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LHC Roadmap: Schedule beyond LS1 
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The present CMS Tracker 
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Requirements to Phase II Tracker  
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O(1MGy, 1E15 n/cm2) 

O(10 Tbps) 
Short Strips & Macro Pixels  
O(0.5kb deep buffers per cell) 
O(10yrs) 
O(250M channels) 
Low mass, New Layout 

Module-level Stub Finding 
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a) Radiation Fields at 3000 fb-1 
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Fluence O(1E15 n/cm2) 

Dose O(1MGy) 



a) Radiation Fields at 3000 fb-1 
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b) CMS Phase II Tracker Layout 
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7100 Modules 
with z info 

8400 Modules 

~90-100μm 



c) Pt Modules for Stub Finding 
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• Perform correlation locally 
– Adjust window according to R 

• Discard tracks below ~2GeV 
– Keep threshold tunable 

• One order of magnitude data 
reduction 

• Possible thanks to strong CMS 
B-field 
 

Stub 

 



Pt Modules for Outer Tracker 
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~ 4W 

~ 6-8W 

Each Module is an independent tile with its own services 



Sensor Interface to FE Electronics 
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2S Modules 

PS Modules 



Building Tracker Barrel Rods 
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Building Tracker Endcap Disks 
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A Side-Look to ATLAS 
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Upstream Data Path 
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Trigger Data 
L1 Readout Data 



Electrical System:  
Simple Block Diagram, 2S 
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Electrical System:  
Simple Block Diagram, PS 
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Data Aggregation Chain @ 320Mbps 
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LP-GBT 

CIC R CIC L 

FEchip 

5b @   +    5b 
320Mb/s 

6b @ 320Mbps, each chip 
TRIG 
& L1 

FEchip 

6b @ 320Mbps, each chip= 48bits per BX 
TRIG 
& L1 

5b 5b 

=80 bits per BX 



Upstream Data Formats to/from Concentrator 
@ 320Mbps 
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Concentrator 

1b 
L1RO 

5b 

4b 
Stub 

1b 

2S:Unsparsified 
PS: Sparsified 

200ns = 8BX block length = 256bits 

Rx Rx 
Rx Rx 
Rx Rx 
Rx Rx 

... 

Rx 

L1 Trig 

Block synchronous 
transfer of trigger 
data: 
- Capacity shared 

over 8BX 
- Synchronicity is 

maintained 
- Latency is fixed 

Sparsified 
Readout frame 
from 8 FE chips 
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Shared and capped bandwidth: 1.6Gbps 



Capacity vs Stub Rates 
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½ module 



System  Features and Limits 

• Flexibility built into the FE chips to be able to tune bandwidth need and 
adapt to higher GBT capability in innermost layer 

– Decrease number of bend bits 
– Increase Pt threshold, sort stubs according to Pt 
– Use Lp-GBT in 10G mode 

• See Technical Note 
– “I/O data formats for the Concentrator Integrated Circuit” by D. Braga(1), D. Ceresa(2), M. 

Raymond(3), F. Vasey(2), S. Viret(4), Y. Zoccarato(4) 
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2 - 4 mm carbon 
fibre 
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2S pT module 

1 module type, ~10 x 10 cm2 active sensor area for whole of region beyond r = 50 cm (endcaps too) 
 

self-contained single, testable object;  only needs power and optical connection to function 
 
2S => 2 silicon sensors, each read out at both ends, strips 5 cm x 90 µm pitch, ~4000 channels total 
 
16 bump-bonded CBC readout asics, each reads 127 strips from top layer, 127 from bottom 
 

CBC 
readout 
chips 

DC-DC 
conversion 

sensors wire-bonded 
readout asics bump-bonded 

LP-GBT & 
optical VTRx 
(3.2 Gbps) 

concentrator 
    receives data from CBCs 
    assembles data packet and sends to LP-GBT  

FV/17 Nov 2014 
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CBC readout chip history 
2 versions have been produced - both in 130nm CMOS 
 
CBC1 (2011) 
 

