Same latest results on BEH physics from ATLAS and CMS

Yan-ping Huang (DESY)

LHC Physics Discussion session 2014 July28

Timely Discovery

Summer 2011: EPS and Lepton-Photon

First (and last) focus on limits (scrutiny of the p₀)

December 2011: CERN Council

First hint

+ Summer 2012: CERN Council and ICHEP

Discovery

December 2012: CERN Council

Beginning of a new era of property measurement

Detector magers & theory calculators

Tremendous progresses in theory calculations and simulation "next-to..." revolution. (unprecedented level of accuracy)

SM Higgs Decays

• Dominant: bb (57%)• WW channel (22%)b, au^- , c, μ^- ττ channel н $ar{\mathrm{b}}, au^+, ar{c}, \mu^+$ \mathbf{t}, \mathbf{W} • ZZ channel W, Z_{r} H -W, Z cc channel (3%) $\propto \kappa_b^2 / \kappa_H^2$ $\propto \kappa_W^2 / \kappa_H^2$ • γγ channel (0.2%) $\propto \kappa_{\tau}^2 / \kappa_H^2$ • Zγ channel (0.2%) $\propto \kappa_Z^2 / \kappa_H^2$ $\propto \kappa_c^2 / \kappa_H^2$ μµ channel (0.02%) $\propto \kappa_{\gamma}^2 / \kappa_H^2$

Property Measurement

- Mass and width
- Coupling properties
- Off Shell coupling and width
- Fermion decay
- Fiducial and Differential cross section measurement
- Invisible search

Improvement calibration procedure — electron

ATLAS

- Calorimeter non-uniformities and layer inter calibration correction.
- New e/gamma MVA calibration
- E-scale and resolution extracted with Z->ee
 - ES Unc. : 0.03%-0.05% for 40GeV ET electron, ER Unc.: 5-10% for 10-45GeV electron

CMS

- data/MC correction of the peak position of the Z mass (as function of time)
- pt dependent linearity correction
- MC smeared
 - ES Unc. ~0.3%, ER Unc. ~3%.

Improvement calibration procedure

muon

ATLAS

- Muon calibration with $J/\psi \rightarrow \mu\mu$ in additional to $Z \rightarrow \mu \mu$ and corrections determined from fits.
- Momentum scale correction are of the same order as their uncertainties: 0.04-0.2%depending on eta.

- CMS Absolute measurement of muon momentum scale and resolution is performed by using a reference model of the Z line shape convolved with a Gaussian function.
- Data/MC mass scale agreement is within 0.1% in the entire eta range of interest

- Categories for mass in the diphoton
- BDT-ZZ, far FSR corrections
- Large improvement on systematics

Mass measurement a CMS

- In H \rightarrow ZZ, A matrix-element likelihood approach $\int CMS H_{\rightarrow \gamma\gamma} = 1$ discriminants.
- In H $\rightarrow\gamma\gamma$, 25 event categories tagging all production modelling.

Combined mass measurement

	Mн(GeV)		Signa	al strength]
	ATLAS	CMS	ATLAS	CMS]
Н→үү	125.98±0.42(stat)±0.28(sys)	124.70±0.31(stat)±0.15(sys)	1.29±0.30	1.14+0.26-0.23]
H→ZZ	124.51±0.52(stat)±0.06(sys)	125.6±0.4(stat)±0.2(sys)	1.66 ^{+0.45} -0.38	$0.93^{+0.26}_{-0.23}^{+0.13}_{-0.09}$]
Combined	125.36±0.37(stat)±0.18(sys)	$125.05^{+0.26}_{-0.27}(\text{stat})^{+0.29}_{-0.31}(\text{sys})$] <u>+</u>
γγ/ZZ Compatiblity	1.97σ	1.6σ			, γγ (∨
		6 5 5		6 5	-

