Latest $H \rightarrow \gamma \gamma$ results in ATLAS.

Elisabeth Petit

DESY LHC discussion meeting 22nd of September 2014

Introduction

Final results with run 1 dataset for the $H \rightarrow \gamma \gamma$ channel

Part I: Measurement of Higgs boson production in the diphoton decay channel

submitted to Phys. Rev. D, 1408.7084

Aim of the analysis

- Ultimate goal: test couplings of Higgs boson to fermions and bosons
- Measurements of signal rates relative to SM predictions (signal strengths) for the main production mechanisms
- ♦ Use m_H=125.4±0.4 GeV from the mass paper (HIGG-2013-12) as input
- From inclusive diphoton sample divide the events into categories that maximise sensitivities to production mechanisms

Changes wrt last paper

- ♦ First results on run-1 dataset published in Physics Letters B, Volume 734
- ♦ Improved material description
- ♦ Improved calibrations
 - mass resolution improved by 10%
 - resolution uncertainty reduced by factor 2
- Reduced uncertainties on photon ID and isolation
- ♦ New categories
 - added ttH leptonic, hadronic
 - split VH into 1-lepton (WH) and 2-lepton (ZH)

Categorisation

• Divide diphoton selection in sequential, exclusive categories

Systematic uncertainties

♦	Summary of uncertainties on the signal strength:	Uncertainty group	$\sigma_{\mu}^{ m syst.}$
		Theory (yield)	0.09
		Experimental (yield)	0.02
•	Theoretical uncertainties on yield	Luminosity	0.03
		MC statistics	< 0.01
	– BR: 5%	Theory (migrations)	0.03
		Experimental (migrations)	0.02
	 QCD scale+PDF: up to 8% (ggF) 	Resolution	0.07
		Mass scale	0.02
		Background shape	0.02

- Theoretical uncertainty on migration
 - Higgs p_T modelling for ggF: weighted to match the HRes2.1 prediction, up to 24% migration uncertainty
 - ggF cross section with one or two jets
 - use of ST method
 - adapted for MVA selection of VBF category
 - up to 52% migration uncertainty

- ♦ Local significance at 125.4 GeV:
 - expected: 4.6o
 - observed: 5.2o
- Signal strength:
 - $-\mu = 1.17 \pm 0.23 (\text{stat}) + 0.10 (\text{syst}) + 0.12 (\text{syst}) + 0.12 (\text{m})$
 - 0.7σ compatibility with SM (μ =1) —
- Compatibility with previous results
 - Phys. Lett. B 726, 88 (2013)
 - $-\mu = 1.55 + 0.33 0.28$
 - consistent with each other at the level of ~ 2.3 (

GeV

veights /

Signal strength /production mode

• Extracted from simultaneous fit on 12 categories

- Ratios of μ_i / μ_{ggF}
 - test the production through VBF, VH and ttH independently of BR(H $\rightarrow \gamma\gamma$)
 - $\mu_{\rm VBF}/\mu_{\rm ggF} = 0.6 ^{+0.8}_{-0.5}$
 - $\mu_{VH}/\mu_{ggF} = 0.6 ^{+1.1}_{-0.6}$
 - $\mu_{ttH}/\mu_{ggF} = 1.2 ^{+2.2}_{-1.4}$
 - not significantly different from 0, consistent with SM

Part II: Search for scalar diphoton resonances in the mass range 65-600 GeV at $\sqrt{s} = 8$ TeV

accepted by Phys. Rev. Lett., 1407.6583

Analysis overview

- Many models predict other Higgs bosons at higher or lower mass
- ♦ Range: 65 (trigger) 600 (statistics) GeV
- ♦ Key points
 - stay as close as possible to $H \rightarrow \gamma \gamma$ methods
 - be as model-independent as possible
- ♦ Hypotheses
 - narrow: natural width < calorimeter resolution ($\Gamma_x < 0.09 + 0.01 * m_x$)
 - spin 0
- Analysis split in two:

11

- ♦ 60 < mγγ < 120 GeV</p>
- ♦ Selection cuts
 - $E_{T} > 22 \text{ GeV}$
 - tight isolated photons
- Continuum background + $Z \rightarrow ee$ with e faking γ as background
- Separate events into three categories:
 - both photons unconverted
 - one unconverted, one converted
 - both photons converted

- ♦ 100 < mγγ < 800 GeV</p>
- ♦ Selection cuts
 - $E_T^{\gamma 1}/m_{\gamma \gamma}^2 > 0.4$ and $E_T^{\gamma 2}/m_{\gamma \gamma}^2 > 0.3$
 - tight, isolated photons
- Fits in mass sliding windows around each tested mass
- H(125 GeV) as additional background ($\mu = 1$)

◆ p0 (= probability that peak comes from background fluctuations)

- No significant excess over one order in magnitude in mass
- Two fluctuations around 2σ
 - 0σ with look-elsewhere-effect

⁷ Limit on fiducial cross-section (1)

• Compute fiducial cross-section: σ_{fid} . BR = $\frac{N^{signal}}{C}$ from the fit