128 wire-bond pads, 50 µm pitch 
front end designed for short strips, up to 5 cm 

DC coupled, up to 1µA leakage tolerant, both sensor polarities 
binary unsparsified readout 
pipeline length 6.4 µsec 
 
chip worked well in lab and test beam (few workarounds) 

 
no triggering features 

 
CBC2 (January, 2013)  
 

254 channels 
~same front end, pipeline, readout approach as CBC1 
 
but  

bump-bond layout 
- C4 bump-bond layout, 250 µm pitch, 19 columns x 43 rows 
includes triggering features 
- 30 interchip signals (15 in, 15 out), top and bottom 
 

4 mm 

5 mm 

7 
m

m
 

11
 m

m
 

CBC1 

CBC2 
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CBC2 wafers 

CBC2 

4 wafers probed so far 
 
~ 96% yield 

probe needles contacting wafer test pads 

shared production 
run with other ASICs 
112 reticles / wafer 
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CBC2 performance 
  

all core functionality meets requirements 
 

correlation functionality verified with test pulses, 
cosmics, and in test beam 

 
analogue performance close to simulation expectations 
and specifications 

e.g. 1000e noise for 5 cm strips (~8 pF) 
achievable for total channel power of 350 µW 
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CBC2 triggering architecture 
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OR_254 

OR_stubs 

254 channels: 127 from each sensor layer 
channel mask: block noisy channels from trigger logic 
CWD logic: exclude wide clusters >3 
correlation logic: for each cluster in lower layer look for cluster in upper layer window 
trigger output: 1 bit per BX indicates correlation logic found one (or more) stubs  
L1 readout data out: unsparsified binary data frame in response to L1 trigger 
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CBC2 Triggering Implementation 
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r 
φ 

high 
pT 

low 
pT 

programmable window width defines pT cut 

cluster width discrimination 

n 

n+1 

n-1 

1/2/3 strip 
cluster on 
channel n 

programme cluster 
width to accept 

channel 
comparator 

outputs 

CWD logic 

correlation 
 

seed cluster in lower layer in coincidence 
with cluster within window in upper layer 
 

=> pT stub 
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Correlation using cosmics acceptance 
   window 

upper Si 

lower Si 

scintillator 

1 1 0 1 

CBC2 O/P data frame 

CBC2 trigger output 

scintillator signal 

data stream output bits alternate between upper and lower layers 
 

=> …0001101000….  bit pattern signifies 
1 strip cluster in lower layer 
and 2 strip cluster in upper layer 

CBC2 trigger output (above) produced by 

2 strip cluster in upper layer correlating 

with 1 strip cluster in lower 

digital 
header 

hits 

=> correlation 
logic working 
as expected 
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Concentrator CIC 
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2S Hybrid Developments 
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Hybrid Developments: 2CBC2 

TOP 
surface 

2 chips prototype - available since mid 2013 
• 6 layer “rigid” technology - (actually quite flexible - 265 µm 

thick) 

• For chip testing and mini-module assembly  

• fully functional, but flexibility and thickness causes  
  bonding problems when constructing modules 
 

2 - 4 mm 

C
B

C
2 

C
B

C
2 
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 The 8CBC2Flex is a full 8 CBC2 readout system. 

 4 layer, 150μm thick 

 One 40 MHz clock input. 

 All chips configured separately through a common I2C bus. 

 All chips are powered at 1.25V. 

 Common back end signals to control the readout: 

 Reset,  Clock 40, I2C bus. 

 Paired control signals: 

 Fast reset, I2C refresh, T1Trig, Test Pulse. 

 All readout signals are handled per chip: 

 Trigger and Data lines. 

 All signals are brought to a FPC connector. 

