Detector design tune for final states with high-pT muons

Team 4: Ennio, Marius, Martin, Mohsen, Olena, Suvankar

"Raw" generator level information

- Optimize for:
 - PT ~ 10 100 GeV
 - $-\eta \sim 0-3.5$

Detector Design Choices

- We keep the CMS magnet → physically limits the Tracker size
- Keep the pixel as proposed for Phase II (Vertexing)
- Optimized for the pT and η distribution of the signal
 - We need a very good $p_{\scriptscriptstyle T}$ resolution on muons
 - Also in the forward regions
 - Rough estimation:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma_x p_T}{q \left| \vec{B} \right| L^2} \sqrt{\frac{720}{N+4}}$$

Variation of the pitch

TP2014 geometry

- Change in the single point resolution
- Halfen the pitch → double amount of dead material

Tracker Leverarm

Comparison of all Tracker Layouts

- Extension of the leverarm is more important than other parameters
- We concentrate on muons → CMS
 - Remove the ECAL, keep the HCAL, for basic jet/non muon measurement

Final Tracker Layout

31586 (50% PS / 50% 2S), 456.4 m² Silicon, 500 mio. channels

Muon Design Considerations

Muon System:

- Used as trigger
- Provide good pT resolution for very forward muons

Improvement Options:

- Higher magnetic field strength
- Larger magnetic field & muon system
- Higher spatial resolution
- More layers in the forward region

Final Muon System:

- 2 double layers of GEMs, 2 layers of CSCs
- Single hit resolution 120μm
- Dimensions: 3m in Y, 4m in Z-Direction
- Limited by cavern size and the magnet we chose to keep

Muon System Resolution

- For low eta muon system has worse pT resolution than tracker
- 1TeV muons in the foreward region performance of both systems is comparable
- Better resolution when combining both measurements
- we assume 50% of tracker σ_{pT} / pT (for T' analysis only)

Overall CMS configuration

Signal Resolution

ggH and VBFH "Analysis"

- Event processed:
 - DY=340000
 - ttbar=XX
 - ggH=100000
 - vbfH=94000
- Basic cuts on muon pT and eta
- Significance:
 - 2.78 in[120, 130]GeV

Signal resolution Z'

Summary

- Optimized the CMS Tracking Detectors for muon only experiment (removal of ECAL)
- Obtain a better pT-resolution and therefore dimuon mass resolution for our new geometry (w.r.t TP2014)
 ~ 30-50 %
- Significance in the Higgs analysis ~2.78 @ 3000/fb

Backup

No layers

First steps

Analyze the signals to have information about the pt and η distributions

Example:
Invariant mass
combination for 3
merged VBF events

CMS Magnetic fiel

Simulation of the CMS magnetic field [1]:

[1] CMS Collaboration, "Precise Mapping of the Magnetic Field in the CMS Barrel Yoke using Cosmic Rays"

http://arxiv.org/pdf/0910.5530v2.pdf