

Ulla Blumenschein (Uni Goettingen)

Ester Segura (Barcelona)

KET LHC-D workshop, 3.-4.6.2008, Zuerich

Introduction

 Measurement of the inclusive Z+jets cross section and comparison with QCD predictions

 stringent test of perturbative QCD
 important backgrounds for searches in ATLAS (Higgs, SUSY, ...)

 Observables: Inclusive jets cross section (Z+ >=N jets)
 Differential cross section (jet PT)

MC event generator validation (Pythia, Alpgen, Sherpa ...)

What can we do now:

- Generator study: compare predictions of different event generato with theoretical predictions
- Feasability study: use generated signal and background events as pseudo data in order to simulate the measurement
 > Expected precission of the measurement
- Channels: Z->ee+jets, Z->mumu+jets More details for Z->ee in this presentation

Comparison of data and MCFM predictions

Signal and background samples Z->ee

Signal		Signa	l: > 500 pb-1	
	Alpgen+Herwig Z->ee, VBF lo	oose filter	VBF loose cut:	
6 6 6 6	8130: ZeeNp0, 8131: ZeeNp1, 8132: ZeeNp2, 8133: ZeeNp3, 8134: ZeeNp4,	80000 evts598800 evts796200 evts1949000 evts3046250 evts101	537 pb-1 716 pb-1 905 pb-1 925 pb-1 .20 pb-1	>=1 Cone04 Jet PT>20GeV, eta <5 (only for fullsim)
•	8135: ZeeNp5,	16950 evts 100	030 pb-1	
e 5	5144: Pythia Z->ee inclusive,	172900 evts,	121pb-1	Jet PT as for different Jet multiplicities 1st jet
Backg	ground			2nd jet 3rd jet 10^2 $$ 4th jet
€ 5 € 5	568, Pythia Ttbar, 200, McatNLO: lep+jets	500000 evts, 45650 evts	625 pb-1 100 pb-1	
6 5	104, Pythia W->enu,	179900 evts,	16.5 pb-1	
€ 5	146, Pythia Z->tautau,	170000 evts,	2208 pb-1	
6 5	802, Pythia JF17: Filtered Dije	ets, 3012000 evts,	0.004 pb-1	50 100 150 200 250 300
			4	P _T , leading jet (GeV)

Lepton and Jet ID

Electrons

- Track and Shower-shape requirement ("IsEM medium")
- trigger-level isolation for at least one electron
- PT>25 GeV
- |eta| <2.4, cracks excluded: [1.37-1.52]</p>

Jet selection

- Z->ee: Tower jet, Seeded Cone 0.4
 Z->mumu: Cluster jet, Seeded Cone 0.4
- Lepton veto ($\Delta R < 0.4$)
- \bullet P_T > 40 GeV

Z event selection

- Invariant mass [91+- 10]GeV
- $\Delta R(electrons) > 0.2$
- Z->ee: Event passes OR of e25i and 2e15i trigger

Muons

• Inner detector and Muon chambers ("Staco" algorithm) • Isolation: cone20, $E_T < 15$ GeV • 0.1<|eta|<1.2, 1.3<|eta|<2.4 • $P_T > 15$ GeV

I: From Parton to Hadron level

Non-perturbative processes:

- Fragmentation
- Underlying event

Corrections for fragmentation and UE+frag

Generated Z->mumu:

(1) standard UE tuning (ATLAS tune, similar to Tune A), Pythia 6.403

- (2) "No UE": MultipleParticle Interactions switched off (MSTP 81 = 20)
- (3) " no Fragmentation": Fragmentation master switch (MSTJ(1)=0 in pydat1)

Corrections small for jet P_T > 40 GeV
 from lack of statistics: apply global residual correction for P_T > 40 GeV
 as a function of the jet multiplicity

7

II: Reconstructed data: unfolding to hadron level

Unfolding corrections:

- Discarding the cracks
- Background fraction, in particular QCD
- Electron reco efficiency
- Electron resolution
- Jet reco efficiency
- Jet energy scale
- Jet resolution

Electron reconstruction in high-multiplicity events

DR between electrons and between electrons and jets becomes smaller with increasing jet multiplicity

-> bias in trigger and reco efficiency ?