 No concentrator 

 

Hybrid Developments: 8 CBC2 
2 - 4 mm carbon 

fibre 



8 CBC2 Prototype Flex 
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Delivered Apr. 2014 



8 CBC2 Test Bench 
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8 CBC2 Test Results 
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bottom channels 
top channels 



How/Where to add the Concentrator  
• A tradeoff between circuit width, Concentrator position 

and datarate 
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FE Electronics for PS Module 

• ASIC in 65nm process 
• Bump bonded on sensor/substrate 

• 120 strips per SSA 
– 100 μm strip pitch 

• 120 strips x 16 pixels per MPA 
– Pixel size: 100 x 1446 μm2 
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(x8) (x8) 

(x8) (x8) 
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MPA Simple Block Diagram 
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Macro Pixel SubAssembly (MaPSA) 
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MaPSA 



MaPSA-Light Development 
• Assembly of 3 x 2 MPA-

light chips for a total of 288 
pixels 

• Bump-bondable to 
detector 

• Wire-bondable to hybrid 
• 5.4mm x 12.7mm 

 

44 

2 X 3 MPA-Light chips 

2 X 8 MPA chips 

MPA-Light 

MaPSA 

MaPSA-Light 

Sensor-Light 
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MPA-light ASIC layout 
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TSMC LP 65nm 
8 Metal layers process option 

Status: Submitted for fabrication 
            on Sept. 18, 2014 



MPA: Clock tree & sLVS IO pads 
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• Clock Distribution test structures 
• Low power clock distribution scheme for the MPA ASIC 

• sLVS IO pad test structures 
• Differential driver & receiver pads running at 320Mbps @ 0.8V, 640Mbps @ 1.2V 



MPA: SRAM IP block test structures 
• Clock synchronous, pseudo dual-port memory 

– Write/Read operation @ same clock cycle 
 

• Operating speed: 80 MHz @ 1.2 V 
 

• Compatible with the TSMC 65nm CMOS 
– Only lower 4 metal levels used in the SRAM block 
– Only Standard-Vt transistors 
– Special design techniques for radiation tolerance 

 

• Memory Compiler specifications: 
– Minimum size: 128 words of 8 bit 
– Max size: 1k words of 256 bits 

 

• Development work is outsourced 
 

• Design Validation: 
– Prototyped 2 memory blocks of different sizes 
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SRAM  

Data in 

Data out 

Read Address 

CLK 

RD 
WR 

Write Address 



II) The Electronics of the CMS 
Outer Tracker Upgrade 

a) System 
b) FE Electronics for 2S modules 
c) FE Electronics for PS modules 

d) FE Services 
PH-ESE Seminar 

 
Francois Vasey 

 

FV/17 Nov 2014 48 

Slide material from: G. Blanchot, J. Troska, 
 P. Moreira, M. Pesaresi, and many others   

 
 

http://cern.ch/laser-caltech


1. Power 
Power Dissipation per Module 

 
 
 
 
 
 

• Plus DC/DC converter (75% efficiency) 
 

 
• Powering task force at work 

– Power requirement per module exceeds current phase IDC/DC converter capability 
– New DC/DC converters need to be developed 
– Sparing power wherever possible to maintain material budget low 

• Decrease digital supply voltage to 0.8V? 
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• 2S 
– CBC 1.8W 
– CIC 0.4W 2.7W@1.2V 
– LP-GBT 0.5W 

 
– VTRx+ 0.3W 0.3W@2.5V 

• PS 
– SSA 0.6-1W 
– MPA 3-4W 
– CIC 0.4W 4.5-5.9W@1.2V 
– LP-GBT 0.5W 

 
– VTRx+ 0.3W 0.3W@2.5V 

4W    6.5W – 8.5W 



Powering status 
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Powering discussions have initially identified 3 schemes to be evaluated to power the PS modules. 

 

FEASTMP example delivers one voltage output only: 

 

 

 

 

 

Need to fit more power devices (DCDCs or Switched Cap). 

Integration needs to be much more compact. 

In all cases new devices or developments are required.  

50 



Initial Schemes Considered 
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10V>1.2V Front-End 
1.2V 

Sw. Cap + REG 
x3 

Opto 
2.5 – 3.3V 

10V>0.8V 

10V 

12V>2.5V 2.5V>1.2V 

2.5V>0.8V 

12V 

• Scheme 1: 2 FEASTMP + 1 SC + REG 

• Only one FEASTMP can fit today 

the service boards. 

• 10V Input in switched cap /3 is 

complex. 

10V>1.2V Front-End 
1.2V 

Sw. Cap +  REG  
/3 

Opto 
2.5 – 3.3V 

10V>0.8V Front-End 
0.8V 

10V 

• Scheme 2: 2 FEASTMP + 1 CP + REG 

• 2 FEASTMP are not fitting. 