-

Framework for scalar coupling analysis

Introducing multipliers using a tree level motivated benchmark model

Production modes		Detectable decay modes		Currently undetectable decay modes		
$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	=	$\left\{ \begin{array}{l} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) \\ \kappa_{\rm g}^2 \end{array} \right.$	$\frac{\Gamma_{\rm WW^{(*)}}}{\Gamma_{\rm WW^{(*)}}^{\rm SM}} =$	κ_W^2	$\frac{\Gamma_{t\bar{t}}}{\Gamma^{SM}_{t\bar{t}}} \ =$	κ_t^2
$rac{\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$	=	$\kappa^2_{ m VBF}(\kappa_{ m W},\kappa_{ m Z},m_{ m H})$	$\frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma^{\rm SM}_{\rm ZZ^{(*)}}} =$	κ_Z^2	$rac{\Gamma_{ m gg}}{\Gamma_{ m gg}^{ m SM}}$:	see Section 3.1.2
$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$	=	κ_W^2	$\frac{\Gamma_{\rm b\overline{b}}}{\Gamma^{\rm SM}} =$	$\kappa_{\rm b}^2$	$rac{\Gamma_{ m car c}}{\Gamma_{ m car c}^{ m SM}} =$	κ_t^2
$\frac{\sigma_{\rm ZH}}{\sigma_{\rm ZH}^{\rm SM}}$	=	κ_Z^2	$\frac{\Gamma_{b\overline{b}}}{\Gamma_{\tau^{-}\tau^{+}}} =$	κ ²	$\frac{\Gamma_{\rm s\bar{s}}}{\Gamma^{\rm SM}} =$	κ_b^2
$rac{\sigma_{ m t\bar{t}H}}{\sigma_{ m t\bar{t}H}^{ m SM}}$	=	κ_t^2	$ \begin{array}{c} \Gamma^{\rm SM}_{\tau^-\tau^+} \\ \\ \frac{\Gamma_{\gamma\gamma}}{\Gamma^{\rm SM}_{\gamma\gamma}} \end{array} = \end{array} $	$\begin{cases} \kappa_{\gamma}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{\gamma}^{2} \end{cases}$	$\frac{\Gamma_{\mu^-\mu^+}}{\Gamma^{SM}_{\mu^-\mu^+}} =$	$\kappa_{ au}^2$
			$\frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} =$	$\begin{cases} \kappa_{(\mathrm{Z}\gamma)}^{2}(\kappa_{\mathrm{b}},\kappa_{\mathrm{t}},\kappa_{\mathrm{\tau}},\kappa_{\mathrm{W}},m_{\mathrm{H}}) \\ \kappa_{(\mathrm{Z}\gamma)}^{2} \end{cases}$	Total width $\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} =$	$\begin{cases} \kappa_{\rm H}^2(\kappa_i, m_{\rm H}) \\ \kappa_{\rm H}^2 \end{cases}$

- Signal observed in the different search channels originate from a signal narrow resonance ~125GeV.
- Narrow-width approximation: $(\sigma \cdot BR)(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$

CMS

iv.b Combining Coupling measurements

asured signal strengths for a Higgs boson of mas Figure B25Measure memoralistetheouth $g_{F+VH}/\mu_{ggF+ttH}$ ratios for the individual final states and the final states and the solution of t

Fermion VS vector couprigure 6 shows the results of this find the figure 6 shows the results of this fit of the fit of th

parameter, are:

 $\kappa_F = \kappa_b = \kappa_t = \omega_t$

- One multiplier for the Higgs coupling to fermions:
- One multiplier for the Higgs coupling to vector bosons: $\kappa_V = \kappa_W = \kappa_Z$ in the above case, Figure 6(a) Similarly to the above case, Figure 6(a) similarly t

Summary of coupling measurement

 $\cdot\,$ Six benchmarks models probing:

- Fermions and vector bosons
- custodial symmetry
- up/down fermion coupling ratio
- Lepton/quark coupli
- + BSM in loops: gluon
- Extra width

No significance deviations from SM

Summary open upling measurement

Most general benchmark without the total width assumption

CMS immary cocupling measurement

Most general benchmark without the total width assumption

• Same $^{+1}_{+0.11}$ related excess in λ_{to} 0.85 $^{+0.11}_{-0.09}$ (stat.) $^{+0.12}_{-0.08}$ (theo.) $^{+0.10}_{-0.09}$ (syst.)

tH combination

Obs.(exp.) limits on Higgs Yukawa coupling strength parameter $\kappa_t @ 95\%$ CL: [-1.3, 8.1] ([-1.2, 7.9])

	@ 95% CL		
	observed	expected	
ttH(bb)	$4.1 \times SM$	$2.6 \times SM$	
ttH(γγ)	5.6×SM	$4.9 \times SM$	
Combination	3.9×SM	$2.3 \times SM$	