- ◆ Fiducial volume at low-mass:
 - $E_{\rm T}^{\gamma 1} > 22 \ GeV$
 - |η| < 2.37
 - particle isolation < 12 GeV
- Fiducial volume at high-mass:
 - $E_T^{\gamma 1}/m_{\gamma \gamma} > 0.4, E_T^{\gamma 2}/m_{\gamma \gamma} > 0.3$
 - |η| < 2.37
 - particle isolation < 12 GeV
- C_x factor computed with ggF sample
 - other production modes used to assess residual model dependence
 - $10 \rightarrow 4\%$ uncertainty

♦ 95% CL limit:

Limit from 90 fb to 1 fb

Conclusion

- Final results in the $H \rightarrow \gamma \gamma$ channel with run 1
 - final performance (calibration, identification, etc)
- Measurement of Higgs boson production
 - improved categorisation to be sensitive to all production modes
 - signal strength wrt SM: $\mu = 1.17 \pm 0.27$
 - signal strengths for all production modes
 - no significant deviations from SM
 - still limited by statistics
- Search for additional γγ resonances
 - from 65 to 600 GeV
 - no excess seen, limit on fiducial cross-section done over one order in magnitude in mass
 - results available in HEPDATA and Rivet routine

Back-up

{

Influence of signal width

- H \rightarrow $\gamma\gamma$ samples with Narrow Width Approximation
 - − here NWA \Leftrightarrow width of Breit-Wigner = 4.07 MeV
 - reco width = resolution only
- Analysis valid as long as myy width dominated by calorimeter resolution
 - $-\Gamma X < 0.09 + 0.01 * mX$
 - 10 % bias on signal yield

Sensitivity of results at low mass

- ♦ No ATLAS benchmark for h < 125 GeV yet
- Examples from arxiv:1311.5132
 - 2HDM type I, tanβ in [1/50;50], sin(β-α) in [-1;1], mA in [300;1000], mH+ in [300;1000], and mh<120 GeV
 - NMSSM with mf = 500 GeV, mq=2TeV, mgaugino=100,500,1 TeV, tanβ in [1;50], μeff in [100;600] GeV

- Statistical model: new resonance X, H(126), non-resonant background, Drell-Yan
 - $N_{X}(m_{X}, \sigma_{fid}, \theta_{NX}, \theta_{SS}) = \sigma_{fid}.L.C_{H}$
- 95% limit on σ_{fid} with same estimator as main analysis
 - CLs technique, asymptotic approximation
- Low-mass analysis:
 - fit range (m_{yy}): 60-120 GeV, limit range (m_x): 70-110 GeV
- High-mass analysis:
 - fit range (m_{yy}): 100-700 GeV, limit range (m_x): 110-600 GeV

- ♦ Search for HZ → γγjj, HZ → γγll, HZ → γγνν
 ♦ Context of fermiophobic Higgs
- Limit on BR($H \rightarrow \gamma \gamma$)

Limit on $\sigma(ee \rightarrow ZH)*BR(H \rightarrow \gamma\gamma) \sim 1 \text{ pb}$

- Build a template to describe the fake photon background coming from electrons
- Number of estimated events: from $e \rightarrow \gamma$ fake rate
- Shape: from $Z \rightarrow ee$ data
- ◆ Z peak in shifted wrt Z peak in ee (2 GeV)
 - e reconstructed using the photon reconstruction and calibration
 - most of e reconstructed as photon have large Bremsstrahlung
 - shift and smear the $\Delta p_{_{\mathrm{T}}}$ and $\Delta \phi$ distributions

- Fake rates computed from data
 - measured on $Z \rightarrow ee$ data

◆ Templates for each category:

- ♦ Signal yield
 - few %
- ♦ Signal modelling
 - energy resolution
- ♦ CH factors
 - process dependence
- ♦ Continuum bkg
- ♦ Higgs (126 GeV)
- ♦ Drell-Yan

TABLE II. Summary of the systematic uncertainties

Signal and Higgs boson	n yield	Z component of Drell-Yan		
Luminosity	2.8%	Normalization ^b	9 - 25%	
Trigger	0.5%	Peak position ^b	1.5 - 3.5%	
γ identification ^a	1.6 – 2.7%	Template shape ^b	1.5 - 3%	
γ isolation ^a	1 - 6%	Higgs boson backgro	pund	
Energy resolution ^{ab}	10 - 40%	Cross-section ^c	9.6%	
Signal and Higgs boson	$n \ peak \ position$	Branching ratio	4.8%	
Energy scale	0.6%	C_X factor		
Continuum $\gamma\gamma$, γj , jj ,	DY	Topology ^a	3 - 15%	
Signal bias ^a	1-67 events	Pile-up & U. E. ^a	1.4 - 3.2%	

 $^{\rm a}$ mass-dependent.

- ^b category-dependent.
- ^c factorization scale + PDF uncertainties [31].

- ◆ Limit in 150-850 GeV
- 0.1 GeV < $\Gamma_{\rm X}$ < 10%* $m_{\rm X}$
- ♦ Spin 0 and spin 2