• Possibly inefficient and complex 

charge pump. 

• Scheme 3: 1 FEASTMP + 2 new POL 

DCDC. 

• Need to fit 3 DCDCs in the end. 

• New POL DCDC might be more 

compact and more efficient. 

• Mid voltage can be tuned for Opto. 

Front-End 
0.8V 

Front-End 
0.8V 

Front-End 
1.2V 

Opto 
2.5V 51 



Baseline Scheme Established 
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12V>2.5V 
 
 

2.5V>1.2V 
Fi

lte
r 

Fi
lte

r 
Fi

lte
r 

Fi
lte

r 

2.5V>0.8V 

FEASTMP rated 2A with low profile 

ECCA wire inductor, 200 nH. 

 

This stage was tested. 

• New development. Using same low profile ECCA wire inductor, 200 nH. 

• 2.5V input: no internal regulator, no bootstrap cap. 

• Low input and output voltages: small size caps. 

• All this allows for a more compact design by default. 
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The PS module design was updated 

according to latest tests of DCDC 

integration exercises. 

 

The HV filters are moved to the Hybrids, 

however the input HV cable is still placed 

on the service board. 

 

Flexible connections are today considered 

to link the service board with the hybrids, 

but this is subject to discussions also. 

53 

Integration on PS Module 



Service Hybrid with Staged DCDC 
scheme 
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The new LV DCDCs still based on the FEASTMP geometry. However we can consider a smaller package for 
this chip. 
 
The 3 DCDC stages can be fitted in the available board space without excessive compromise. 

W
ire

bo
nd

s 

Input 

Filters 

16V caps 

FEASTMP 

LV caps 

New DCDCs 

Filters 

Wirebonds 

2.5>1.2 

2.5>0.8 
12>2.5 
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2. Optical Links 
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Links @LHC 
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Links@HL-LHC 
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Links@HL-LHC CMS Tk 
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GBT - Versatile Link Architecture 
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The Low Power GBTX - LpGBT 

60 FV/17 Nov 2014 



The Versatile Link + 
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Link Integration 
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1. Back End DTC 
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Back-End DTC will be developed as late as possible to profit from latest 
available technology and cost reduction. 
In the meantime, GLIB, FC7 and CTA boards have been developed: 
uTCA FPGA-based general purpose boards suitable for production systems or 
prototyping/benchtop use 

• Commonalities 
- Xilinx FPGA-based 
-  FPGA Mezzanine Card (FMC) 

carriers 
-  High-speed serial transceivers 

(GTX) 
-  Advanced Mezzanine Card 

(AMC) format 
-  Compliant with the CMS 

specification for uTCA systems 
 

• Differences 
- FPGA series/families 
-  Position of FMC sockets 
-  GTX count and performance  
-  IO pin count 
-  Memory resources 
-  Monitoring & other advanced 

features 
 



1.a GLIB 
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GLIB Hardware 

66 FV/17 Nov 2014 

FMC2 FMC1 

MMC 

SRAMs FLASH CPLD PWR 

SFP 
x4 

GbE 
PHY 

AMC 

FPGA 



GLIB Firmware  
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1.b FC7 
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FC7 (FMC Carrier based on 7 series FPGA) 



FC7 Hardware 
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FC7 for CMS-TCDS 
• With 3 custom FMCs, the FC7 satisfies the role of 2 objects for the TCDS 

system 
– Local partition manager (interfaces with AMC13, DAQ, etc. 
– Partition interface (interfaces with partition managers and FEDs) 

• 70pcs produced with >95% yield, 30pcs more to come 
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1.c CTA 
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CTA (CMS Tracker AMC) 
 
- flexible, uTCA compatible card for 
generic CMS data 
acquisition/control uses 
 

- suitable for production systems or 
prototyping/benchtop use 
 

- collaborative effort between 
CERN & UK 
 

- evolution of existing board 
designs (CERN GLIB & Imperial 
MP7) 
 

- firmware partitioning is identical 
to GLIB 

CTA is an alias name of the 1st revision of the FC7 (aka FC7_R1) 