К,

- BDT to separate signal from background
- 7 SL+jets, 3 DL+jets, 6 tau channels

V,Z

au j2t D**ry**

Data Bkg. Unc. TH (125) Bkg. Unc. tt + If TH (125) tt + If TH (125) tt + If tt + bb Single top

CMS Preliminary

P_{b/j} 100 <0.20 >0.20

fb⁻¹

P_{s/b}

fb⁻¹

P_{s/b}

ents

 Under ttH(bb) or ttbb hypothesis,
 discriminant of Event probability (Ps/b) based on matrix element probabilities.

SL Cat-2 (H)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 Single lepton (SL) and di-lepton (DL) topologies.

21

Direct Width measurement

Standard Model predicts a width of Γ =4.2MeV (3 order of magnitude smaller)

Indirect width measurement

- Treatment of ggZZ background k-factors:
 - CMS uses 10% flat uncertainty
 - ATLS: a results with a scan of the k-factors.
- Treatment of the interference uncertainties:
 - CMS: 10% (correlated with ggZZ bkg)
 - ATLAS: 30% uncorrelated with the rest

$\Gamma/\Gamma_{\rm SM} = 0$ bs. $(\mathbb{C}_{\rm SM})_l =$	$\frac{\kappa^2 \kappa^2}{\Gamma_u / \Gamma_u}$	ATLAS
41	8.0 (10.1)	7.2(10.2)
212v	8.1(10.6)	11.3(9.9)
combined	5.4(8.0)	6.7(7.9)

$\mathsf{VH}(\mathsf{bb}) \qquad \qquad \mathsf{H} \longrightarrow \mathsf{bb}$

	$\mu = 0.08M$	exp. sign.
CMS	1.0 ± 0.5	2.1 σ
CDF	2.5 ± 1.0	1.3 σ
D0	1.2 ± 1.1	1.5 σ
D0+CDF	1.95 ± 0.75	1.9 σ
ATLAS	0.2 ± 0.9	1.6 σ

$H \rightarrow TT$

$H \rightarrow \tau_{a}$ best fit μ =0.78 ±0.27

H→µµ

- Br(H \rightarrow µµ)<1.5×10⁻³ @ 95% CL.
- As expected, Higgs boson decays to leptons are not universal

Results 19.7 fb⁻¹, $\sqrt{s} = 8$ TeV **CMS** preliminary ج تل τ**→ 3**μ **10**⁻¹ τ 🔶 μ γ 10⁻² observed 10⁻³ BR<0.1% BR<10% 10⁻⁴

10⁻²

10⁻³

10-4

 (2.46σ) Best fit: 0.80 $(-40 \mu_{3}) = 0.89$ -0.37[%]

 $\sqrt{\left|Y_{\mu\tau}\right|^2 + \left|Y_{\tau\mu}\right|^2}$

 $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 0.0036$

IY I

μτ

10⁻¹

28

Fiducial and Differential Cross sections

Fiducial and Differential Cross sections

Ratio of 1st moment relative to data

Ratio of 2nd moment relative to data

- Large number of observable tested
- Compatibility is quantified via 1st/2nd moment and $\chi 2$: Broadly in line with theoretical expectations.

Invisible Higgs search

- No significant excess is observed over the SM expectation
- CMS Combination of VBF, Z(11)H and Z(bb)H searches: BR(H \rightarrow inv)<0.58(0.44 exp.) @95% CL.
- ATLAS Z(11)H searches: BR(H \rightarrow inv)<0.37(0.39 exp.) @95% CL
- Strongest available limits for low-mass DM candidates. No sensitivity to those model once the mass of DM candidate exceeds mH/2

Higgs as a tool for discovery

FCNC
$$t \rightarrow H(\gamma \gamma) q(u,c)$$

In 2HDM type III (without flavor conservation) The c(u)H coupling is present at tree level

95% CL upper limit

 $Br(t \rightarrow cH) < 0.79 \ (0.51)\%$

JHEP 06 (2014) 08

Summary

- Since the discovery of Higgs boson, the property has been widely studied at ATLAS and CMS.
- So far, all the properties are consistent with SM prediction.
- Look forward to new results @ RUN2.

3(g₄)/g