Isolation and shower shape in high-multiplicity events

 Muon reco efficiency vs jet multiplicity for different isolation criteria

Z->ee: Signal and background for 1 fb-1

ID: isEM medium + trigger, Alpgen, official normalization , LO cross sections

	$Z \rightarrow ee + \ge 1$ jet		$Z \rightarrow ee$	$+ \ge 2$ jets	$Z \rightarrow ee + \geq 3 \text{ jets}$	
Process	xsec [fb]	fraction [%]	xsec $[fb]$	fraction [%]	xsec $[fb]$	fraction [%]
$Z \rightarrow ee$	23520 ± 145	91.9±0.8	4894 ± 45	87.9±1.3	900 ± 15	80.0 ± 2.4
QCD jets	1545 ± 89	(6.0±0.4)	336 ± 42	6.0 ± 0.8	78±20	6.9 ± 1.8
tt	496 ± 28	1.9 ± 0.1	333 ± 23	6.0 ± 0.4	146 ± 15	13.0±1.4
$Z \rightarrow \tau \tau$	3.2 ± 1.2	0.01 ± 0.005	(0.67±0.25)	(0.01 ± 0.005)	(0.1 ± 0.05)	(0.01 ± 0.005)
$W \rightarrow e v$	(28±13)	(0.1 ± 0.05)	(5.9 ± 2.6)	(0.1 ± 0.05)	(1.1 ± 0.5)	(0.1 ± 0.05)

Efficiency of Z->ee reconstruction ~33% for all jet multiplicities considered

Z->ee: Observables (all selection cuts applied)

• Use Pythia sample for inclusive cross section, Alpgen samples for Z + >= 1 jet

Z->ee: Observables (all selection cuts applied)

Ttbar distributions different from signal distributions -> Important to understand Top production at ATLAS

Signal-free regions:

- e+mu events
- events with large Missing ET

Z-> $\mu\mu$: Signal and background: Pythia vs. Alpgen

Pythia

Alpgen

Unfolding to the truth level

• Electron reco efficiency as a function of Eta for different PT Medium electron ID

JES and Jet reco efficiency: Cone04 tower jets

- Calculate Non-linearity and Resolution from PT(reco)/PT(truth) of matched jets
- Use 10 bins in PT with similar number of events

Validation of jet unfolding

Dominant correction from Elecron reco efficiency Jet corrections at Low PT(jet)

Comparison of Alpgen/Pythia and MCFM

- Compare Generators at hadron level with MCFM corrected to hadron level
- Global normalization of Pythia and Alpgen data to the NLO inclusive cross section
- Pythia/Alpgen: statistical errors
- MCFM: PDF, residual fragmentation

Both Pythia and Alpgen predict lower jet multiplicities than even LO MCFM

Comparison of Alpgen/Pythia and MCFM

Pythia Parton Shower jets are softer than Alpgen Matrix Element jets, as expected

Comparison of Reco and MCFM

- All corrections applied to reconstruced signal
- global normalization of Alpgen
- Compare jet observables with MCFM predictions
- Errors scaled to uncertainty expected from data (1fb-1): Statistics, background subtraction, JES uncertainty (3%) etc. (see next slide)

Expected uncertainties for data/Theory

- Error on JES: largest contribution: compare 1% 3% 10%, see plots
- **PDF uncertainties:** contributions from complete set of error functions
- **QCD background:** assume 20% uncertainty: Z->ee+jets: 1-2% error on the cross section
- Electron reco efficiency: 1% (not relevant if relating to the inclusive cross section)
- Statistical error: only relevant for large PT/jets) and large jet multiplicities

Not included in the plot:

- Error from uncertainty on the PT distribution (percentage level)
- Error from uncertainty on the jet resolution (percentage level)
- Uncertainty on the **Ttbar background**: developing data driven methods
- Integrated luminosity: not relevant if relating to inclusive cross section

Expected uncertainties for data/Theory: PT leading jet

Expected uncertainties for data/Theory: PT leading jet

With an error of 3% (10%) on the JES scale we expect an uncertainty of 5-10% (20-30%) on the cross section measurements -> with 10% JES scale uncertainty we cannot even distinguish between LO and NLO predictions

Summary

- Using fully simulated MC for Signal and background processes we have performed a feasibility study for the measurement of the Z+jets inclusive and differential cross section at ATLAS with data corresponding to 1fb-1
- The expected total uncertainty is at the level of
 5-10% (20-30%) for Jet Energy Scale uncertainties of
 3% (10%)
- Differences in the predictions from Pythia, Alpgen and Theory predictions specified: Pythia and Alpgen predictions have to be validated (and retuned) with the data
- Developing data driven methods to assess the most important background sources: Multi-jet and Top production

backup

Simulating QCD background for Z->ee+jets

Sample JF17: filtered Pythia dijets: 3Mio evts

trig1_misal1_mc12_V1.005802.JF17_pythia_jet_filter.recon.AOD.v12000601

- discard events with W,Z or Ttbar

- subsamples:

- 1) discard reco electrons matched with truth electrons
- 2) select reco electrons matched with truth electrons
- Select events with one AOD electron, PT>25, fiducial eta region
- consider only leading fake electron: apply electron ID and trigger cuts (use single-electron trigger to calculate efficiency for di-electron trigger)

In analysis:

- Use all events with two AOD electron fakes

- require the events to pass only the kinematic cuts

- weight both electrons with ID/trigger rejection from single electrons

26

- ...In Collisions: estimate QCD background from data:
 fit mass shape
 - invert ID cuts
 - invert ID cuts

Validation of jet unfolding

PT leading jet

PT next-to-leading jet

Signal and background samples Z->mumu

Sample	Process	events	∫Ldt	generation	reconstruction			
Pythia								
5145	$Z \rightarrow \mu \mu$	160000	120	11.0.4	12.0.6.1			
5105	$W \rightarrow \mu \nu$	45000	5.5	11.0.4	12.0.6.1			
17506	$OCD(bb(\mu\mu))$	123000	1.1	12.0.3	12.0.6.2			
5568	11	75000	94	12.0.3	12.0.7.1			
5904	$Z \rightarrow \tau \tau$	38000	9800	11.0.5	12.0.6.1			
Alpgen+	Alpgen+Herwig							
8142	$Z \rightarrow \mu \mu + 0$ partons	26000	525	12.0.5	12.0.6.4			
8143	$Z \rightarrow \mu \mu + 1$ partons	50000	360	12.0.5	12.0.6.4			
8144	$Z \rightarrow \mu \mu + 2 \text{partons}$	21000	400	12.0.5	12.0.6.4			
8145	$Z \rightarrow \mu \mu$ + 3 partons	18000	1200	12.0.5	12.0.6.4			
8146	$Z \rightarrow \mu \mu + 4 \text{partons}$	7000	1500	12.0.5	12.0.6.4			
8147	$Z \rightarrow \mu \mu + 5 partons$	5000	3000	12.0.5	12.0.6.4			
6108	$W \rightarrow \mu \nu + 1$ partons	45000	28	12.0.5	12.0.6.5			
6109	$W \rightarrow \mu \nu + 2 \text{partons}$	35000	60	12.0.5	12.0.6.5			
6110	$W \rightarrow \mu \nu + 3 partons$	46000	270	12.0.5	12.0.6.5			
6111	$W \rightarrow \mu \nu + 4 partons$	32000	630	12.0.5	12.0.6.5			
6112	$W \rightarrow \mu \nu + 5 \text{partons}$	10000	500	12.0.5	12.0.6.5			
6370	tf + Opartons	5000	100	12.0.5	12.0.6.4			
6371	$t\bar{t} + 1$ partons	5000	65	12.0.5	12.0.6.4			
6372	$i\bar{i}$ + 2partons	2500	24	12.0.5	12.0.6.4			
8154	$Z \rightarrow \tau \tau + 0$ partons	10000	200	12.0.5	12.0.6.1			
8155	$Z \rightarrow \tau \tau + 1$ partons	9500	170	12.0.5	12.0.6.1			
8156	$Z \rightarrow \tau \tau + 2$ partons	9500	450	12.0.5	12.0.6.1			
8157	$Z \rightarrow \tau \tau + 3$ partons	5000	700	12.0.5	12.0.6.1			
8158	$Z \rightarrow \tau \tau + 4$ partons	5000	2500	12.0.5	12.0.6.1			
8159	$Z \rightarrow \tau \tau + 5$ partons	4000	1800	12.0.5	12.0.6.1			

Two +- complete signal+background sets 1) Pythia 2) Alpgen+herwig

JES and Jet reco efficiency: Cone 4 Topo jets

lower than for tower jets

Z->mumu: Truth Observables

Z->mumu: Observables after unfolding

Fragmentation corrections: all CSC jet algorithms

 -> As expected, Cone07 shows the smallest loss of energy due to out-of-cone showering, Kt4 has the largest energy loss, Kt6 and Cone04 perform somewhat better than Kt4
 -> The loss of energy diminishes with increasing ET of the jets:

roughly similar performance for all algorithms at ET>40 GeV

All non-perturbative corrections

- -> The combined corrections for underlying event and fragmentation are large for Cone07 jets, smallest for Kt4.
- -> Remaining corrections negligible for ET>40 GeV for Kt4, C4 and Kt6 Negligible for Cone07 only for ET> 80 GeV