Timeline 
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2. L1 Track Finding 
• Three approaches currently under study 

– Associative Memory – based  
– Tracklet – based 
– Time Multiplexing – based  

• All implement parallel processing, pipelined algorithms and time 
multiplexing 

• All rely on latest generation FPGAs 
– AM-based approach relies also on high performance Associative 

Memory ASIC development 

• Large and challenging system 
– beyond the scope of this lecture 

• Two dedicated boards have up to now been presented 
– Pulsar IIb for AM-based approach 
– MP7 for Time Multiplexing approach 
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2.a Pulsar IIb, an FPGA-Based Full Mesh ATCA 
Processor Board and RTM 
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First Boards Received May 2014 

Xilinx Virtex 7 FPGA 
• XC7VX415T – XC7VX690T 

Up to 80 GTH transceivers 
• 40 for RTM 
• 28 for Fabric 
• 12 for Mezzanines 

Four FMC Mezzanines 
• 35W, up to 60W possible 
• LVDS up to 34 Gbps 

unidirectional 
• 3 x GTH up to 30 Gbps 

bidirectional 
IPMC Mezzanine Card 
Backplane clock distribution 

• M-LVDS on CLK3A and 
CLK3B 



2.b MP7 
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Electrical System: Recap 
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   
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 Presented Phase II developments 

 Presented Phase I developments and common projects  



Electrical System Demonstrator 
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Mini 2S-Pt Module 
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UPPER SENSOR 

LOWER  SENSOR 

each CBC2 chip takes 127 inputs from upper sensor and 127 inputs from bottom sensor  

2.75 mm 
sep’n 
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GLIB-GLIB DAQ Chain 
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2CBC2 pT module 



Desy test beam 
25th November - 1st December 2013 
Datura telescope + 2 pT modules 
(1 rotatable to simulate B-field effect) 
    1) CNM sensors: p-on-n 

 5 cm, 90 µm pitch 
    2) Infineon sensors: n-on-p 

5cm, 80 µm pitch 
control and DAQ based on CERN GLIB emulating GBT functionality 

analysis ongoing 

~3 GeV e+ 

Datura 
telescope 

planes 

pT 
module 

angular scan of CNM module in beam 
window width = +/-7 

translated 
to r=75cm 

layer 
effective pT 

cut 
~ 2.2 GeV/c 

beam profile in pT module 

81 
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The Phase II Pixel Electronics 

• How does it differ from the outer tracker 
one? 
– Pixel chip 
– Pixel module  
– Power distribution 
– Readout links 
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Pixel Chip 

• RD53 Collaboration with ATLAS 
• 65nm TSMC  
• Common IP blocks being designed and 

prototyped 
• Radiation hardness qualification to 1GRad 
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Pixel Module 
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R=45mm

R= 320mm 

Inner: 
14 x 2*2 modules

Outer: 
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Pixel sensor
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PCB

CO2 pipe r=30mm

Thickness of pixel modules not to scale.
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45mm
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Heat distribution substrate

CO2 pipe

Links for layer1: 500KHz
Links for layer 2: 1MHZ
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4 x 2 
pixel module

16-24W
~2m

8 x 1.2Gb/s
8(1) x 320Mb/s
16-24W

50x50 to 100x100 μm2 pixels 



Pixel Power Distribution 
• Up to 3W per Pixel Read Out Chip (PROC) 
• Power and material to be optimized 
• Two alternatives under study: 
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- DC/DC powering 

- Serial powering 
Within module Outside module 



Pixel Links 
• Optoelectronics will not survive Pix environment 
• Fast low mass electrical links to be developed 

– More copper, more power 
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Data 
merging 

and 
distribution

Pixel array
Coding Serializer

PLL

1-8 E-link coders 
and cable drivers

Data from 1-7 neighbour PROCs

Data to data merging PROC

PROC

Cable 
Equalizer

LPGBT8 E-link rec.

1.2Gbits/s
Light twisted 
pair cables:<2m

10Gbits/s
Optical10G

Ser.



