Searches for the production of electroweak supersymmetric particles in final states with two, three and four leptons with the ATLAS experiment

EW SUSY ANALYSES - STATUS

analysis	paper/conference note commo		nent
2lepton (e,µ)	arxiv:1403.5294	ted by JHEP	
3lepton (e,µ,т)	arxiv:1402.7029	<u>JHEP</u>	<u>04 (2014)169</u>
4lepton (e,µ, т)	arxiv:1405.5086	submi	tted to PRD
2lepton (τ)	paper publication in few days/weeks	under	ATLAS review
1lepton (e,μ) + γγ	C1N2->WhN1N1 decay; h→	bb/yy	
1lepton (e,µ) + b-b			
SS 2lep (e,µ)	C1N2->WhN1N1 decays; h→lvjj		
γ	higgs decays to Graviton+ N1; graviton decays to gravitino+ γ		
γ + b-b	higgsino like N1s; N1-> gravitino + h or γ; h→bb		iterating internal note with edboard,
1lepton + γ	N1C1 are winos and decay to gravitino		expect publication in several weeks/
ΥY	bino-like N1, N1->Gγ		
2,3,4 lepton	combination paper		
HL-LHC	conference note	ongoing work	

EW SUSY ANALYSES - STATUS

analysis	paper/conference note comme		nent
2lepton (e,µ)	arxiv:1403.5294	ted by JHEP	
3lepton (e,µ,т)	arxiv:1402.7029	<u>JHEP</u>	<u>04 (2014)169</u>
4lepton (e,µ, т)	arxiv:1405.5086	submi	tted to PRD
2lepton (τ)	paper publication in few days-weeks	under	ATLAS review
1lepton (e,μ) + γγ	C1N2->WhN1N1 decay; h_>	bb/yy	
1lepton (e,µ) + b-b			
SS 2lep (e,µ)	C1N2->WhN1N1 decays; h->lvjj		
γ	Higgs decays to Graviton+ N1; graviton decays to gravitino+ γ		
γ + b-b	higgsino like N1s; N1-> gravitino + h or γ; h-> bb		iterating internal note with edboard,
1lepton + γ	N1C1 are winos and decay to gravitino		expect publication in several weeks/
ΥY	bino-like N1, N1->Gγ		lew months
2,3,4 lepton	combination paper		
HL-LHC	conference note		ongoing work

EW SUSY ANALYSES - STATUS

analysis	paper/conference note	comm	nent		
2lepton (e,µ)	arxiv:1403.5294	accep	ted by JHEP		
I have discussed alre	eady electroweak SUSY se	earche	s in July 2013:		
https://indico.de contribId=0&re	esy.de/getFile.py/access? sId=0&materialId=slides&c	confld=	-7885		
ightarrow for all analyses the full	2012 ATLAS data set was	s studie	ed (20.3 fb ⁻¹)		
\rightarrow results are updates of	published 2013 conferenc	e note	S:		
- optimized signal regi	ons and background estim	ations			
- added new signal reg	gions and decay channels				
- combined signal regi	ons and channels				
			few months		
ΥY	bino-like N1, N1->Gγ				
2,3,4 lepton	combination paper				
HL-LHC	conference note ongoing work				

paper:

CERN-PH-EP-2014-037 (arXiv: 1403.5294)

→accepted by JHEP

Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector

2 lepton SUSY MODELS

chargino1-chargino1 production

chargino1-neutralino2 production

slepton pair production

via intermediate sleptons

with on-shell W

E_T^{miss} from neutralino1 (LSPs) and neutrinos same flavour and different flavour leptons

via virtual Z

E_T^{miss} from neutralino1 (LSPs) + 2 jets in final state ONLY same flavour leptons (ee, μμ) E_T^{miss} from neutralino1 (LSPs) ONLY same flavour leptons (ee, μμ)

2 lepton FINAL STATES

> focus on different di-lepton final states

$$\begin{array}{l} pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \to W \tilde{\chi}_1^0 \ W \tilde{\chi}_1^0 \to \ell \nu_{\ell} \tilde{\chi}_1^0 \ \ell' \nu_{\ell'} \tilde{\chi}_1^0 \\ ee, \ \mu\mu, e\mu \end{array}$$

$$pp \to \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} \to \tilde{\ell} \nu_{\ell} (\tilde{\nu}_{\ell} \ell) \ \tilde{\ell}' \nu_{\ell'} (\tilde{\nu}_{\ell'} \ell') \to \ell \nu_{\ell} \tilde{\chi}_{1}^{0} \ \ell' \nu_{\ell'} \tilde{\chi}_{1}^{0}$$

$$ee, \ \mu\mu, e\mu$$

 $pp \to \tilde{\ell}\tilde{\ell} \to \ell\tilde{\chi}_1^0 \ell\tilde{\chi}_1^0$ $ee, \ \mu\mu$

$$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \to qq \tilde{\chi}_1^0 \,\ell' \ell' \tilde{\chi}_1^0$$

ee, $\mu \mu$

2 lepton SIGNAL REGIONS

	Signal Region	
Two Leptons	$\tilde{\ell}^{\pm}\tilde{\ell}^{\mp} \rightarrow \ell^{\pm}\tilde{\chi}_{1}^{0} + \ell^{\mp}\tilde{\chi}_{1}^{0}$	SR-m _{T2}
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \to \ell^{\pm} \nu \tilde{\chi}_1^0 + \ell^{\mp} \nu \tilde{\chi}_1^0$	SR-m _{T2}
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \to W^{\pm} \tilde{\chi}_1^0 + W^{\mp} \tilde{\chi}_1^0 \to \ell^{\pm} \nu \tilde{\chi}_1^0 + \ell^{\mp} \nu \tilde{\chi}_1^0$	SR-WW
	$\tilde{\chi}_2^0 \tilde{\chi}_1^{\mp} \to Z \tilde{\chi}_1^0 + W^{\mp} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0 + q q \tilde{\chi}_1^0$	SR-Zjets

SR selection cuts:

processes

= 2 signal leptons with opposite charge + di-lepton trigger

SR	m_{T2}^{90}	m_{T2}^{120}	m_{T2}^{150}	WWa	WWb	WWc	Zjets
lepton flavour	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	DF,SF	SF
central light jets	0	0	0	0	0	0	≥ 2
central b -jets	0	0	0	0	0	0	0
forward jets	0	0	0	0	0	0	0
$ m_{\ell\ell} - m_Z $ [GeV]	> 10	> 10	> 10	> 10	> 10	> 10	< 10
$m_{\ell\ell} \; [{\rm GeV}]$				< 120	< 170		
$E_{\rm T}^{\rm miss, rel} [{\rm GeV}]$				> 80			> 80
$p_{\mathrm{T},\ell\ell} \; [\mathrm{GeV}]$				> 80			> 80
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 90	> 120	> 150		> 90	> 100	
$\Delta R_{\ell\ell}$							[0.3, 1.5]
$m_{jj} [{ m GeV}]$							[50, 100]

SRm_{T2}: SRm_{T2,90} for small C1 masses and small slepton-N1 mass gaps, SRm_{T2,120,150} for higher C1 masses and slepton pair production with larger mass differences slepton pair production only ee/μμ channel

SRWW: SRWWa for off-shell WW production – like higgs analysis; for C1 masses < 130 GeV, SRWWb, SRWWc m_{T2} based search for higher C1-N1 mass splitting

SRZjets: \geq 2 central jets with p_T > 45 GeV, m(I,I) in Z-mass range, E_T^{miss,rel} cut to suppress Z+jets bg

2 lepton SM BACKGROUNDS

Irreducible backgrounds with two isolated real leptons:

dominating background processes for SRZjets:
Z + jets
smaller contribution:
ttbar, single top Wt, WW, ZV
tiny contribution: higgs

Reducible background with a fake lepton:

- > non-prompt leptons originating from light /heavy jets or from conversion mis-identified as real leptons from W, Z or leptonic tau decays
- > tiny contribution for all SRs

J. Dietrich | LHC discussion | Page 9

2 lepton SM BACKGROUNDS

SR	SRm _{T2}	SRWW		SRZjets
Process				
top		scaling fa	actor	
ww	scaling	g factor		MC
ZV (WZ, ZZ)	scaling	g factor		MC
Z + jets	Ν	1C		jet smearing
higgs	М	MC		
fakes	matrix method			
scaling factor	jet smearing		matrix m	nethod
 semi data-driven techniqu define CR close to SRs e. by reversing a SR cut calculate scaling factor scale MC in SR 	 •E_T^{miss} tails from mise • select seed events data by reversing E_T •smear jet momenta number drawn from function from MC • pseudo-data E_T^{miss} normalized to data in and migrated to SR 	jet smearing • E_T^{miss} tails from mis-measured jets • select seed events for Z+jets from data by reversing $E_T^{miss, rel}$ cut •smear jet momenta by random number drawn from jet response function from MC • pseudo-data E_T^{miss} distribution is normalized to data in another CR and migrated to SR		ata driven method s a set of linear equations kinematic properties of the o be real (R) or fake (F) ciency (R) is taken from e rate (F) is obtained from corrected for differences data and MC in each of validation region

2 lepton RESULTS SRmT2

> $E_T^{miss, rel}$ distribution before applying the final m_{T2} cuts

2 lepton SR WW and SR Zjets

SR WWa

2 lepton RESULTS SRmT2 – chargino pair production

> 95% exclusion region in the chargino1-neutralino1 plane for simplified models with chargino-chargino production via slepton decay

COMPARISON WITH CMS

new CMS paper: published 29th of May: arxiv: 1405.7570, submitted to EPJC

CMS

ATLAS

limit: 465 GeV no τ s included!

2 lepton RESULTS SR WW – chargino pair-production

> 95% exclusion region in the chargino1-neutralino1 plane for simplified models with chargino-chargino production via W mediated decay

for a massless LSP, models with chargino masses between 100 GeV -105 GeV, 120 GeV- 135 GeV and 145 GeV- 160 GeV are excluded \rightarrow first time a hadron collider has set limits in this channel!

 $\tilde{\chi}_1^{\pm}$

2 lepton RESULTS SRmT2 – slepton pair production

> 95% exclusion region in the slepton-neutralino1 plane for simplified models with slepton pair production (smuon/selections with equal masses)

COMPARISON WITH CMS

new CMS paper: published 29th of May: arxiv: 1405.7570, submitted to EPJC

RESULTS – SR Zjets chargino-neutralino2 production

95% exclusion region in the chargino1-neutralino1 plane for simplified models

>

with W,Z decays 2Lep + 3 Lep combination 350 9 9 1 2 300 2 300 2 300 350 ق ا س^{ام ک} 300 س^{ام ک} 350 ATLAS ATLAS Observed limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$ Observed limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$ L dt = 20.3 fb⁻¹, \sqrt{s} =8 TeV $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W^{(^{\circ})} \tilde{\chi}_1^0 Z^{(^{\circ})} \tilde{\chi}_1^0$ ∫ L dt = 20.3 fb⁻¹, √s=8 TeV Expected limit $(\pm 1 \sigma_{exp})$ Expected limit $(\pm 1 \sigma_{exp})$ $\widetilde{\chi}_{1}^{\pm} \widetilde{\chi}_{2}^{0} \rightarrow W^{(*)} \widetilde{\chi}_{1}^{0} Z^{(*)} \widetilde{\chi}_{1}^{0}$ ATLAS 4.7 fb⁻¹, $\sqrt{s} = 7$ TeV $m_{\tilde{\gamma}^{\pm}} = m_{\tilde{\gamma}^{0}}$ 250 All limits at 95% CL 250 $m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{1}^{0}}$ All limits at 95% CL 3L+2L combined 200-200 200 this SCIIC 150 150 100 100 50 50 0 0 200 250 300 350 400 450 500 250 300 350 400 450 500 100 150 100 150 200 $m_{\widetilde{\chi}^0_{9},\,\widetilde{\chi}^\pm_{4}}[GeV]$ $m_{\widetilde{\chi}^0_2, \ \widetilde{\chi}^\pm_1} [GeV]$ • for a massless LSP, models with chargino masses between 180 GeV - 355 GeV are excluded

