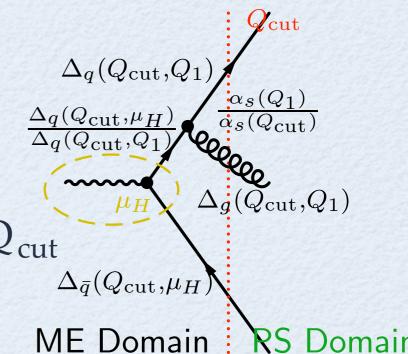
Sherpas and collaborators currently also work on:

- BSM beyond the MSSM:
 Little Higgs, MWTC → J. Ferland (ATLAS, Montreal), ...
- Interfaces to Athena → J. Ferland (ATLAS, Montreal)
 and CMS software → M. Merschmeyer (CMS, Aachen)
 and LHCb software → SH, F. Siegert, J. Stieglitz (Durham/Dortmund)
- Grid support: At the IPPP, we run Sherpa on the Grid!
 Multithreading: Speed up your computation with more CPU's!

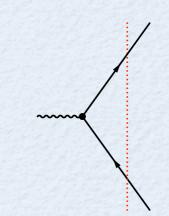
Latest release: Version 1.1.1 available on Genser and HepForge

E-mail us at

INFO@SHERPA-MC.DE


CKKWINANUTSHELL

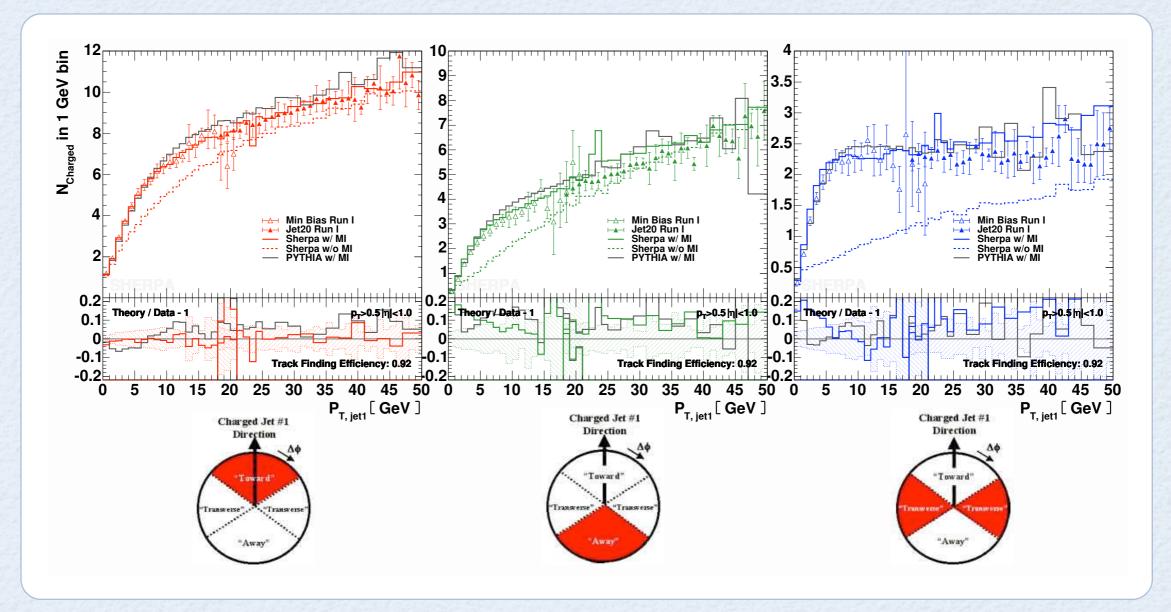
Define jet resolution parameter Q_{cut} (Q-jet measure)


JHEP 0111 (2001) 063 JHEP 0208 (2002) 015

- divide phase space into regions of jet production (ME) and jet evolution (PS)
- Select final state multiplicity and kinematics according to σ 'above' Q_{cut}
- K_T -cluster backwards (construct PS-tree) and identify core process
- Reweight ME to obtain exclusive samples at Q_{cut}
- Start the parton shower at the hard scale
 Veto all PS emissions harder than Q_{cut}

This yields the correct jet observables!
Generic example: 2-jet rate in ee →qq

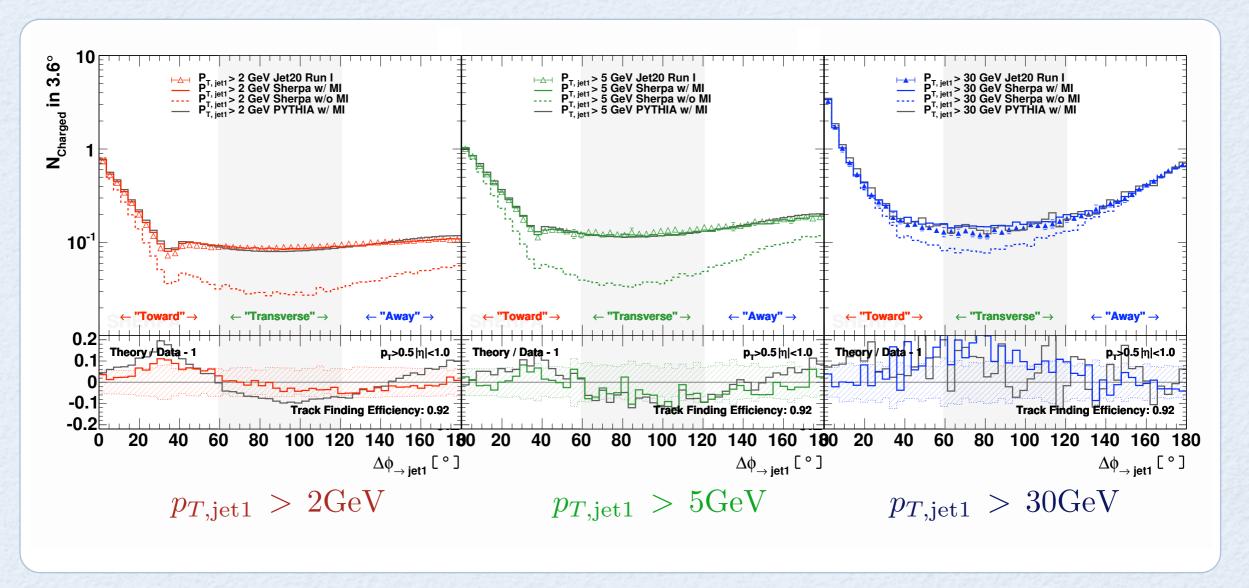
$$\mathbf{R_2}(\mathbf{q}) = \left(\mathbf{\Delta}(\mathbf{Q_{cut}}, \mu_{\mathbf{hard}}) \frac{\mathbf{\Delta}(\mathbf{q}, \mu_{\mathbf{hard}})}{\mathbf{\Delta}(\mathbf{Q_{cut}}, \mu_{\mathbf{hard}})}\right)^2$$



MPI RESULTS FROM SHERPA

hep-ph/0601012

N_{Charged} vs. p_{T,jet1} in CTC
 in different regions w.r.t. leading charged particle jet



MPI RESULTS FROM SHERPA

hep-ph/0601012

• $N_{Charged}$ vs. $\Delta \phi_{jet1}$ in CTC for different p_T of leading charged particle jet