III) The Electronics of the CMS 
Outer Tracker Upgrade 

Conclusions 

PH-ESE Seminar 
 

Francois Vasey 
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Conclusions (I) 
• Electronics design driven by 

– Foreseen HL-LHC operating conditions 
– Module specified as autonomous unit with own services 
– 0.5 – 1.0 MHz L1 trigger rate, 12.5us L1 latency 
– Tracker to Trigger data feed (stubs) at BX rate 

• Stub finding at FE has deep impact on chips, boards and overall system 
design 

– 80% of data is TRIG data 

• Phase II electronic system well advanced 
– 4+ years of R&D 
– 2S chain prototypes characterized and available  

• Both 130nm and 65nm CMOS technologies used 
– Optimal performance balanced with development/production costs and history 

• Flexible, high density interconnects are an enabling technology, commercial 
manufacturing and assembly processes are targeted from the start 

• Services rely heavily on CERN driven Phase I common projects 
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Conclusions (II) 
• Developments for 2S and PS module electronics proceed in parallel.  2S 

system is the precursor, with a full chain already demonstrated 
• FE developments are well under way, anticipating long qualification time.  

BE developments to be frozen as late as possible, but feasibility to be 
demonstrated.  

• Requirements are still evolving, driven by physics, cost optimization, new 
data from simulation or characterization, new ideas, slipping schedule, etc. 

– However, large past R&D investment and optimization must be protected 
– Long design cycles and qualification times must be respected 
– Tracker performance must not be degraded 

• System-level feasibility to be demonstrated by TDR timescale (end-2016) 
• Challenges ahead:  

– Back-End 
• Demonstrate track finding processor at L1 

– Front-End 
• Assemble MaPSA module 
• Demonstrate CIC 
• Reduce the power dissipation and supply the 6-8W needed by the PS module 
• Route and manage traffic to/from concentrator 
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Conclusions (III) 
• 10 years to go to HL-LHC 
• Many interesting development projects still welcome newcomers 
• Prototype chains available for users to experiment with and give feedback 
• Electronics evolves rapidly outside HEP community 

– Disruptive technologies may still … disrupt us 
– Do not keep or study this presentation for too long ! 
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Backups 
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CMS Upgrade Program 
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3000 fb-1 

5x1034 



2S Electronic System Capacity 
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SSA 

PS Electronic System Capacity 
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Simplified Front-End Block Diagram 
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The MPA-Light Demonstrator  
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Periphery circuit  
(2 mm) 

• A reduced size MPA design 
• 16 x 3 pixels (instead of 120 x 16) 
• Size of single pixel (as final): 100 x 1446 

um 
• Bump-bond pad size: 90 mm 
• Pitch 200 um horizontal, 200 um vertical 
• Wirebond pads for hybrid connections 
• Pixel floorplanning similar to the final MPA 
• Scalable to the final design 

 
• Purpose 

• Prototype & qualify the analog FE circuitry  
• Facilitate the development of the sensor 
• Understand and solve the numerous 

technical aspects of the Module Assembly  
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FEASTMP size reduction 
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All configurations require one or several FEASTMP, not 

designed for trackers 

• Need to reduce the board area 

• Need to reduce the material budget. 

• Need to match the 2.3A max output current (today it delivers 

more than 4A). 

Introducing the ECCA wire, 200 nH instead of 400 nH. 

• Coil much smaller. 

• Material budget contributed by coil divided by one order of 

magnitude. 

• Good efficiency up to 2A. 

ECCA based FEASTMP is now our reference for the 3 schemes. 98 



Pulsar IIb RTM testing 
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• Tested with (older) RTM version 1.1 
• 38 Channels @ 10 Gbps 
• SFP+, QSFP+ 0dB passive loopback 

modules and active optical cables 
• Improved RTM 2.0 expected Fall 2014 

 



Test Beam Setup 

100 FV/17 Nov 2014 

DESY, Nov-Dec 2013 



HL-LHC Machine Parameters 
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This image cannot currently be displayed.