2 lepton pMSSM grid

pMSSM limits for tanβ = 6 and M1= 100 GeV, M1=140 GeV and M1 = 250 GeV
processes with mainly chargino-neutralino2 production and decays via RH sleptons

$$\tilde{\chi}_2^0 \to \tilde{\ell}_R \ell \to \tilde{\chi}_1^0 \ell \ell$$

areas with -1 σ expected limit are in green

3 lepton ANALYSIS

paper:

JHEP 04 (2014)169 (arXiv:1402.7029)

Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $\sqrt{s}=$ 8 TeV pp collisions with the ATLAS detector

3 lepton SUSY MODELS

chargino-neutralino2 production

 E_{T}^{miss} from neutralino1 (LSPs) and neutrinos same flavour and different flavour leptons

neutralino decay via sleptons	neutralino decay via on-offshell WZ bosons	neutralino decay via lightest higgs

- probe four simplified models with assumption: N2, C1 are wino like, N1 is bino like and m(N2)= m(C1)
- slepton decays: m(sneutrinos)= m(sleptons) = {M(N2)+ M(N1)}/2; BR 50% each
- WH decays: 100% BR to lightest Higgs boson M(h)= 125 GeV
- results are interpreted in pMSSM scenarios: masses of coloured sparticles, CP-odd higgs boson and LH sleptons are set to high values to allow direct production of C1, N2 via W/Z bosons and decays via RH sleptons, gauge bosons and Higgs boson;M(h) = 125 GeV (tuned by mixing in top-sector)

3 lepton SIGNAL REGIONS

• electrons and muons are collectively referred to as "light leptons" \rightarrow incl. leptonic tau decays

• "taus" refers to hadronically decaying taus

>= 3 leptons, separated from each other by $\Delta R > 0.3 + >=1$ must be e or μ events pass single or double lepton trigger if tagged e, μ form a same-flavor OS pair, both leptons with m(I,I) < 12 GeV are rejected \rightarrow defined 5 SRs according to flavor, charge of leptons

Signal region	$\mathrm{SR0} au\mathrm{a}$	$\mathrm{SR0} au\mathrm{b}$	$SR1\tau$	$SR2\tau a$	$\mathrm{SR}2 au\mathrm{b}$
Flavour/sign b-tagged jet $E_{\mathrm{T}}^{\mathrm{miss}}$	$\ell^+\ell^-\ell, \ell^+\ell^-\ell'$ veto binned	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$ veto > 50	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ veto > 50	$ au au \ell$ veto > 50	$\tau^+ \tau^- \ell$ veto > 60
Other	$m_{ m SFOS}$ binned $m_{ m T}$ binned	$\begin{array}{c} p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20 \\ \Delta \phi_{\ell\ell'}^{\min} \leq 1.0 \end{array}$	$p_{\rm T}^{2^{\rm nd}\ell} > 30$ $\sum p_{\rm T}^{\ell} > 70$ $m_{\ell\tau} < 120$ $m_{ee} \ Z \text{ veto}$	$m_{\mathrm{T2}}^{\mathrm{max}} > 100$	$\sum_{T} p_{T}^{\tau} > 110 \\ 70 < m_{\tau \tau} < 120$
Target model	$\tilde{\ell}, WZ$ -mediated	Wh-mediated	Wh-mediated	$\tilde{\tau}_L$ -mediated	Wh-mediated

SR0Ta: optimized for slepton mediated decays and WZ mediated scenarios; SFOS lepton pair + different slices in m_{SFOS} with 4 bins = 20 disjoint bins SR0Tb: for Wh scenario, vetos SFOS lepton pairs to suppress WZ bg SR1T: 1T + >= 2 SS e or μ ; for Wh scenarios; to increase sensitivity for h \rightarrow TT, cut on m(T,I) SR2T: for stau scenarios, m_{T2} = highest value from 2 leptons SR2Tb: for Wh scenarios, two OS T leptons for h \rightarrow TT decays

3 lepton SM backgrounds

number of T	SR	SM backgrounds	signal grids
0	SR0a	WZ, ttbar	sleptons, WZ
0	SR0b	WZ, ttbar	WH
1	SR1SS	WZ, ttbar, WW	WH
2	SR2a	WZ, ttbar, WW, W/Z + jets	staus
2	SR2b	WW, ttbar	WH

3 lepton SM BACKGROUNDS

Irreducible backgrounds with at least three isolated real leptons:

diboson (WZ, ZZ), , triboson VVV (WWW, ZZZ, ZWW) and top-antitop Z/W, tZ, higgs boson

Reducible background with at least one fake lepton/tau:

leptons from a semileptonic decay of heavy-flavour quarks, lepton from misidentified light-flavour quark or gluon jet or electron from photon conversion in single- and pairproduction of top quarks, WW, W+ jets, Z+jets

modeled with Matrix Method

3 lepton – VALIDATION REGIONS

60

80

100

120

0.5

0^F

20

40

3 lepton - SIGNAL REGIONS

3 lepton RESULTS – slepton/stau decays

observed and expected 95% CL exclusion contours for chargino and neutralino production in the left-handed slepton-mediated (left) and stau-mediated (right) simplified models
SR0a, SR0b, SR1, SR2a are all used and statistically combined

selectron/smuon models:

N2/C1 up to 700 GeV are excluded for massless LSP

SR0 offers best exlusion limit for high N2/C1 masses, low m(SFOS) regions for small N2/C1 masses

•stau models:

N2/C1 masses up to 380 GeV are excluded; SR2a offers best limit for high N2/C1 masses

COMPARISON WITH CMS

3 lepton RESULTS – WZ/ WH decays

•observed and expected 95% CL exclusion contours for chargino and neutralino production in WZ-mediated (left) and Wh-mediated (right) simplified models

•WZ mediated models:

N2/C1 up to 345GeV are excluded for massless LSP

SR0 offers best exlusion limit for small N2/C1 masses, reduced sensitivity for the region $m(N2)-M(N1) = m(Z) \rightarrow signal populated regions with high WZ background •Wh models:$

N2/C1 masses up to 148 GeV are excluded; SR2a offers best limit for high N2/C1 masses

2+3 lepton – COMBINED RESULTS – WZ decays

- 2I epton: for a massless LSP, models with chargino masses between 180 GeV 355 GeV are excluded
- 2 Lep + 3 Lep combination improves limits significantly
 95% limit for massless LSP: chargino/neutralino2 masses between 100 GeV 415 GeV

COMPARISON WITH CMS WZ decays

CMS

ATLAS

COMPARISON WITH CMS – Wh decays

ATLAS

3 lepton - RESULTS pMSSM grids

μ [GeV]

ATLAS

•pMSSM slepton grids

- right-handed sleptons are degenerate in mass, with mass m(slepton)= ${m(N1)+m(N2)}/{2}$

- tan β = 6 yields comparable N2 branching ratios into each slepton generation

- to probe the sensitivity for different N1 compositions, three values of M1 are considered:

M1=100 GeV (top, left), M1=140 GeV (top right), M1=250 GeV (bottom)

3 lepton – RESULTS pMSSM grids

observed and expected 95% CL exclusion contours in the pMSSM models with sleptons (no staus): M1=100 GeV (top, left), M1=140 GeV (top right), M1=250 GeV (bottom)
SR0a, SR0b, SR1SS and SR2a are used
due to small mass differences between N2 -N1 and C1-N1 limited sensitivity is found in the regions with M1≈M2≪µ
For M1=250 GeV M2 > =250 GeV and u >=250 GeV :

 For M1 =250 GeV, M2 > =250 GeV and µ >=250 GeV : characterized by small C1-N1 mass splitting →observed limit sign. smaller than expected

3 lepton – RESULTS pMSSM grids

•observed and expected 95% CL exclusion contours in the pMSSM models with staus (left) and no sleptons (right):

- •RH stau scenario:
- selectrons and smuons are heavy and the RH stau mass is set to $m(stau)=\{m(N1)+m(N2)\}/2$ and $tan\beta = 50$; M1 =75 GeV resulting in a bino-like N1
- small mass splitting between N2-N1 and C1-N1 reduces sensitivity for region M1~M2 $\ll \mu$ and M1~ $\mu \ll$ M2 region
- no slepton decays:
- all sleptons are heavy; decays via W, Z or Higgs bosons dominate; M1=50 GeV and tan β =10

- region with M2 >=200 GeV, μ >=200 GeV : decay mode N2-> hN1 is kinematically allowed and reduces the sensitivity

2 + 3 lepton - pMSSM grid combination

paper:

CERN-PH-EP-2014-074 (arXiv:1405.5086)

-> submitted to PRD

Search for supersymmetry in events with four or more leptons in $\sqrt{s}=8\,{\rm TeV}\,pp$ collisions with the ATLAS detector

 \rightarrow in this paper RPV and RPC models are studied \rightarrow I will only discuss the RPC models today, but RPV results are in back up

4 lepton - SUSY MODELS – SIMPLIFIED MODELS

neutralino2-neutralino3 production

 E_T^{miss} from neutralino1 (LSPs) + >=1 SFOS lepton pair

 $\text{R-slepton} \qquad \tilde{\chi}_{2,3}^0 \to \ell^{\pm} \tilde{\ell}_{\text{R}}^{\mp} \to \ell^+ \ell^- \tilde{\chi}_1^0 \qquad \text{Stau} \qquad \tilde{\chi}_{2,3}^0 \to \tau^{\mp} \tilde{\tau}_1^{\pm} \to \tau^{\mp} \tau^{\pm} \tilde{\chi}_1^0 \qquad \tilde{\chi}_{2,3}^0 \to \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\pm} \ell^{\pm} \ell^{\pm} \ell^{\pm} \tilde{\chi}_1^0 \to \ell^{\pm} \ell^{$

neutralino decay via sleptons

neutralino decay via staus

neutralino decay via Z

•probe three types of simplified models with assumption: N2, N3 are higgsino-like, N1 is bino-like and decay chains with intermediate right-handed smuons and selectrons, with intermediate right-handed staus and with intermediate Z bosons

→smuons/selecton models: assume same neutralino branching fraction to selectrons and smuons (mixing among neutralino states); N2, N3 have masses between 100 GeV and 700 GeV, N1 varies between 0-20 GeV and cross sections between 1.7 pb-0.2 fb

→stau, Z models: LSP massless

4 lepton - SUSY MODELS – GGM models

gauge mediated SUSY breaking scenarios

E_T^{miss} from gravitino (LSPs)

strong production GGM

• probe two GGM SUSY scenarios: M1 (bino mass) = M2 (wino mass) = 1 TeV, $c\tau < 0.1$ mm, $tan\beta = 1.5$ and $tan\beta = 30$; μ - m_g (= M3) are varied with 200 GeV < μ < m_g-10 GeV \rightarrow N1, N2, C1 are higgsino-like co-NLSPs

•model tan β = 1.5: N1 decays to Z+gravitino (97%) model tan β = 30: N1 decays to Z+ gravitino or h+gravitino (m(h)=125 GeV) depending on µ (0% for µ= 100 GeV to 40% for µ=500 GeV • cross section between 1.2-1.9 pb (for m_a = 600 GeV) to 3.1 fb, except for µ = 200 GeV (σ < 0.6 pb)

4 lepton - SIGNAL REGIONS

•electrons and muons are collectively referred to as "light leptons"