The MPA-light demonstrator  
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Periphery circuit  
(2 mm) 

 A reduced size MPA design 
 16 x 3 pixels (instead of 120 x 16) 
 Size of single pixel (as final): 100 x 1446 um 
 Bump-bond pad size: 90 mm 
 Pitch 200 mm horizontal, 300 mm vertical 
 Wirebond pads for hybrid connections 
 Pixel floorplanning similar to the final MPA 
 Scalable to the final design 

 
 Purpose 

 Prototype & qualify the analog FE circuitry  
 Facilitate the development of the sensor 
 Understand and solve the numerous 

technical aspects of the Module Assembly  
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MPA-light Block Diagram 
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Serial readout and configuration 
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 Each MPA-Light is an SPI 
slave. 

 SPI Master will be on FPGA 
 2xSPI  buses for 

Configuration and Readout. 
 

 Possible Configuration are: 
 Point to point 
 Daisy Chain 

 
 SPI pads for each MPA-light 

(8):  
 RO clk In 
 RO data In 
 RO enable (Shutter) 
 RO data Out 
 Configuration clk In 
 Configuration data In 
 Configuration enable 
 Configuration data Out 

Point to Point 

Daisy Chain 
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MPA-light ASIC layout 
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TSMC LP 65nm 
8 Metal layers process option 

Status: Submitted for fabrication 
            in Sept. 18, 2014 

Davide Ceresa  
Jan Kaplon  
Rui Francisco De Olivera 
Alessandro Marchioro  
Kostas Kloukinas  
 



This image cannot currently be displayed.

MPA Front-End Performance (sim.) 
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Clock tree & sLVS IO pads 

FV/17 Nov 2014 108 

• Clock Distribution test structures 
• Low power clock distribution scheme for the MPA ASIC 

• sLVS IO pad test structures 
• Differential driver & receiver pads running at 320Mbps @ 0.8V, 640Mbps @ 1.2V 

V. Re, G. Traversi, L. Gaioni, F. De Canio – Univ. of Pavia and INFN Bergamo 
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SRAM IP block test structures 
 Clock synchronous, pseudo dual-port memory 

 Write/Read operation @ same clock cycle 
 

 Operating speed: 80 MHz @ 1.2 V 
 

 Compatible with the TSMC 65nm CMOS 
 Only lower 4 metal levels used in the SRAM block 
 Only Standard-Vt transistors 
 Special design techniques for radiation tolerance 

 

 Memory Compiler specifications: 
 Minimum size: 128 words of 8 bit 
 Max size: 1k words of 256 bits 

 

 Development work is outsourced 
 

 Design Validation: 
 Prototyped 2 memory blocks of different sizes 
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SRAM  

Data in 

Data out 

Read Address 

CLK 

RD 
WR 

Write Address 

S. Bonacini, A. Marchioro, K. Kloukinas  



This image cannot currently be displayed.

Prototyping & Plans for Testing 
 All structures are submitted on a common MPW run on a 65nm 

TSMC Cybershuttle in Sept 18, 2014. Estimated TAT: 1.5 months 
 

 MPA-Light 
 MPA-light test bench @ CERN 

 SRAM IP 
 Test bench @ CERN by S. Bonacini & I. Kremastiotis 

 Clock Tree test structures 
 Test bench by INFN Bergamo 

 sLVS IO test structures 
 Test bench by INFN Bergamo for IO pad characterization 

 Test PCB is in design phase 

 Test bench at CERN for validating data transmission over flex kapton 
media with different topologies (G. Blanchot, M. Covacs) 
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MPA-Light Test Bench 1/2 
 Test the MPA-light prototype ASIC 

 
 Functionality tests of digital logic   

 
 Performance tests of the analog front-

end circuitry  
 

 Exchangeable load board to host the ASIC     
 Wirebond Die on PCB 

 
 Interface board with voltage level translators 

 
 MPA-light communication handled on FPGA  
 
 Based on the CLICKpix test system  

of Szimon Kulis 
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FPGA board Interface  
board 
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A. Caratelli 
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MPA-Light Test Bench 2/2 
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PCI Express VHDCI 

Software  

Interface 
board 
• Voltage level 

translators 
• Adjustable voltage 

regulators  
• ADCs/DACs 
• Current monitors 
• Existing card from 

CLICpix testbench  
 

Load PCB 
• MPA light ASIC 

wirebonded   
• very simple 
• Easy exchangeable 
• Needs to be 

designed   

FPGA 
firmware 
• Handle the 

configuration 
• Handle the read-out 

from the MPA light 
• Control the interface 

board 
• Commercially 

available FPGA board 
 

Software 
layer 
• Specific test routines  
• Set of routines for 

accessing the MPA 
light ASIC (configure, 
read-out, etc) 

• Use IPbus HAL 

 
 

IPbus  (on Ethernet)  

A. Caratelli 
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Software  

 Configuration  
 16 bit digital, 16 bits analog bias, 10 bits/pixel  

 Acquisition  
 Open shutter, send certain number of strobe.. 