 \rightarrow includes those from leptonic tau decays

"taus" refers to hadronically decaying taus

•define 9 SRs with >= 4 leptons, classified depending on the number of light leptons (==2,==3 or ==4)

and sub-divided between vetoing or presence of the Z-boson

 \rightarrow Z regions target GGM and Z RPC models, SRnoZa target RPC N2N3 decays

•single or di-lepton triggers are used

	$N(\ell)$	$N(\tau)$	Z-veto	$E_{\rm T}^{\rm miss}$ [GeV]	1	$m_{\rm eff}$ [GeV]	ר	
m SR0noZa	≥ 4	≥ 0	SFOS, $SFOS+\ell$, $SFOS+SFOS$	>50		_	1	for RPC
m SR1noZa	=3	≥ 1	SFOS, SFOS+ ℓ	$>\!50$		_	-	N2N3
SR2noZa	=2	>2	SFOS	>75		_		sleptons
$\mathrm{SR0noZb}$	≥ 4	≥ 0	SFOS, SFOS+ ℓ , SFOS+SFOS	>75	or	>600		uccuys
$\mathrm{SR1noZb}$	=3	≥ 1	SFOS, SFOS+ ℓ	> 100	\mathbf{or}	>400		
SR2noZb	=2	≥ 2	SFOS	>100	\mathbf{or}	>600		
	$N(\ell)$	$N(\tau)$	Z-requirement	$E_{\rm T}^{\rm miss}$ [GeV]				
SR0Z	≥ 4	≥ 0	SFOS	>75		—		for GGM
SR1Z	=3	≥ 1	SFOS	> 100		_		models
SR2Z	=2	≥ 2	SFOS	> 75		_		

• SFOS: cuts on SFOS pairs + invariant mass of the candidate Z boson using the combinations of the 2 light leptons with an additional light lepton (SFOS+ I or SFOS+SFOS) to suppress radiative Z decays; E_T^{miss} cut to suppress Z+X SM background

4 lepton - SM BACKGROUNDS

Irreducible backgrounds with at least four prompt leptons:

 ZZ/γ^* , ZWW, ZZZ, tWZ, ttbar + Z/WW, higgs boson decays

Reducible background with at least one fake lepton/tau:

leptons from a semileptonic decay of heavy-flavour quarks, lepton from misidentified light-flavour quark or gluon jet or electron from photon conversion in single- and pair-

production of top quarks, WW, W+ jets, Z+jets:

main components:

WWW, WZ/ γ^* , ttbar + W, Z γ^* + jets, ttbar, Wt, WW

modeled with weighting method

- using MC probabilities for non-prompt leptons to pass or fail signal selections in SR and CR

Data-MC agreement and background models are tested in six validation regions!

4 lepton - VALIDATION REGIONS

600

45

50

4 lepton – SIGNAL REGIONS

4 lepton – RESULTS

observed and expected 95% CL limit contours for the R-slepton RPC simplified models (top left); observed and expected 95% CL limits on the production cross-section for the stau (top right) and Z RPC simplified models (bottom), respectively, assuming zero mass for the LSP
strongest constraints for RPC models are obtained for Rslepton model: limit N2/N3 <620 GeV for massless LSP; maximum N1 mass limit is 340 GeV

• as the LSP mass increases, the leptons are less energetic, decreasing the analysis acceptance.

the region allowed by LEP (m(N2/N3) > 100 GeV) no limits are set on the stau or Z models; 95% CL upper limits on the visible cross-section: 0.17 fb and 0.45 fb, depending on the final state.

4 lepton – RESULTS

• observed and expected 95% CL limit contours for the two GGM models

• only regions with a Z boson requirement are statistically combined to extract these limits

• for tan β = 1.5:

independently of the value of μ , gluinos with m<700 GeV are excluded

for very large gluino masses: direct production of N1, C, N2 becomes dominant

 \rightarrow values of μ =200 GeV - 230 GeV are excluded for any gluino mass

•for tan β = 30:

the limits are weaker; gluinos with m<640 GeV are excluded

COMPARISON WITH CMS

ATLAS

Summary

- > ATLAS has developed a broad SUSY program
- > detailed and thorough searches, covering wide ranges of signatures of electroweak SUSY particles
- presented today the results of the EW SUSY production 2-3 and 4 lepton paper
- > no sign of SUSY found yet....

... we could exclude already low mass chargino/neutralino/slepton models + many new (combination)papers will be published in the next weeks/months

BUT...

we will start with LHC run 2 soon!

high energy running will significantly increase our sensitivity to many of these SUSY scenarios

Looking forward to next exciting years!

BACK UP

MOTIVATION

- in SUSY scenarios with heavy squarks and gluinos while non-coloured SUSY particles are light, weak gauginos (charginos, neutralinos) and sleptons ĩ may dominate the SUSY production at the LHC
- gauginos can decay via sleptons or via Standard Model gauge boson
- relatively clean signature:
 - missing transverse energy $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}}$ from LSP
 - low hadronic activity
 - \rightarrow focus on final states with == 2 leptons (e, μ)

Searching for Supersymmetry

How to search for SUSY ?

- ✓ focus on the process of interest
- ✓ study a specific decay chain using simplified models
- simple and broad approach for SUSY searches
- small number of sparticles
- assumed BR usually 100%
- decay described by masses and cross sections

SUSY limits

- > compute the 95% CL model independent limits on $\sigma_{vis} = \sigma x A x \epsilon$
- > compute 95% CL model dependent exclusion curves on σ_{SUSY} and sparticle masses

MSSM

Symbol	Description	number of parameters	
aneta	the ratio of the vacuum expectation values of the two Higgs doublets	1	
M_A	M_A the mass of the pseudoscalar Higgs boson		
μ	the higgsino mass parameter	1	
M_1	M_1 the bino mass parameter		
M_2	M ₂ the wino mass parameter		
M_3	M ₃ the gluino mass parameter		
$m_{ar{q}}, m_{ar{u}_R}, m_{ar{d}_R}$	$m_{ar{q}}, m_{ar{u}_R}, m_{ar{d}_R}$ the first and second generation squark masses		
$m_{\tilde{l}}, m_{\tilde{e}_R}$	the first and second generation slepton masses	2	
$m_{\bar{Q}}, m_{\bar{t}_R}, m_{\bar{b}_R}$	$m_{ar{Q}}, m_{ar{t}_R}, m_{ar{b}_R}$ the third generation squark masses		
$m_{ ilde{L}}, m_{ ilde{ au}_R}$	$m_{ar{L}}, m_{ar{ au}_R}$ the third generation slepton masses		
A_t, A_b, A_τ	A_t, A_b, A_{τ} the third generation trilinear couplings		

2 lepton OBJECTS

E_T^{miss}:

>
$$E_{T}^{miss}$$
 becomes $E_{T}^{miss,rel}$: $E_{T}^{miss,rel} = \begin{cases} E_{T}^{miss} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2 \\ E_{T}^{miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$

 $\Delta \Phi$ = azimutal angle between the direction of E_T^{miss} vector and the nearest lepton or central jet/b-jet

→aim: suppress events where missing transverse momentum arises from significantly mis-measured jets or leptons such that it is aligned with E_t^{miss}

> stransverse mass
$$m_{T2}$$
: $m_{T2} = \min_{\mathbf{q}_T + \mathbf{r}_T = \mathbf{p}_T^{miss}} \left[\max\left(m_T(\mathbf{p}_T^{\ell_1}, \mathbf{q}_T), m_T(\mathbf{p}_T^{\ell_2}, \mathbf{r}_T) \right) \right]$

 p_T^{I1} , p_T^{I2} = tranverse momenta of the two leptons

 q_T = transverse vector that minimizes the larger of the two transverse masses m_T

$$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}, \mathbf{q}_{\mathrm{T}}) = \sqrt{2(p_{\mathrm{T}}q_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}} \cdot \mathbf{q}_{\mathrm{T}})}$$

 \rightarrow for SM WW, ttbar with leptonic decay: m_{T2} has an upper endpoint: W-mass

OBJECTS

The stransverse mass m_{T2} is defined for pair produced particles that each decay to two particles, out of which one goes undetected.

If the undetected particles are massless, the two-lepton $m_{\rm T2}$ distribution (for $\tilde{\ell}$ pair production) has an endpoint given by

$$m_{\mathsf{T}2}^2 = m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2 + \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{2m_{\tilde{\ell}}} \left(\sqrt{\left(\frac{m_{\tilde{\ell}}^2 + m_{\tilde{\chi}_1^0}^2}{2m_{\tilde{\ell}}}\right)^2 - m_{\tilde{\chi}_1^0}^2} - \frac{m_{\tilde{\ell}}^2 + m_{\tilde{\chi}_1^0}^2}{2m_{\tilde{\ell}}} \right)$$

It can be shown that this equation simplifies to $\approx m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}$.

In particular, m_{T2} is a powerful tool rejecting WW background, since the $WW m_{T2}$ distribution will end at the W mass.

J.Phys. G29 (2003) 2343-2363, Phys.Lett. B463 (1999) 99-103.

MATRIX METHOD

- > takes care of fake leptons from W+jets, semi leptonic ttbar, single top t- and s-channel or multi-jets
- > employs a set of linear equations relating kinematic properties of the leptons to be real (R) or fake (F)
- number of observed events with one (or two) fakes is extracted from this system of linear equations relating the number of events with 1(2) additional signal (tight T) or tagged lepton (loose L) candidates to the number of events with 1(2) additional candidates that are either real or fake candidates
- coefficients of the linear equations are functions of real-lepton id efficiencies r (obtained from MC simulation + scaled to account differences to data) and fake-object misidentification probabilities (f)

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{bmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

- > fake rate depends of the type of fake and the process that produced the fake
- → fake rates are obtained from MC simulated samples and corrected for differences between data and MC in each signal and validation region
- > weighted average fake efficiency for a generic region XR:

$$f_{XR}^{l} = \sum_{i,XR} (sf^{i} \times R_{XR}^{i} \times f^{i})$$

sfⁱ : scaling factor for lepton fake type (HF, conversion)

Rⁱ_{XR}: fraction of type iin region XR

 f^i : fake efficiency for type i, parametrized as a function of \boldsymbol{p}_T

Define a set of tight and loose object selection criteria.

Determine the *real efficiency* r, i.e the probability for a real, prompt lepton to pass the tight selection. This is done using real data.

Determine the *fake rate* f, i.e the probability for a fake, non-prompt lepton to pass the tight selection. This is done using MC truth.

Let N_{TT} denote the number of events with two tight leptons, N_{TL} the number of events with one tight and one loose lepton and so on.

Let N_{RR} denote the number of events with two real leptons, N_{RF} the number of events with one real and one fake lepton and so on.

The number of events with at least one fake lepton is found by inverting the matrix below. For 3-Lepton, the method is applicable under the assumption that the leading lepton is always real.

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{bmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

MATRIX METHOD

- Use isolation to define "loose" and "tight" leptons
 - "tight" (T) are the signal leptons
 - "loose" (L) leptons have more relaxed isolation requirements
 - electrons: medium++ and no isolation
 - muons: no isolation
- The fake rate f is the probability that a loose fake lepton passes tight

•
$$f(e(p_{\mathrm{T}})) = \sum_{i \in \mathrm{QCD, \ conv}} f_i(p_{\mathrm{T}}) w_i(p_{\mathrm{T}}) s_i(p_{\mathrm{T}})$$

- f_i Measured for $E_T^{\text{miss, rel}} < 50 \text{ GeV}$, Z mass, == 2 μ , >=1 el with m_T < 40 GeV in MC
- Compared with rates in fake-rich control regions $\rightarrow s_i$
- Weighted average for each SR used in estimate $\rightarrow w_i$

• The real efficiency $r = (N_T/N_L)_{|m_{\ell\ell} - m_Z| < 5 \text{ GeV}}$

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

 $N_{TT}^{RF} = r_1 f_2 N_{LL}^{RF}, \ N_{TT}^{FR} = f_1 r_2 N_{LL}^{FR}, \ N_{TT}^{FF} = f_1 f_2 N_{LL}^{FF}$

MATRIX METHOD

- Use isolation to define "loose" and "tight" leptons
 - "tight" (T) are the signal leptons
 - "loose" (L) leptons have more relaxed isolation requirements
 - electrons: medium++ and no isolation
 - muons: no isolation
- The fake rate f is the probability that a loose fake lepton passes tight

•
$$f(e(p_{\mathrm{T}})) = \sum_{i \in \mathrm{QCD, \ conv}} f_i(p_{\mathrm{T}}) w_i(p_{\mathrm{T}}) s_i(p_{\mathrm{T}})$$

- f_i Measured for $E_T^{\text{miss, rel}} < 50 \text{ GeV}$, Z mass, == 2 μ , >=1 el with m_T < 40 GeV in MC
- Compared with rates in fake-rich control regions $\rightarrow s_i$
- Weighted average for each SR used in estimate $\rightarrow w_i$

• The real efficiency $r = (N_T/N_L)_{|m_{\ell\ell} - m_Z| < 5 \text{ GeV}}$

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

$$N_{TT}^{RF} = r_1 f_2 N_{LL}^{RF}, \ N_{TT}^{FR} = f_1 r_2 N_{LL}^{FR}, \ N_{TT}^{FF} = f_1 f_2 N_{LL}^{FF}$$

2 lepton

2 lepton - Motivation

- if gluinos and squarks are massive (> 1TeV), weak gauginos and slepton production will be dominant at the LHC
- > signature of direct gaugino decays: multiple leptons, low jet multiplicity + missing energy

2 lepton - OBJECTS

Order	Distance	Object rejected
1	$\Delta R(e_1,e_2) < 0.05$	electron with lowest cluster E_T
2	$\Delta R(j,e) < 0.2$	jet
3	$\Delta R(\tau,e\mu) < 0.2$	tau
4	$\Delta R(j, e) < 0.4$	electron
5	$\Delta R(j,\mu) < 0.4$	muon
6	$\Delta R(e,\mu) < 0.01$	electron and muon
7	$\Delta R(\mu,\mu) < 0.05$	both muons
8	m(ll, SFOS) < 12 GeV	both leptons
9	$\Delta R(j, \text{signal } \tau) < 0.2$	jet

Signal jet definitions : central light jets (L20), central b-jets (B20) and forward jets (F30)

cuts	Central light jets Central b-je		Forward jets	
	L20	B20	F30	
$p_{\rm T}$ [GeV]	>20	>20	>30	
$ \eta_{det} $	<2.4	<2.4	[2.4,4.5]	
b-tag MV1	≤0.3511	>0.3511	-	
JVF	$ JVF > 0$ if $p_T < 50$ GeV	-	-	

2 lepton - MC samples

Category	Process	MCID	Generator	Remarks
Top	tī	105200	MC@NLO	
_	Wt	108346	MC@NLO	
	st, s-chan	108343-45	MC@NLO	
	st, t-chan	117360-2	ACER	
	$t\bar{t}$ + boson	119353-6, 119583	MADGRAPH (LO)	LO cross section
				scaled to NLO
				using k-factor [31]
WW	WW	126928-36	POWHEG	
	WW via g-g fusion	169471-9	gg2wwJimmy	
	W^+W^+jj	126988-9	SHERPA	
	$VV \rightarrow lvqq$	157817-9	SHERPA	
	WWW*	167006	MADGRAPH	
	WWjj	147191,147193	SHERPA	
ZV	WZ	129477-94	POWHEG	
	ZZ	126937-42, 126949-51	POWHEG	
	ZZ via g-g fusion	116600-3	gg2zzJimmy	
	$VV \rightarrow llqq$	157814-16	SHERPA	
	ZWW*	167007	MADGRAPH	
	ZZZ*	167008	MADGRAPH	
	WZjj	147194-6	SHERPA	
ZX	DY (m(ll) <40 GeV)	173041-6	SHERPA	41-4 are AF2,
				45-6 are FullSim
	Z 40 GeV< m(ll) <60 GeV	147770-2	SHERPA	
	Z(m(ll) > 60 GeV)	117650-5,60-5,70-5	ALPGEN(Pythia)	
	Zcc (m(ll) > 60 GeV)	110805-16	ALPGEN(Pythia)	
	$Zbb \ (m(ll) > 60 \text{ GeV})$	110817-28	ALPGEN(Pythia)	
Higgs	WH	160255,160755,161105	PYTHIA	The cross sections
	ZH	160305,160805,161155	PYTHIA	are obtained from
	VBF	160205,160705,161055	POWHEG	[32, 33, 34].
	g-g fusion	160155,160655,161005	POWHEG	
W + jets	$W(\rightarrow \ell \nu) + jet$	117680-5,690-5,700-5	ALPGEN(Pythia)	For matrix method
	Wbb	110801-4	ALPGEN(Pythia)	For matrix method
	Wcc	126606-9	ALPGEN(Pythia)	For matrix method
	Wc	126601-5	ALPGEN(Pythia)	For matrix method
$W + \gamma$	$W + \gamma$	126739,42,126856	SHERPA	For matrix method
Heavy Flavor	hh	120136	Pvhia8B	For matrix method
	00	129150	1 jiiidob	I of maan mealod

Direct slepton models

- direct production of sleptons, models based on pMSSM
- grid with left-handed and right-handed sleptons (both have same mass), no sneutrinos
- all gauginos masses except for LSP set to 2.5 TeV
- models contain only selectrons and smuons $m_{\tilde{e}} = m_{\tilde{\mu}}$ in range 90-370 GeV step size:

$$m_{\tilde{\ell}} \geq m_{\tilde{\chi}_1^0} + 30 \text{ GeV}$$

- $\tilde{\chi}_1^0$ is bino-like (µ large) and varied by scanning M₁ in range 0-200 GeV
- $\sigma = 127...0.5$ fb for left-handed sleptons, $\sigma = 49$ to 0.2 fb for right-handed sleptons, independently of the neutralino mass as the slepton mass : 100GeV to 370 GeV

Simplified models

- minimal particle content necessary to produce SUSY-like events
- parameterization in SUSY particles masses; only free parameter are:

neutralino 1 mass, slepton mass, sneutrino mass and chargino mass

- BR for decays in higgs bosons is set to 0
- Squarks are set to be very heavy
- charginos are pair produced via s-channel + exchange a virtual gauge boson
- decay modes:
- via on-shell charged left-handed sleptons including staus and sneutrinos with equal BR:

 $m_{\tilde{\nu}} = m_{\tilde{\ell}_L} = (m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_1^\pm})/2.$ cross section assuming chargino is about 95% wino-like σ =5 pb (chargino mass = 100 GeV) ... σ =0.35 pb (chargino masses > 200 GeV

- via Z and W boson (W decay)

chargino-to-W scenario

- mass grid in chargino-neutralino1 mass plane in 10 GeV steps from (100,0) to chargino mass – neutralino mass > 80 GeV
- BR assumes 100% •
- Bino-like LSP, pure wino-like chargino + mass degenerated •
- charged higgs very heavy \rightarrow decay only via W
- small higgsino component is allowed

pMSSM grid

masses of the colored sparticles and CP-odd Higg boson and LH sleptons are set to very high values to allow only chargino-neutralino2 production via WZ and decays via RH sleptons, gauge boson or higgs; lightest higgs mass set to 125 GeV,

$$m_{\tilde{\ell}_R} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$$

- mass hierarchy, composition and production cross section of charginos and neutralinos are coverned by tanß, the expectation values of the two higgs doublets, gaugino mass parameters M1, M2 and the higgs mass parameter μ ; studies are done in μ -M2 plane
- preferred decays $\tilde{\chi}_2^0 \to \tilde{\ell}_R \ell \to \tilde{\chi}_1^0 \ell \ell$.

2 lepton - DATA-MC SAMPLES | TRIGGER

> Data:

full 8 TeV 2012 corresponding to 20.3 fb⁻¹

> MC (most important ones):

- TOP:ttbar, Wt with MC@NLO (Powheg/Alpgen for cross checks)ttbar + boson with Madgraph (LO xsection scaled to NLO via k-factor)
- WW: WW w/ Powheg (Sherpa for cross checks), WW via gluon fusion w/ gg2WW
- ZV: ZW/ZZ w/ Powheg (Sherpa for cross checks), ZZ via gluon fusion w/ gg2ZZ
- VVV: WWW, WWZ and ZZZ w/ Madgraph
- Higgs: Associated production modes (WH, ZH) w/ Pythia and the VBF, ggF w/ Powheg

SUSY Signal:

all signal samples are generated w/ Herwig++, cross-sections are computed with prospino

> Trigger:

symmetric and asymmetric di-electron, di-muon and asymmetric electron-muon trigger no trigger simulation is used, trigger weights are applied to MC

chargino1-chargino1 production

via intermediate sleptons

with W decays

 E_T^{miss} from neutralino1 (LSPs) and neutrinos same flavour and different flavour leptons

chargino1-neutralino2 production

with W,Z decays

E_T^{miss} from neutralino1 (LSPs) + 2 jets in final state ONLY same flavour leptons (ee, $\mu\mu$)

slepton pair production

via virtual Z

 E_T^{miss} from neutralino1 (LSPs) ONLY same flavour leptons (ee, $\mu\mu$)

J. Dietrich | LHC discussion | Page 70

2 lepton RESULTS SRmT2

> m_{T2} distribution before applying the final m_{T2} cuts

2 lepton - COMMENTS

- SRmT2 chargino-chargino production: studies performed with particle level MC samples show that signal acceptance in SRmT2 depends weakly on the slepton mass
- > choice of $m_{\tilde{\ell}} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$ minimizes (maximizes) the acceptance for small (large) charginoneutralino mass spinning

2 lepton - SYSTEMATIC UNCERTAINTIES

Table 4. Systematic uncertainties (in %) on the total background estimated in different signal regions. Because of correlations between the systematic uncertainties and the fitted backgrounds, the total uncertainty can be different from the quadratic sum of the individual uncertainties.

	m	90 T2	m	120 T2	m	150 T2	WW	Wa	W	Wb	W	Wc	Zjets
	SF	\mathbf{DF}	\mathbf{SF}	\mathbf{DF}	\mathbf{SF}	\mathbf{DF}	\mathbf{SF}	\mathbf{DF}	\mathbf{SF}	DF	\mathbf{SF}	\mathbf{DF}	SF
CR statistics	5	3	6	4	8	4	5	5	5	3	6	4	1
MC statistics	5	7	7	12	10	23	3	4	5	8	6	10	14
Jet	4	1	2	1	5	7	3	6	4	2	4	3	11
Lepton	1	2	1	1	4	1	1	3	2	3	1	8	4
Soft term	3	4	1	1	2	8	< 1	2	3	5	1	6	5
b-tagging	1	2	<1	$<\!\!1$	<1	$<\!\!1$	1	1	1	2	$<\!\!1$	1	2
Non-prompt lepton	<1	1	<1	$<\!\!1$	1	$<\!\!1$	1	1	1	2	$<\!\!1$	1	<1
Luminosity	<1	$<\!\!1$	<1	$<\!\!1$	<1	$<\!\!1$	<1	$<\!\!1$	<1	$<\!\!1$	<1	$<\!\!1$	2
Modelling	11	13	21	31	18	40	6	6	8	10	15	19	42
Total	13	16	24	34	23	47	9	11	12	14	17	24	47

2 lepton - RESULTS SRWWa

> m(I,I) and $E_T^{miss, rel}$ distribution of SR WWa before applying the final m(I,I) and $E_T^{miss, rel}$ cuts

2 lepton - SR WW

> m(I,I) and $E_T^{miss, rel}$ distribution of SR WWa before applying the final m(I,I) and $E_T^{miss, rel}$ cuts

2 lepton - highest mT2 event in emu channel

highest m_{T2} event in eµ channel:

 m_{T2} =184 GeV p_T(el) = 107 GeV (green), p_T (µ) =153 GeV (blue), E_T^{miss}= 205 GeV

J. Dietrich | LHC discussion | Page 76

2 lepton - High mumu event in SR WW

highest $E_T^{miss, rel}$ event in $\mu^+\mu^-$ channel:

$$p_T(\mu 1) = 174 \text{ GeV}, p_T(\mu 2) = 32 \text{ GeV}, E_T^{\text{miss}} = 154 \text{ GeV}$$

2 lepton - High emu event in SR WW

highest $E_T^{miss, rel}$ event in eµ channel:

 $p_T(el) = 104 \text{ GeV}, p_T (\mu) = 97 \text{ GeV}, E_T^{miss} = 196 \text{ GeV}$

2 lepton - SR Zjets

m_{T2} and E_T^{miss, rel} distribution before applying the final m_{T2} (E_T^{miss, rel}) cuts

2 lepton - High mumu event in SR Z jets

highest $E_T^{miss, rel}$ event in $\mu^+\mu^-$ channel:

 $p_T(\mu 1)$ = 169 GeV, $p_T(\mu 2)$ = 106 GeV, $E_t^{miss, rel}$ = 478 GeV

2 lepton - highest mT2 event in ee channel

highest m_{T2} event in e⁺e⁻ channel: m_{T2} =170 GeV p_T (el1) = 153 GeV, p_T (el2) =128 GeV, E_T^{miss} = 174 GeV

2 lepton - highest mT2 event in mumu channel

highest m_{T_2} event in $\mu^+\mu^-$ channel: m_{T_2} =218 GeV $p_T(\mu 1)$ = 168 GeV, $p_T (\mu 2)$ =133 GeV, E_T^{miss} = 213 GeV

2 lepton - RESULTS – SR mT2

results using SRmT2: chargino production with intermediate sleptons

NEW

2 lepton - RESULTS – SR mT2

results using SR mT2: direct slepton production

- improvement of the limits in high slepton mass region
- limits for individual selection/smuon channels are in the back up

best limit:
for massless LSP
slepton (selections and smuons)
mass 90- 315 GeV
100 GeV LSP: slepton 160-310 GeV

2 lepton - RESULTS – SR WW

> results using SRWW: direct chargino production with intermediate W boson

2 lepton - RESULTS SRWW

	SR-V	VWa	SR-V	WWb	SR-WWc		
	\mathbf{SF}	DF	\mathbf{SF}	DF	\mathbf{SF}	\mathbf{DF}	
Background							
WW	57.8 ± 5.5	58.2 ± 6.0	16.4 ± 2.5	12.3 ± 2.0	10.4 ± 2.7	7.3 ± 1.9	
ZV	16.3 ± 3.5	1.8 ± 0.5	10.9 ± 1.9	0.6 ± 0.2	9.2 ± 2.1	0.4 ± 0.2	
Top	9.2 ± 3.5	11.6 ± 4.3	2.4 ± 1.7	4.3 ± 1.6	$0.6^{+1.2}_{-0.6}$	0.9 ± 0.8	
Others	3.3 ± 1.5	2.0 ± 1.1	0.5 ± 0.4	0.9 ± 0.6	$0.1^{+0.5}_{-0.1}$	0.4 ± 0.3	
Total	86.5 ± 7.4	73.6 ± 7.9	30.2 ± 3.5	18.1 ± 2.6	20.3 ± 3.5	9.0 ± 2.2	
Observed events	73	70	26	17	10	11	
Predicted signal							
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (100, 0)$	25.6 ± 3.3	24.4 ± 2.2					
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (140, 20)$			8.3 ± 0.8	7.2 ± 0.8			
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (200, 0)$					5.2 ± 0.5	4.6 ± 0.4	
p_0	0.50	0.50	0.50	0.50	0.50	0.31	
Observed $\sigma_{\rm vis}^{95}$ [fb]	0.78	1.00	0.54	0.49	0.29	0.50	
Expected $\sigma_{\rm vis}^{95}$ [fb]	$1.13^{+0.46}_{-0.32}$	$1.11_{-0.31}^{+0.44}$	$0.66^{+0.28}_{-0.20}$	$0.53^{+0.23}_{-0.16}$	$0.52^{+0.23}_{-0.16}$	$0.41^{+0.19}_{-0.12}$	

2 lepton - RESULTS SRmT2

	SR-	$SR-m_{T2}^{90}$		m_{T2}^{120}	$SR-m_{T2}^{150}$		
	\mathbf{SF}	DF	\mathbf{SF}	DF	\mathbf{SF}	DF	
Expected background							
WW	22.1 ± 4.3	16.2 ± 3.2	3.5 ± 1.3	3.3 ± 1.2	1.0 ± 0.5	0.9 ± 0.5	
ZV	12.9 ± 2.2	0.8 ± 0.2	4.9 ± 1.6	0.2 ± 0.1	2.2 ± 0.5	< 0.1	
Top	3.0 ± 1.8	5.5 ± 1.9	$0.3^{+0.4}_{-0.3}$	< 0.1	< 0.1	< 0.1	
Others	0.3 ± 0.3	0.8 ± 0.6	$0.1^{+0.4}_{-0.1}$	0.1 ± 0.1	$0.1^{+0.4}_{-0.1}$	$0.0^{+0.4}_{-0.0}$	
Total	38.2 ± 5.1	23.3 ± 3.7	8.9 ± 2.1	3.6 ± 1.2	3.2 ± 0.7	1.0 ± 0.5	
Observed events	33	21	5	5	3	2	
Predicted signal							
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 0)$	24.2 ± 2.5	19.1 ± 2.1	18.1 ± 1.8	14.7 ± 1.7	12.0 ± 1.3	10.1 ± 1.3	
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (251, 10)$	24.0 ± 2.7		19.1 ± 2.5		14.3 ± 1.7		
p_0	0.50	0.50	0.50	0.27	0.50	0.21	
Observed $\sigma_{\rm vis}^{95}$ [fb]	0.63	0.55	0.26	0.36	0.24	0.26	
Expected $\sigma_{\rm vis}^{95}$ [fb]	$0.78^{+0.32}_{-0.23}$	$0.62^{+0.26}_{-0.18}$	$0.37^{+0.17}_{-0.11}$	$0.30^{+0.13}_{-0.09}$	$0.24^{+0.13}_{-0.08}$	$0.19^{+0.10}_{-0.06}$	

	$\operatorname{SR-}Z$ jets
Background	
WW	0.1 ± 0.1
ZV	1.0 ± 0.6
Top	< 0.1
Z + jets and others	0.3 ± 0.2
Total	1.4 ± 0.6
Observed events	1
Predicted signal	
$(m_{\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\chi}_{1}^{0}}) = (250, 0)$	6.4 ± 0.8
$(m_{\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 50)$	3.7 ± 0.2
	0 50
p_0	0.50
p_0 Observed σ_{vis}^{95} [fb]	$0.50 \\ 0.17$

2 lepton - SRs limits

limit-selectrons

2 lepton - SRs limits

limit-smuons

2 lepton - SRs limits

green line:left-handed slepton limit using the conversion

$$m_{\tilde{\ell}} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$$

2 lepton - SRs contributions

2 lepton - SRs contribution

2 lepton - SRs contribution

2 lepton - SR contribution

2 lepton SR Z jets

Z+MET Template

Method

Use events form a seed region (CR/SR/VR) defined from an additional METSig cut

$$E_T^{miss,significance} = \frac{E_T^{miss}}{\sqrt{\sum E_T^{miss,RefJet} + \sum E_T^{miss,SoftTerm}}}$$

Use seed events to smear MET:

$$E_{x,y}^{miss,smeared} = E_{x,y}^{miss} - \sum p_{x,y} + \sum p_{x,y} + \Delta E_{x,y}^{SoftTerm}$$

2 lepton - CONTROL REGION

SR	$m_{\rm T2}$ and WWb/c				Zjets		
CR	WW	Top	ZV	WW	Top	ZV	Top
lepton flavour	DF	\mathbf{DF}	\mathbf{SF}	DF	\mathbf{DF}	\mathbf{SF}	\mathbf{SF}
central light jets	0	0	0	0	0	0	0
central b -jets	0	≥ 1	0	0	≥ 1	0	≥ 1
forward jets	0	0	0	0	0	0	0
$ m_{\ell\ell} - m_Z $ [GeV]			< 10			< 10	> 10
$m_{\ell\ell} \; [{ m GeV}]$				< 120	< 120		
$E_{\rm T}^{\rm miss, rel} [{\rm GeV}]$				[60, 80]	> 80	> 80	> 80
$p_{\mathrm{T},\ell\ell} \; [\mathrm{GeV}]$				> 40	> 80	> 80	> 80
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	[50, 90]	> 70	> 90				
$\Delta R_{\ell\ell}$							[0.3, 1.5]

 Table 2.
 Control region definitions.

2 lepton - CONTROL REGIONS

 no data-normalization factor is applied hashed regions= total systematic uncertainties

2 lepton - CONTROL REGION

no data-normalization factor is applied
hashed regions= total systematic uncertainties

2 lepton - RESULTS CRs

number of observed and predicted events in the CRs, data/MC normalization factor and composition in the CRs obtained from the fit

SR	$m_{ m T2}$	and WV	Vb/c		WWa		Zjets
CR	WW	Top	ZV	WW	Top	ZV	Top
Observed events	1061	804	94	472	209	175	395
MC prediction	947	789	91	385	215	162	399
Normalization	1.14	1.02	1.08	1.12	0.97	1.04	0.99
Statistical error	0.05	0.04	0.12	0.08	0.08	0.12	0.06
Composition							
WW	84.6%	1.4%	5.0%	86.8%	1.7%	10.5%	1.3%
Top	10.4%	98.5%	< 0.1%	7.3%	98.1%	2.8%	98.0%
ZV	2.0%	0.1%	94.9%	1.9%	${<}0.1\%$	82.9%	0.3%
Non-prompt lepton	1.9%	< 0.1%	< 0.1%	2.7%	< 0.1%	< 0.1%	$<\!0.1\%$
Other	1.1%	< 0.1%	0.1%	1.3%	${<}0.1\%$	3.7%	0.3%

3 lepton

3 lepton – EVENT SELECTION

Electrons			
Baseline	Signal tight quality 	MET	
medium quality	ptcone30/pT < 0.16		Overlap Removal
pT > 10 GeV	<pre>etcone30/pT < 0.18</pre>	Egamma10NoTau	Discard softer e if dR(e1,e2) <0.05
eta <2.47			Discard jet if dR(e,jet) <0.2
author 1 or 3	d0 significance < 0.5	Jets	• Discard tau if dR(tau,e/ μ) <0.2
		Baseline	Discard electron if dR(e,jet) <0.4
Muons		Anti-kt 4 LC topo	Discard muon if dR(µ,jet) <0.4
Baseline	Circul	pT > 20 GeV	Discard electron and muon if dR(e, µ) <0.01
STACO loose	Signal	\bullet eta < 4.5	Discard muons if dR(µ,µ) <0.05
combined or comment to good	ptcone30/pT < 0.12	Signal	Discard SFOS pair with MII <12
segment-tagged	z0*sinθ <1.0	● JVF > 0.5 (pT >	GeV
etal < 2.4	d0 significance < 0.3	50 GeV)	Discard jet if dR(jet,signal tau) <0.2
		● eta < 2.5	

Trigger s	scheme
-----------	--------

- Single isolated e/μ triggers
- di-lepton ee/ $\mu\mu$ /e μ triggers

J. Dietrich | LHC discussion | Page 102

3 lepton – MC samples

Table 1. For the MC samples used in this paper for background estimates, the generator type, the order of cross-section calculations used for yield normalisation, names of parameter tunes used for the underlying event generation and PDF sets.