 Read-out  
 Pixel counter and digital logic memory 

 Calibration 
 Software checks  
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Specific test 
routines 

MPA-Light  
Main routines 

IP bus 

• Testing configuration and read-out 
• Analog front-end analysis  

▫ S curves  
▫ Trimming 
▫ etc. 

• Test the digital logic  
▫ including stub finding logic  

• Test the logic at different supply voltages 

• Communication with the firmware 
▫ UDP/IP 
 
 

A. Caratelli 
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Reusable modules for other assemblies 

 Firmware    fully reusable  
  
 MPA-light routines  fully reusable 

 
 Test routines    are though for specific tests but 

         can be reused 
 

 Interface card    depends on the assembly   
         (limited number of connection lines)  

 
 Load board    probably no  
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A. Caratelli 
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Status and Planning 
 Hardware 

 Design and production of the load PCB  started 

 Other boards       already available 

 Software/Firmware  

 Communication with the firmware  already tested 
and the load board from a simple  
python script 

 Firmware and function to control   started 
the MPA-Light 
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MPA-Light and MaPSA-Light Test plans 

116 

100 pieces at the  
end of Nov. 2014 

MaPSA Light  

PS-like 
mini module 

2x MaPSA-Light 

Pixel sensor  
prototypes 

Analog FE circuitry  
Digital Pixel Logic 
Stub Finding Logic 

MPA-Light test with 
sensor 
Sensor Test 

Design by A. Dierlamm, M. 
Dragicevic,  
M. Printz. 
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MAPSA-light assembly Technical Description and Call for Tender 
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• A technical description document has been reviewed with purchasing office. 

• See attached document. 

• Minor updates on drawings in August (Davide, Pierre). 

• Considerations: 

• The MPA-Light is not bumped and is delivered diced. 

• The Sensor-Light is delivered on 4 inch wafers, without bumps. 

• The contractor has to provide UBM on the Sensor-Light and on the MPA-Light, and ball-bump 

one of those. 

• This activity can be subcontracted but must be handled by the assembler. 

• Deliverables: 

• 1: Assembly process description: process, critical steps, specific requirements. 

• 2: Prototype production and assembly report. 

• Call for Tender: 

• 3 companies were contacted by end of June to deliver their quotations for the listed 

deliverables on the basis of the technical description.  

• The 3 quotations were received by end August. Review with P.O. took place on September 1st. 

• New companies have been contacted. 
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CONCLUSIONS 

Macro Pixel ASIC gets to the prototyping phase 
 
Designs Submitted for fabrication at the end of Sept. 2014 
Estimated turn around time is 2 months 
 
Tests will begin in December 2014 

118 

Tests will be long, and require significant effort.  
Results will provide important information 
for the design of  the final MPA  ASIC 
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Concentrator Data Flow 



PS L1-Readout Data Flow 
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PS Trigger Data Flow 
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L1 Tk finding 
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8 Data 
   Input  
   boards 

4 Pattern  
   Recognition 
   Boards 

Commericial HUB boards One simple configuration 
as an example 

Fibers from upstream 127 



The AM approach  
• Pattern Recognition Associative Memory 

– Based on CAM cells to match and majority logic to associate hits in different detector 
layers to a set of pre-determined hit patterns (simple working unit, yet massively parallel) 

– Pattern Recognition  finishes right after all hits arrive (fast data delivery important) 
– Potentially good approach for L1 application (require custom ASIC) 
A PR engine naturally handles a given region: divide & conquer 
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CAMs 
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Linearized track fitting can follow each road found (FPGA implementation)  
128 
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