	Process	Generator + fragmentation/hadronisation	Cross-section	Tune	PDF set
	Dibosons WW, WZ, ZZ	Роwнес-r2129 [34, 35] + Рутна-8.165 [38]	NLO QCD with MCFM-6.2 [39, 40]	AU2 [36]	CT10 [37]
Z incl. virtual	γ * <i>wz</i> , <i>zz</i>	aMC@NLO-2.0.0.beta3 [41] + HERWIG-6.520 [42] (ar + Brruh 6.426)	NLO QCD with MCFM-6.2	AU2	CT10
	ZZ via gluon fusion (not incl. in POWHEG)	gg2VV [43] + HERWIG-6.520	NLO	AUET2B [44]	CT10
	$W\gamma, Z\gamma$	SHERPA-1.4.1 [45]	NLO	(internal)	CT10
	Tribosons WWW, ZWW	MadGraph-5.0 [46] + Pythia-6.426	NLO [47]	AUET2B	CTEQ6L1 [48]
	Higgs via gluon fusion via vector-boson-fusion associated W/Z production associated tt-production	Роwнед-r2092 + Рутніа-8.165 Роwнед-r2092 + Рутніа-8.165 Рутніа-8.165 Рутніа-8.165	NNLL QCD, NLO EW [49] NNLO QCD, NLO EW [49] NNLO QCD, NLO EW [49] NNLO QCD [49]	AU2 AU2 AU2 AU2	CT10 CT10 CTEQ6L1 CTEQ6L1
	$\begin{array}{c} \textbf{Top+Boson} \\ t\bar{t}W, t\bar{t}Z \\ * t\bar{t}W, t\bar{t}Z \\ t\bar{t}WW \\ tZ \end{array}$	Alpgen-2.14 [50] + Herwig-6.520 MadGraph-5.0 + Pythia-6.426 MadGraph-5.0 + Pythia-6.426 MadGraph-5.0 + Pythia-6.426	NLO [51, 52] NLO NLO [52] NLO [53]	AUET2B AUET2B AUET2B AUET2B	CTEQ6L1 CTEQ6L1 CTEQ6L1 CTEQ6L1
	$t\overline{t}$	Powheg-r2129 + Pythia-6.426	NNLO+NNLL [54-59]	Perugia2011C	CT10
	Single top t-channel s-channel, Wt	AcerMC-38 [60] + Pythia-6.426 MC@NLO-4.06 [62, 63] + Herwig-6.520	NNLO+NNLL [61] NNLO+NNLL [64, 65]	AUET2B AUET2B	CTEQ6L1 CT10
	W+jets, $Z+$ jets	Alpgen-2.14 + Pythia-6.426 (or + Herwig-6.520)	DYNNLO-1.1 [66] with MSTW2008 NNLO [67]	Perugia2011C	CTEQ6L1

SUSY signal: Herwig ++ (2.5.2), w. CTEQ6L1 PDF set

3 lepton – SIGNAL REGIONS - TRIGGER

Trigger	$p_{\rm T}$ threshold [GeV]
Single Isolated e Single Isolated μ	25 25
Double e	14,14 25,10
Double μ	14,14 18,10
Combined $e\mu$	$14(e),10(\mu)$ $18(\mu),10(e)$

$\mathrm{SR0} au$ a bin	$m_{ m SFOS}$	m_{T}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$3\ell \; Z$ veto
1	12 - 40	0-80	50–90	no
2	12 - 40	0 - 80	> 90	no
3	12 - 40	> 80	50 - 75	no
4	12 - 40	> 80	> 75	no
5	40-60	0-80	50–75	yes
6	40 - 60	0 - 80	> 75	no
7	40 - 60	> 80	50 - 135	no
8	40 - 60	> 80	> 135	no
9	60 - 81.2	0-80	50–75	yes
10	60 - 81.2	$>\!80$	50 - 75	no
11	60 - 81.2	0 - 110	> 75	no
12	60 - 81.2	> 110	>75	no
13	81.2 - 101.2	0 - 110	50–90	yes
14	81.2 - 101.2	0 - 110	> 90	no
15	81.2 - 101.2	> 110	50 - 135	no
16	81.2 - 101.2	> 110	> 135	no
17	> 101.2	0-180	50-210	no
18	> 101.2	> 180	50 - 210	no
19	> 101.2	0 - 120	> 210	no
20	> 101.2	> 120	> 210	no

Region name	$N(\ell)$	$N(\tau)$	Fla	wour/sign	Z bosor	Z boson		$E_{\mathrm{T}}^{\mathrm{miss}}$ N(b-tagged jets)		Target process	
$VR0\tau noZa$	3	0	$\ell^+\ell^-$	-ℓ, ℓ+ℓ-ℓ'	$m_{ m SFOS}~\&~m_3$	$_{\ell}$ veto	35–50	_	WZ	*, Z*Z*, Z*+jets	
$VR0\tau Za$	3	0	$\ell^+\ell^-$	−ℓ, ℓ+ℓ−ℓ′	request		35–50	_		WZ, Z+jets	
$VR0\tau noZb$	3	0	$\ell^+\ell^-$	-e, e+e-e'	$m_{ m SFOS}$ & $m_{ m S}$	$_{\ell}$ veto	> 50	1		$t\overline{t}$	
$VR0\tau Zb$	3	0	$\ell^+\ell^-$	−ℓ, ℓ+ℓ−ℓ′	request		> 50	1		WZ	
$VR0\tau b$	3	0	$\ell^+\ell^-$	−ℓ, ℓ+ℓ−ℓ′	binned		binned	l 1		$WZ, t\bar{t}$	
$VR1\tau a$	2	1	$\tau^{\pm}\ell^{\mp}\ell$	$\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$	-		35-50	_		WZ, Z+jets	
$VR1\tau b$	2	1	$\tau^{\pm}\ell^{\mp}\ell$	$\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$	-		> 50	1		$tar{t}$	
$VR2\tau a$	1	2		$\tau \tau \ell$	_		35-50	_	I	V+ jets, $Z+$ jets	
$VR2\tau b$	1	2		$\tau \tau \ell$	-		> 50	1		$t\overline{t}$	
Sample	$VR0\tau noZa$	a Vi	$R0\tau Za$	$\rm VR0 au no Zb$	$VR0\tau Zb$	VR1	aua	$\rm VR1\tau b$	$\mathrm{VR}2 au\mathrm{a}$	$VR2\tau b$	
WZ	91 ± 12	47	1 ± 47	$10.5^{+1.8}_{-2.0}$	58 ± 7	14.6 ±	1.9	1.99 ± 0.35	$14.3^{+2.4}_{-2.5}$	1.9 ± 0.4	
ZZ	19 ± 4	4	18 ± 7	0.62 ± 0.12	2.6 ± 0.4	1.76^{+}_{-}	0.29 0.28	0.138 ± 0.028	1.8 ± 0.4	0.12 ± 0.04	
$t\bar{t}V + tZ$	3.2 ± 1.0	10	$.1^{+2.3}_{-2.2}$	9.5 ± 3.1	18 ± 4	$0.9 \pm$	0.9	2.8 ± 1.3	1.0 ± 0.7	1.7 ± 0.7	
VVV	1.9 ± 1.9	0.7	7 ± 0.7	$0.35^{+0.36}_{-0.35}$	0.18 ± 0.18	$0.4 \pm$	0.4	0.08 ± 0.08	0.12 ± 0.1	$2 0.06^{+0.07}_{-0.06}$	
Higgs	2.7 ± 1.3	2.7	7 ± 1.5	1.5 ± 1.0	0.71 ± 0.29	$0.57 \pm$	0.34	0.5 ± 0.5	0.6 ± 0.4	0.5 ± 0.5	
Reducible	73^{+20}_{-17}	26	1 ± 70	47^{+15}_{-13}	19 ± 5	71 ±	9	22.7 ± 2.8	630^{+9}_{-12}	162^{+6}_{-8}	
Total SM	191^{+24}_{-22}	79	4 ± 86	69^{+15}_{-14}	98 ± 10	89 <u>+</u>	10 9	28.2 ± 3.2	648^{+10}_{-13}	166^{+6}_{-8}	
Data	228		792	79	110	82		26	656	158	
CL_b	0.90		0.49	0.72	0.79	0.3	0	0.37	0.61	0.30	

3 lepton – SYSTEMATIC UNCERTAINTIES

Table 9. Summary of the dominant systematic uncertainties in the background estimates for each signal region. Uncertainties are quoted relative to the total expected background. For the 20 bins of the SR0 τ a the range of the uncertainties is provided.

	$\mathrm{SR0} au\mathrm{a}$	$\mathrm{SR0}\tau\mathrm{b}$	$\mathrm{SR}1\tau$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2\tau\mathrm{b}$
Cross-section	4 - 25%	37%	9%	3.1%	3.0%
Generator	3.235%	11%	3.1%	6%	< 1%
Statistics on irreducible background	0.8 - 26%	8%	5%	5%	3.1%
Statistics on reducible background	0.4 - 29%	14%	8%	13%	12%
Electron misidentification probability	0.3 - 10%	1.3%	< 1%	_	_
Muon misidentification probability	0.1 - 24%	2.2%	< 1%	_	_
τ misidentification probability	_	_	8%	4%	5%

theoretical xsection uncertainties:

30% ttV
50% tZ
5% ZZ
7% WZ
100% VVV

3 lepton - RESULTS

Table 8. Expected numbers of SM background events and observed numbers of data events in the signal regions SR0 τ a-bin13-bin20, SR0 τ b, SR1 τ , SR2 τ a and SR2 τ b for 20.3 fb⁻¹. Statistical and systematic uncertainties are included as described in section 7.3. Also shown are the one-sided p_0 -values and the upper limits at 95% CL on the expected and observed number of beyond-the-SM events ($N_{\rm exp}^{95}$ and $N_{\rm obs}^{95}$) for each signal region, calculated using pseudo-experiments and the CL_s prescription. For p_0 -values below 0.5, the observed number of standard deviations, σ , is also shown in parentheses.

Sample	$\mathrm{SR0} au$ a-bin13	$\mathrm{SR}0 au$ a-bin14	$\mathrm{SR0} au\mathrm{a} ext{-bin15}$	$\mathrm{SR0} au$ a-bin16	$\mathrm{SR0} au$ a-bin17	$\mathrm{SR0} au$ a-bin18
WZ	613 ± 65	207^{+33}_{-32}	58^{+12}_{-13}	$3.9^{+1.6}_{-1.4}$	50^{+7}_{-6}	2.3 ± 1.3
ZZ	29 ± 4	5.5 ± 1.5	$3.5^{+1.1}_{-1.0}$	$0.12\substack{+0.08\\-0.07}$	$2.4_{-0.6}^{+0.7}$	0.08 ± 0.04
$t\bar{t}V + tZ$	$2.9\substack{+0.7\\-0.6}$	$2.0^{+0.7}_{-0.6}$	$0.67\substack{+0.29 \\ -0.28}$	$0.08\substack{+0.10\\-0.08}$	0.8 ± 0.5	$0.15\substack{+0.16\\-0.15}$
VVV	1.3 ± 1.3	0.8 ± 0.8	1.0 ± 1.0	0.33 ± 0.33	3.2 ± 3.2	0.5 ± 0.5
Higgs	2.2 ± 0.7	0.98 ± 0.20	0.31 ± 0.11	0.033 ± 0.018	0.95 ± 0.29	0.05 ± 0.04
Reducible	68^{+21}_{-19}	$2.2^{+1.9}_{-2.0}$	1.2 ± 0.6	$0.14_{-0.14}^{+0.25}$	$11.3^{+3.5}_{-3.2}$	0.27 ± 0.20
Total SM	715 ± 70	219 ± 33	65 ± 13	$4.6^{+1.7}_{-1.5}$	69^{+9}_{-8}	3.4 ± 1.4
Data	714	214	63	3	60	1
$p_0(\sigma)$	0.50	0.50	0.50	0.50	0.50	0.50
$N_{ m exp}^{95}$	133^{+46}_{-36}	66^{+24}_{-18}	$28.6^{+10.1}_{-7.2}$	$5.9^{+2.6}_{-1.5}$	$21.4_{-5.6}^{+8.2}$	$4.8^{+2.0}_{-1.1}$
$N_{ m obs}^{95}$	133	65	27.6	5.2	18.8	3.7

3 lepton - pMSSM grid

Simplify general MSSM to 19 free parameters via the following assumptions

- CP conservation
- minimal flavour violation

- negligible tri-linear couplings
- degenerate 1st and 2nd generation sfermion masses.

Additional assumptions Higgs vev ratio tan $\beta = 6/10/50$, higgs mass is tuned to \sim 125 GeV using stop mixing sector and slepton masses $m_{\tilde{\ell}_R} = (m_{\tilde{\chi}_1^0} + m_{\tilde{\chi}_2^0})/2$ reduce free parameters down to 3:

We probe three phenomenological MSSM models,

3 lepton - pMSSM grids

- for a given value of M1 : sensitivity for high values of M2 and µ, and therefore for high values of chargino and heavy neutralino masses, is driven by the decrease of the production cross-section
- the masses of the coloured sparticles, of the CP-odd Higgs boson, and of the left-handed sleptons are set to high values

 \rightarrow allow only the direct production of charginos and neutralinos via W/Z bosons and their decay via right-handed sleptons, gauge bosons and Higgs bosons

- by tuning the mixing in the top-squark sector, the value of the lightest mass hierarchy, composition and production cross-sections of the electroweakinos are governed by the ratio of the expectation values of the two Higgs doublets tanβ, the gaugino mass parameters M1 and M2, and the higgsino mass parameter µ
- for the hierarchy M1 <M2 <µ (M1 <µ<M2), the N1 is bino-like, the N2, C1 are wino-like (higgsino-like) and the dominant electroweakino production process leading to a final state with three leptons is pp-> C1N2 (pp-> C1N2, pp->C1N3)
- if M2 <M1 <µ (µ<M1 <M2), the N1 (N1, N2) and C1 are wino-like (higgsino-like) with similar masses and the dominant process leading to a final state with three high transverse momentum leptons is the pair-production of the higgsino-like (wino-like) C2 and the bino-like N2 (N3)
- pMSSM scenarios under study are parametrised in the µ–M2 plane and are classified based on the masses of the right-handed sleptons into three groups,

4 lepton – SIGNAL REGIONS

4 lepton – SIGNAL REGIONS - SRZ

4 lepton – SIGNAL REGIONS – SR0Z

3 lepton - RESULTS

SR0a, SR0b, SR1SS, SR2a are all used and statistically combined:

- experimental uncertainties: treated as correlated between regions and processes
- experimental uncertainties on the reducible background: treated as correlated between regions only
- theoretical uncertainties: on the irreducible background and signal are treated as correlated between regions
- statistical uncertainties: treated as uncorrelated between regions and processes

- total systematic uncertainty on all SUSY signal processes: 10–20% range, with ~7% originates from the uncertainty on the signal cross-section

- uncertainty due to changes in signal acceptance from varying the PDFs and the amount of initial-state radiation is found to be negligible compared to the total systematic uncertainty for the signal scenarios under consideration

•observed and expected 95% CL exclusion contours for chargino and neutralino production in WZ-mediated (left) and Wh-mediated (right) simplified models

•Wh models:

regions SR0a, SR0b, SR1SS and SR2b offer the best sensitivity when statistically combined results in some SR0a bins and SR1 are responsible for the observed exclusion being slightly weaker than expected

3 lepton - RESULTS

•observed and expected 95% CL exclusion contours in the pMSSM models with staus (left) and no sleptons (right):

•RH stau scenario:

- selectrons and smuons are heavy and the RH stau mass is set to $m(stau)={m(N1)+m(N2)}/{2}$ and $tan\beta = 50$

- M1 =75 GeV resulting in a bino-like N1

- small mass splitting between N2-N1 and C1-N1 reduces the sensitivity in the region M1≈M2≪μ and M1≈μ ≪ M2 region

• no slepton decays:

- all sleptons are heavy; decays via W, Z or Higgs bosons dominate

- remaining parameters are M1 =50 GeV and tan β =10; higgs branching fractions are SM-like across much of the parameter space considered; but h-> N1N1 branching fraction rises to ~20% (~70%) when μ decreases to 200 (100) GeV, suppressing other decay modes -> does not affect the mass limits significantly -region with M2 >=200 GeV, μ >=200 GeV : decay mode N2-> hN1 is kinematically allowed and reduces the sensitivity

3 lepton - RESULTS - 95% CL exclusion contours

3 lepton - RESULTS cross sections

Sample	$SR0\tau a$ -bin19 $SR0\tau a$ -bin20		$\mathrm{SR0} au\mathrm{b}$	$\mathrm{SR}1\tau$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$	
WZ	0.9 ± 0.4	0.12 ± 0.11	0.68 ± 0.20	4.6 ± 0.6	$1.51\substack{+0.35\\-0.33}$	$2.09\substack{+0.30\\-0.31}$	
ZZ	0.021 ± 0.019	0.009 ± 0.009	0.028 ± 0.009	0.36 ± 0.08	$0.049\substack{+0.016\\-0.014}$	0.135 ± 0.025	
$t\bar{t}V + tZ$	$0.0023^{+0.0032}_{-0.0019}$	$0.012\substack{+0.016\\-0.012}$	$0.17\substack{+0.32\\-0.17}$	$0.16\substack{+0.18 \\ -0.16}$	$0.21\substack{+0.27\\-0.21}$	$0.023\substack{+0.015\\-0.018}$	
VVV	0.08 ± 0.08	$0.07\substack{+0.08\\-0.07}$	1.0 ± 1.0	0.5 ± 0.5	0.09 ± 0.09	0.031 ± 0.033	
Higgs	0.007 ± 0.006	0.0009 ± 0.0004	0.49 ± 0.17	0.28 ± 0.12	0.021 ± 0.010	0.08 ± 0.04	
Reducible	$0.17\substack{+0.16 \\ -0.15}$	$0.08\substack{+0.11\\-0.08}$	1.5 ± 0.4	4.3 ± 0.8	5.1 ± 0.7	4.9 ± 0.7	
Total SM	1.2 ± 0.4	$0.29^{+0.18}_{-0.17}$	3.8 ± 1.2	10.3 ± 1.2	6.9 ± 0.8	$7.2_{-0.8}^{+0.7}$	
Data	0	0	3	13	6	5	
$p_0(\sigma)$	0.50	0.50	0.50	0.19(0.86)	0.50	0.50	
N_{exp}^{95}	$3.7^{+1.4}_{-0.7}$	$3.0^{+0.8}_{-0.0}$	$5.6^{+2.2}_{-1.4}$	$8.1^{+3.2}_{-2.2}$	$6.8^{+2.7}_{-1.9}$	$6.7^{+2.8}_{-1.8}$	
$N_{ m obs}^{95}$	3.0	3.0	5.4	10.9	6.0	5.2	

3 lepton - SIGNAL REGION

Events

Data/SM

400

3 lepton - SIGNAL REGION

3 lepton – VALIDATION REGIONS

high-E_T^{miss}+ b-tagged jet validation regions

4 lepton

4 lepton - OBJECT SELECTION

Baseline Muons $pT > 10 \text{ GeV}, \eta < 2.5$ STACO loose MCP cuts Signal Muons Isolation (track) d0 significance, z0sin θ	Baseline Electrons $pT > 10 \text{ GeV}, \eta < 2.47$ Author 1or 3 Medium++ Cleaning Signal Electrons Tight++ Isolation (calo+track)	Baseline Taus $pT > 20 \text{ GeV}, \eta < 2.5$ 1- or 3-prong $ q = 1$ Signal TausJet BDT MediumMuon vetoEle BDT Loose (1-prong)
Lepton isolation Subtract tracks or clusters from e/μ within cone (Subtracted leptons must pass signal cuts, except for isolation) MET Egamma10NoTau Triggers Unprescaled single/double e/μ triggers	Baseline Jets pT > 20 GeV, $ \eta < 4.5$ AntiKt4LCTopo B-jets: MV1>0.3511 (ϵ =80%) Signal (B-)Jets Baseline cuts JVF > 0.5 if pT < 50 GeV $ \eta < 2.5$	Overlap removal Applied at baseline level (except *) $\Delta R(e,e) < 0.05$: discard lowest ET $\Delta R(e,j) < 0.2$: discard jet $\Delta R(\tau,l) < 0.2$: discard tau $\Delta R(1,j) < 0.4$: discard lepton $\Delta R(e,\mu) < 0.01$: discard both $\Delta R(\mu,\mu) < 0.05$: discard both m(l+l-) < 12 GeV: discard both * $\Delta R(signal \tau,j) < 0.2$: discard jet

TABLE III. The MC-simulated samples used in this paper. The generators and the parton shower they are interfaced to, crosssection predictions used for yield normalization, tunes used for the underlying event (UE) and parton density function (PDF) sets are shown. Where two PDF sets are given, the second refers to the generator used for fragmentation and hadronization. Samples preceeded by (S) are used for systematic studies only, and "HF" refers to heavy-flavour jet production. Cross-sections are calculated at leading-order (LO), next-to-LO (NLO), next-to-next-to-LO (NNLO) and next-to-next-to-leading-logarithm (NNLL) QCD precision. Certain samples include NLO electroweak (EW) corrections in the calculation. See text for further details of the event generation and simulation.

Process	Generator	Cross-section	UE tune	PDF set
	+ fragmentation/hadronization	calculation		
Dibosons				
WW WZ/~* ZZ/~*	POWHEG-BOX-1.0 [45-48]	NLO	ATT5 [50]	CT10 [60]
<i>i</i> , <i>i</i> , <i>i</i> , <i>2</i> / <i>i</i> , <i>22</i> / <i>i</i>	+ PYTHIA-8.165 [61]	with MCFM-6.2 [62, 63]	N02 [08]	0110 [00]
(S) ZZ/γ^*	aMC@NLO-4.03 [64]	MCFM-6.2 [62, 63]	AUET2B [65]	CT10
ZZ/γ^* via gluon fusion	gg2ZZ [66] + HERWIG-6.520 [40]	NLO	AUET2B	CT10/CTEQ6L1
Tribosons				
WWW, ZWW, ZZZ	MadGraph-5.0 [67] + PYTHIA-6.426 [58]	NLO [68]	AUET2B	CTEQ6L1 [69]
VV+ 2 jets	SHERPA-1.4.0 [70]	LO	SHERPA default	CT10
Higgs				
via gluon fusion	POWHEG-BOX-1.0 $[71]$ + PYTHIA-8.165	NNLL QCD, NLO EW [72]	AU2	CT10
via vector boson fusion	POWHEG-BOX-1.0 $[73]$ + PYTHIA-8.165	NNLO QCD, NLO EW [72]	AU2	CT10
associated W/Z	PYTHIA-8.165	NNLO QCD, NLO EW [72]	AU2	CTEQ6L1
associated $t\bar{t}$	PYTHIA-8.165	NLO [72]	AU2	CTEQ6L1
Top+Boson				
$t\bar{t} + W, t\bar{t} + Z$	ALPGEN-2.14 [74] + HERWIG-6.520	NLO [75, 76]	AUET2B	CTEQ6L1
(S) $t\bar{t} + Z$	MadGraph-5.0 + PYTHIA-6.426	NLO [75]	AUET2B	CTEQ6L1
$t\bar{t} + WW, tZ, tWZ$	MadGraph-5.0 + PYTHIA-6.426	LO	AUET2B	CTEQ6L1
t ¯	POWHEG-BOX-1.0 [77] + PYTHIA-6.426	NNLO+NNLL [78–83]	Perugia 2011C [84]	CT10/CTEQ6L1
Single top				
t-channel	AcerMC-38 [85]	NNLO+NNLL [86]	AUET2B	CTEQ6L1
s-channel, Wt	MC@NLO-4.03 [87]	NNLO+NNLL [88, 89]	AUET2B	CT10
W+jets, Z/γ^*+ jets				
$M_{\ell\ell} > 40 \text{ GeV} (30 \text{ GeV HF})$	ALPGEN-2.14 + PYTHIA-6.426	with DYNNLO-1.1 [90]	Perugia 2011C	CTEQ6L1
$10 \text{ GeV} < M_{\ell\ell} < 40 \text{ GeV}$	ALPGEN-2.14 + HERWIG-6.520	with MSTW2008 NNLO [91]	AUET2B	CTEQ6L1
Multijet	PYTHIA-8.165	LO	AU2	CTEQ6L1
SUSY signal				
RPV simplified models	HERWIG++ 2.5.2 [92]	See text	UE-EE-3 [93]	CTEQ6L1
RPC simplified models	MadGraph-5.0 + PYTHIA-6.426	NLO, see text	AUET2B	CTEQ6L1
GGM	PYTHIA-6.426	NLO, see text	AUET2B	CTEQ6L1

4 lepton - SYSTEMATIC UNCERTAINTIES

Experimenta	1	Theoretical			
Jet energy scale	2.4%	$\sigma: t\bar{t} + Z/WW$ [75, 76]	30%		
Jet energy resolution	on	$A\epsilon: t\bar{t} + Z$	30 - 40%		
	5.5%	$\sigma: ZZ/\gamma^*$	5%		
e efficiency	3.5%	$A\epsilon: ZZ/\gamma^*$	5 - 20%		
τ efficiency	3.3%	σ : VVV/tWZ	50%		
$E_{\rm T}^{\rm miss}$ energy scale	2.7%	$\sigma A \epsilon$: V h/VBF [72]	20%		
$E_{\rm T}^{\rm miss}$ resolution	2.7%	$\sigma A \epsilon$: ggF/t $\bar{t}h$ [72]	100%		
Luminosity	2.8%	Reducible			
Trigger	5%	$\geq 0\tau$ SRs	$\sim 100\%$		
MC sample size	$\lesssim 30\%$	$\geq 1\tau/2\tau$ SRs	30 - 50%		

4 lepton - weighting method

Using a simplified matrix method, the weighting method

p(T) (p(L)) is the probability a fake lepton is identified as a tight (loose) lepton

L: loose lepton: pass baseline + overlap removal. Fails signal lepton requirements

T: tight lepton: pass baseline + overlap removal. Passes signal lepton requirements

J. Dietrich | LHC discussion | Page 127

4 lepton - weighting method

• Use weighted average fake ratios:

$$F_{XR}^{\ell} = \sum_{i,j} \left(R_{XR}^{ij} \times sf^i F^{ij} \right)$$

- Where:
 - R = process fraction, measure in signal, validation regions
 - sf = scale factor
 - F = fake rate
 - i = fake type (light, heavy flavor, conversion)
 - j = process

Process fractions:

$$R_{XR}^{ij} = \frac{N_{ij}^{XR}}{\sum_{kl} N_{kl}^{XR}} = \frac{N_{ij}\epsilon_j}{\sum_{kl} N_{kl}\epsilon_l}$$

Where:

- N is contribution from the process without the final cuts applied

- ϵ_j is the efficiency of the final cuts

N's are calculated from 3tight+1loose events for 1fake processes and a 2tight+2loose selection for 2fake events multiplied by an appropriate fake ratio

4 lepton - VALIDATION REGIONS

	$N(\ell)$	$N(\tau)$	Z-veto	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]
VR0noZ	≥ 4	≥ 0	SFOS, SFOS+ ℓ , SFOS+SFOS	$<\!50$	$<\!400$
VR1noZ	=3	≥ 1	SFOS, SFOS+ ℓ	$<\!50$	$<\!400$
VR2noZ	=2	≥ 2	SFOS	$<\!50$	$<\!400$
	$N(\ell)$	$N(\tau)$	Z-requirement	$E_{\rm T}^{\rm miss}$ [GeV]	
VR0Z	≥ 4	≥ 0	SFOS	$<\!50$	_
VR1Z	=3	≥ 1	SFOS	$<\!50$	_
VR2Z	=2	≥ 2	SFOS	$<\!50$	—

	ZZ/γ^*	tWZ	$t\bar{t}+Z$	VVV	Higgs	Reducible	Σ SM	Data	CL_b
VR0noZ	3.6 ± 0.7	0.017 ± 0.010	$0.034^{+0.036}_{-0.033}$	$0.090^{+0.032}_{-0.033}$	0.18 ± 0.13	$0.5^{+0.4}_{-0.5}$	4.4 ± 0.9	3	0.29
VR1noZ	1.43 ± 0.27	0.010 ± 0.006	0.033 ± 0.022	0.071 ± 0.029	0.28 ± 0.19	$7.1^{+1.8}_{-1.7}$	$8.9^{+1.8}_{-1.7}$	7	0.31
VR2noZ	$1.53^{+0.18}_{-0.17}$	0.007 ± 0.004	$0.025^{+0.031}_{-0.025}$	0.051 ± 0.020	0.29 ± 0.13	$33.2^{+3.3}_{-7.3}$	$35.1^{+3.4}_{-7.4}$	32	0.37
VR0Z	184^{+20}_{-19}	0.13 ± 0.07	1.2 ± 0.6	2.13 ± 0.33	4.7 ± 3.4	$0.5^{+3.1}_{-0.5}$	193^{+21}_{-19}	216	0.81
VR1Z	8.8 ± 0.9	0.039 ± 0.021	0.28 ± 0.11	0.19 ± 0.08	0.63 ± 0.16	21 ± 4	31 ± 4	32	0.55
VR2Z	$8.2^{+1.0}_{-1.0}$	0.0027 ± 0.0021	$0.09^{+0.12}_{-0.09}$	0.069 ± 0.013	0.61 ± 0.14	90^{+8}_{-22}	99^{+8}_{-22}	101	0.54

4 lepton – RESULTS

	ZZ/γ^*	t	WZ	$t\bar{t}+Z$	VVV	Higgs	Reducible	$\Sigma~{\rm SM}$	Data
SR0noZa	0.29 ± 0.08	0.067	± 0.033	0.8 ± 0.4	0.19 ± 0.09	0.27 ± 0.23	$0.006^{+0.164}_{-0.006}$	1.6 ± 0.5	3
SR1noZa	0.52 ± 0.07	0.054	± 0.028	0.21 ± 0.08	0.14 ± 0.07	0.40 ± 0.33	$3.3^{+1.3}_{-1.1}$	$4.6^{+1.3}_{-1.2}$	4
SR2noZa	0.15 ± 0.04	0.023	± 0.012	0.13 ± 0.10	0.051 ± 0.024	0.20 ± 0.16	3.4 ± 1.2	$4.0^{+1.2}_{-1.3}$	7
SR0noZb	0.19 ± 0.05	0.049	± 0.024	0.68 ± 0.34	0.18 ± 0.07	0.22 ± 0.20	$0.06^{+0.15}_{-0.06}$	1.4 ± 0.4	1
SR1noZb	$0.219^{+0.036}_{-0.035}$	0.050	± 0.026	0.17 ± 0.07	0.09 ± 0.04	0.30 ± 0.26	$2.1^{+1.0}_{-0.9}$	$2.9^{+1.0}_{-0.9}$	1
SR2noZb	$0.112^{+0.025}_{-0.024}$	0.016	± 0.009	$0.27^{+0.28}_{-0.27}$	0.040 ± 0.018	0.13 ± 0.12	$2.5^{+0.9}_{-1.0}$	3.0 ± 1.0	6
SR0Z	$1.09^{+0.26}_{-0.21}$	0.25	± 0.13	2.6 ± 1.2	1.0 ± 0.5	$0.60^{+0.22}_{-0.21}$	$0.00^{+0.09}_{-0.00}$	5.6 ± 1.4	7
SR1Z	$0.59^{+0.11}_{-0.10}$	0.042	± 0.022	0.41 ± 0.19	0.22 ± 0.11	0.14 ± 0.05	1.0 ± 0.5	2.5 ± 0.6	3
SR2Z	$0.70^{+0.12}_{-0.11}$	0.0018	± 0.0015	0.035 ± 0.024	0.039 ± 0.014	$0.14^{+0.04}_{-0.05}$	0.9 ± 0.5	1.8 ± 0.5	1
	Σ SM	Data	$N_{\rm BSM}^{\rm obs}$	$N_{\text{BSM}}^{\text{exp}} = \sigma_{v}^{c}$	$_{is}^{bs}[fb] (asym.)$	$\sigma_{\rm vis}^{\rm exp}$	fb] (asym.)	p_0	N_{σ}
SR0noZa	1.6 ± 0.5	3	5.9	$4.4^{+1.6}_{-1.0}$	0.29 (0.29)	$0.22^{+0.0}_{-0.0}$	$^{8}_{5}(0.21^{+0.1}_{-0.0})$	$\binom{2}{7}$ 0.15	1.02
SR1noZa	$4.6^{+1.3}_{-1.2}$	4	5.7	$5.9^{+2.5}_{-1.5}$	0.28(0.27)	$0.29^{+0.1}_{-0.0}$	$\frac{2}{7}$ (0.30 ^{+0.1} -0.0	$\binom{5}{9}$ 0.50	_
SR2noZa	$4.0^{+1.2}_{-1.3}$	7	9.2	$6.1^{+2.5}_{-1.4}$	0.45(0.45)	$0.30^{+0.1}_{-0.0}$	$^{2}_{7} (0.31^{+0.1}_{-0.0})$	$\frac{5}{9}$) 0.13	1.14
SR0noZb	1.4 ± 0.4	1	3.7	3.9 ± 1.4	0.18 (0.17)	0.19 ± 0.11	$07 (0.19^{+0.1}_{-0.1})$	$\binom{11}{07}$ 0.50	_
SR1noZb	$2.9^{+1.0}_{-0.9}$	1	3.5	$4.7^{+1.9}_{-1.2}$	0.17 (0.17)	$0.23^{+0.0}_{-0.0}$	$^{9}_{6}(0.24^{+0.1}_{-0.0})$	$\binom{3}{8}$ 0.50	_
SR2noZb	3.0 ± 1.0	6	8.7	$5.6^{+2.3}_{-1.3}$	0.43(0.43)	$0.28^{+0.1}_{-0.0}$	$^{1}_{6}(0.28^{+0.1}_{-0.0})$	$\binom{4}{9}$ 0.10	1.30
SR0Z	5.6 ± 1.4	7	8.1	$6.7^{+2.7}_{-1.6}$	0.40 (0.40)	$0.33^{+0.1}_{-0.0}$	$^{3}_{8}(0.34^{+0.1}_{-0.1})$	$\binom{6}{0}$ 0.29	0.55
SR1Z	2.5 ± 0.6	3	5.3	$4.7^{+1.9}_{-1.1}$	0.26(0.26)	$0.23^{+0.0}_{-0.0}$	$^{9}_{5}(0.23^{+0.1}_{-0.0})$	$^{3}_{8})$ 0.34	0.40
SR2Z	1.8 ± 0.5	1	3.5	$4.1^{+1.7}_{-0.8}$	0.17(0.17)	$0.20^{+0.0}_{-0.0}$	$^{8}_{4}(0.21^{+0.1}_{-0.0})$	$(\frac{2}{7})$ 0.50	_

4 lepton – RESULTS

total production cross-section for a selection of models used in this analysis: RPC R-slepton (left), GGM, $\tan\beta = 30$ (right)

4 lepton – RESULTS

total production cross-section for a selection of models used in this analysis: RPV chargino NLSP $\lambda_{121} \neq 0$ (top left), RPV sneutrino NLSP $\lambda_{233} \neq 0$ (top right), RPV gluino NLSP $\lambda_{133} \neq 0$ (bottom)

- different choices of λ parameters correspond to differently colored bands

observed and expected 95% CL limit contours for RPV models with chargino NLSP (left) and gluino NLSP (right), assuming a promptly decaying LSP
 in RPV models where the LSP decays only to electrons and muons, the 95% CL lower mass limits

•in RPV models where the LSP decays only to electrons and muons, the 95% CL lower mass limits are: 1350 GeV for the gluino, 750 GeV for wino-like charginos

the 95% CL exclusion limit contours for the RPV L-slepton NLSP (top left), (R-slepton NLSP (top right) and sneutrino NLSP (bottom) simplified models, assuming a promptly decaying LSP
for decays only to electrons and muons, the 95% CL lower mass limits are: 490 (410) GeV for L(R)-sleptons and 400 GeV for sneutrinos
less stringent limits are placed for RPV models with

• less stringent limits are placed for RPV models with tau-rich decays

 for slepton and stau decays: mass of the LSP is assumed to be at least as large as 20% of the NLSP mass

